JPS61236526A - Optical modulation element - Google Patents

Optical modulation element

Info

Publication number
JPS61236526A
JPS61236526A JP7886985A JP7886985A JPS61236526A JP S61236526 A JPS61236526 A JP S61236526A JP 7886985 A JP7886985 A JP 7886985A JP 7886985 A JP7886985 A JP 7886985A JP S61236526 A JPS61236526 A JP S61236526A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
polymer film
crystal molecules
oriented films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7886985A
Other languages
Japanese (ja)
Inventor
Kazuhiko Akimoto
一彦 秋元
Tokihiko Shinomiya
時彦 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7886985A priority Critical patent/JPS61236526A/en
Publication of JPS61236526A publication Critical patent/JPS61236526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Abstract

PURPOSE:To obtain good orientation and to attain satisfactory high-speed responsiveness and bistability by orienting liquid crystal molecules in a prescribed direction by oriented films each consisting of a polystyrene high-polymer film having an insulating characteristic. CONSTITUTION:Transparent electrodes 9, 10 each consisting of an 'NESA(R)' film or ITO film, etc. are patterned and formed on transparent substrates 11, 12 and are the oriented films 7, 8 are formed thereon by the formation of the polystyrene high-polymer film and rubbing treatment. A ferroelectric chiral smectic liquid crystal 6 is sealed between the two substrates. The element formed in such a manner is heated up to the temp. at which the liquid crystal 6 turns to isotropic liquid, then the element is cooled down to the temp. at which the liquid crystal exhibits the ferroelectric chiral smectic phase to array the spiral axes of the liquid crystal molecules. Since the oriented films consisting of the high-polymer film having the insulating characteristic are used, the good orientation is obtd. and the contrast is improved. The satisfactory high speed responsiveness and stability are thus realized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、強誘電性液晶物質、特に強誘電性力イラルス
メクティック液晶を用いた光変調素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a light modulation element using a ferroelectric liquid crystal material, particularly a ferroelectric smectic liquid crystal.

〈従来の技術〉 従来、液晶表示装置としては、ネマティック液晶を用い
たツィステッド・ネマティック(tu+j、ted…e
matic;以下、TNと略す)電界効果型、所謂TN
セルが一般的であり、電子式卓上計算機、ディジタル式
時計等の表示装置に広く用いられている。
<Conventional technology> Conventionally, as a liquid crystal display device, twisted nematic (tu+j, ted...e) using nematic liquid crystal has been used as a liquid crystal display device.
matic (hereinafter abbreviated as TN) field effect type, so-called TN
Cells are common and are widely used in display devices such as electronic desktop calculators and digital watches.

しかし、TNセルは、液晶材料、セル構造及び駆動方法
等の改良にも拘わらず、高速応答性に欠ける為、最近特
に注目されているテレビ画像表示、ポータプルコンピュ
ーターの表示、光シヤツター装置として使用するには、
応答性に問題があった。
However, despite improvements in liquid crystal materials, cell structures, driving methods, etc., TN cells lack high-speed response, so they are used for TV image displays, portable computer displays, and optical shutter devices, which have recently attracted particular attention. for,
There was a problem with responsiveness.

そこで、応答性に関する問題を解決する方法として、強
誘電性カイラルスメクティック液晶を用いた表示素子が
、N、A、C1ark  、  S、T。
Therefore, as a method to solve the problem regarding responsiveness, display elements using ferroelectric chiral smectic liquid crystals have been developed.N, A, C1ark, S, T.

L aHerwa l l  らによって、提案されて
いる(Appl。
It has been proposed by L aHerwal et al. (Appl.

Phys、 36,899.1980)。Phys, 36, 899.1980).

第2図(a)(b)(c)は、強誘電性力イラルスメタ
            、ティック液晶セルの例を、
模式的に示したものである。
Figures 2 (a), (b), and (c) show examples of ferroelectric force and tick liquid crystal cells.
It is shown schematically.

定常状態では、第2図(、)に示すように、液晶分子1
は、螺旋軸2に対して、ティルト角度θ傾いて配列して
いるとともに、螺旋構造を有している。又、この液晶分
子1は、個々の分子に直交した方向に自発分極を有して
いる。
In the steady state, as shown in Figure 2 (,), the liquid crystal molecules 1
are arranged at a tilt angle θ with respect to the helical axis 2, and have a helical structure. Further, the liquid crystal molecules 1 have spontaneous polarization in a direction perpendicular to each molecule.

いま、上下の基板間に、第2図(b)に示すように、一
定の臨界電場以上の電界(E)を印加すると、液晶分子
1の螺旋構造が解消されて、液晶分子1は総て同一方向
を向く。この液晶分子1の配列は、自発分極に依るので
、電界の向き(E、−E)によって2つの配列方向を持
つ。液晶分子は、細長い形状を成しており、長軸方向と
短軸方向とで屈折率の異なる所謂複屈折性を示す為、セ
ルの上下に偏光子を直交配置することで、電界の極性に
よってスイッチング作用を行なう光変調素子を得ること
ができる。この液晶分子の配列の変化は、層内での液晶
分子の向きが変わるだけであるので、TN電界効果型の
ような層構造の変化を伴なうものではなく、高速応答性
を有する。
Now, when an electric field (E) greater than a certain critical electric field is applied between the upper and lower substrates as shown in FIG. 2(b), the helical structure of the liquid crystal molecules 1 is dissolved and all the liquid crystal molecules 1 are facing the same direction. Since the alignment of the liquid crystal molecules 1 depends on spontaneous polarization, there are two alignment directions depending on the direction of the electric field (E, -E). Liquid crystal molecules have an elongated shape and exhibit so-called birefringence, in which the refractive index differs in the major axis direction and the minor axis direction. An optical modulation element that performs a switching action can be obtained. This change in the arrangement of liquid crystal molecules simply changes the orientation of the liquid crystal molecules within the layer, so it does not involve a change in the layer structure as in the TN field effect type, and has high-speed response.

更に、電界を印加しない定常状態においても、液晶分子
の螺旋ピッチより液晶層の厚さを薄くすることで、螺旋
を解消することが可能である。この場合においても、液
晶分子の配列方向は゛2方向を示し、双安定性を有する
。例えば、電界(E)を印加して、第2図(b)の安定
状態の配向を得るが、電界を切っても、第2図(b)の
状態を維持し続ける。又、電界(−E)を印加すると、
第2図(c)の安定状態の配向を得るが、やはり同じよ
うに、電界を切っても、第2図(c)の状態を維持し続
ける。
Furthermore, even in a steady state where no electric field is applied, it is possible to eliminate the helix by making the thickness of the liquid crystal layer thinner than the helical pitch of the liquid crystal molecules. In this case as well, the alignment direction of the liquid crystal molecules exhibits two directions and exhibits bistability. For example, an electric field (E) is applied to obtain the stable orientation shown in FIG. 2(b), but even when the electric field is turned off, the state shown in FIG. 2(b) continues to be maintained. Also, when applying an electric field (-E),
Although the stable state orientation shown in FIG. 2(c) is obtained, the state shown in FIG. 2(c) continues to be maintained even when the electric field is turned off.

このように、液晶層の厚さを薄くすることで、高速応答
性を得るとともに、双安定性を得ることができる。
By reducing the thickness of the liquid crystal layer in this way, high-speed response and bistability can be achieved.

尚、図中、符号1は液晶分子、2は螺旋方向、3.4は
、夫々、上下の偏光子の軸方向である。
In the figure, numeral 1 is the liquid crystal molecule, 2 is the helical direction, and 3.4 is the axial direction of the upper and lower polarizers, respectively.

以上の複屈折現象を利用した光変調方式では、入射光強
度■。と透過光強度Iとの関係は、次式%式% 第2図(b)の状態: 1=0 第2図(c)の状態: 1=(Io/2)木sin”(4θ)本5in2iπ本
(Δn*d/λ))ここで、Δn: 強誘電性力イラル
スメクティック液晶の屈折率異方性 d: 強誘電性力イラルスメクティック液晶層の厚さ θ: 強誘電性力イラルスメクティック液晶の螺旋ティ
ルト角度 である。
In the optical modulation method using the above birefringence phenomenon, the incident light intensity ■. The relationship between and the transmitted light intensity I is as follows: % Condition in Figure 2 (b): 1 = 0 Condition in Figure 2 (c): 1 = (Io/2) wood sin'' (4θ) book 5in2iπ (Δn*d/λ)) Here, Δn: Refractive index anisotropy of ferroelectric smectic liquid crystal d: Thickness of ferroelectric smectic liquid crystal layer θ: Ferroelectric smectic liquid crystal is the helical tilt angle.

〈発明が解決しようとする問題点〉 しかし、現在の時点では、光変調素子として、充分な高
速応答性及び双安定性を有する強誘電性力イラルスメク
ティック液晶セルは、実用化されていない。
<Problems to be Solved by the Invention> However, at present, a ferroelectric smectic liquid crystal cell having sufficient high-speed response and bistability as a light modulation element has not been put into practical use.

本発明は、高速応答性及び双安定性を有する強誘電性力
イラルスメクティック液晶光変調素子を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ferroelectric smectic liquid crystal light modulator having high-speed response and bistability.

〈問題点を解決するための手段〉 本発明の光変調素子は、液晶分子を所定方向に配列させ
る為の配向膜として絶縁性を有するポリスチレン系の高
分子膜を用いたことを特徴とする。
<Means for Solving the Problems> The light modulation element of the present invention is characterized in that an insulating polystyrene-based polymer film is used as an alignment film for aligning liquid crystal molecules in a predetermined direction.

〈実施例〉 以下、図示する実施例により、本発明を具体的に説明す
る。
<Examples> Hereinafter, the present invention will be specifically explained with reference to illustrated examples.

第1図は、本発明の光変調素子の一実施例の構造を示す
縦断面図であり、偏光子13,14、透明電極9,10
、配向膜7,8、液晶材料6及びシール材5から成り、
対向配置されたガラス等の透明基板11.12上に、N
ESA膜やITO膜等の透明電極9.10をパターン形
成し、その上に、夫々、ポリスチレン系の高分子膜を形
成した後ラビング処理を行ない配向膜7,8とし、該配
向膜7,8間に、液晶材料として強誘電性カイラルスメ
クティック液晶6を注入し、シール材5で密閉封止して
あり、両基板11.12の外側に、偏光子13.14が
配設されている。
FIG. 1 is a vertical cross-sectional view showing the structure of one embodiment of the light modulation element of the present invention, in which polarizers 13, 14, transparent electrodes 9, 10
, consisting of alignment films 7 and 8, a liquid crystal material 6 and a sealing material 5,
On transparent substrates 11 and 12 such as glass that are arranged opposite
Transparent electrodes 9 and 10 such as an ESA film or an ITO film are patterned, and a polystyrene polymer film is formed thereon, followed by a rubbing treatment to form alignment films 7 and 8. In between, a ferroelectric chiral smectic liquid crystal 6 is injected as a liquid crystal material and hermetically sealed with a sealing material 5, and polarizers 13.14 are disposed on the outside of both substrates 11.12.

ここで、強誘電性力イラルスメクティック液晶6として
は、例えば、下記のものが挙げられる。
Here, examples of the ferroelectric smectic liquid crystal 6 include the following.

p−decyloxybenzyliden−p’  
amino  2  methyl−butyl  c
innamate(DOBAMBC)p  octyl
oxybenzyl 1clene  p’  ami
no −2−methy−Ibutyl−α−chlo
ro−cinnamate(OOBAMBCC)p−d
ecyloxybenzylidene  p’−am
ino−2−methyl−butyl−α−cyan
o−c innamate(OOBAMBCC)p−t
etradecylooxybenzylidene−
p’−amino−2−methylbutyl−α−
cyano−cinnamate(TDOBAMBCC
)p  Hexyloxybenzylidene−p
’ −amino−2−chlor。
p-decyloxybenzyliden-p'
amino 2 methyl-butyl c
innate (DOBAMBC) p octyl
oxybenzyl 1clene p'ami
no-2-methy-Ibutyl-α-chlo
ro-cinnamate (OOBAMBCC) p-d
ecyloxybenzylidene p'-am
ino-2-methyl-butyl-α-cyan
o-c innate(OOBAMBCC) p-t
ettradecylooxybenzylidene-
p'-amino-2-methylbutyl-α-
cyano-cinnamate (TDOBAM BCC
)p Hexyloxybenzylidene-p
'-amino-2-chlor.

−Q −propyle−cinnamate(HOB
ACPC)p−octyloxybenzyl 1de
ne−p’−amino−2−methyトbutyl
−α−methyl −cinnamate(OOBA
MBHC)p−azoxy−cinnamate−me
tyl−2−butanol(PACMB)p−dod
ecyloxybenzylidene−p’  am
ino−2meth−yl −cinnamate(D
DOBAHBC)p−octyloxybenzyl 
1den−p’ −amino −2−methylb
−utyl −cinnamate(COBAHBC)
p−hexyloxybenzyl 1dene−p’
−amino−2−methyl−buLyl −ci
nnamate(HOBAMBC)又、配向膜7,8は
、ポリスチレン2[%1酢酸メチル溶液をスピンナーで
塗布し、10叶℃1で1時間の焼成を行なった後、パフ
等を用いてラビング処理して形成され、膜厚は、約50
叶入1であり、絶縁性を有しており、絶縁膜の働きをも
する。
-Q -propyle-cinnamate(HOB
ACPC) p-octyloxybenzyl 1de
ne-p'-amino-2-methy butyl
-α-methyl -cinnamate (OOBA
MBHC) p-azoxy-cinnamate-me
tyl-2-butanol (PACMB) p-dod
ecyloxybenzylidene-p' am
ino-2meth-yl-cinnamate (D
DOBAHBC) p-octyloxybenzyl
1den-p'-amino-2-methylb
-util -cinnamate (COBAHBC)
p-hexyloxybenzyl 1dene-p'
-amino-2-methyl-buLyl -ci
In addition, the alignment films 7 and 8 are coated with a polystyrene 2% 1 methyl acetate solution using a spinner, baked at 10°C for 1 hour, and then rubbed with a puff or the like. formed, and the film thickness is approximately 50
It is insulated and has insulating properties, and also functions as an insulating film.

更に、液晶セルは、2枚の透明基板11,12の開隔即
ちセル厚が2Eμm]となるように透明基板11゜12
を貼り合わせ、強誘電性力イラルスメクティック液晶を
注入l、た後、該強誘電性力イラルスメクティック液晶
が等方性液体になる温度までセルを加熱し、強誘電性カ
イラルスメクティック相を示す温度まで約0.2[’C
/m1nlの冷却スピードで冷却して、液晶分子の螺旋
軸を揃えである。
Further, in the liquid crystal cell, the transparent substrates 11 and 12 are arranged so that the gap between the two transparent substrates 11 and 12, that is, the cell thickness is 2E μm.
After bonding the ferroelectric smectic liquid crystals together and injecting the ferroelectric smectic liquid crystal, the cell is heated to a temperature at which the ferroelectric smectic liquid crystal becomes an isotropic liquid, and then to a temperature at which it exhibits a ferroelectric chiral smectic phase. Approximately 0.2['C
The helical axes of the liquid crystal molecules are aligned by cooling at a cooling speed of /mlnl.

〈発明の効果〉 以上のように、本発明の光変調素子は、配向膜として絶
縁性を有するポリスチレン系の高分子膜を用いたことに
より、良好な配向性を得て、コントラストが向上し、充
分な高速応答性及び双安定性を有する強誘電性カイラル
又メクティック液晶セルを容易に実現することが可能と
なる。
<Effects of the Invention> As described above, the light modulation element of the present invention uses an insulating polystyrene-based polymer film as an alignment film, thereby obtaining good alignment and improving contrast. It becomes possible to easily realize a ferroelectric chiral or mectic liquid crystal cell having sufficient high-speed response and bistability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すセル構造の縦断面図
、 第2図(a)(b)(c)は、本発明に使用する強誘電
     □性カイラル又メクティック液晶の分子配列
の模式5・・・シール材 6・・・強誘電性力イラルスメクティック液晶7.8・
・・配向膜 9.10・・・透明電極 11.12・・・透明基板 13.14・・・偏光子
Fig. 1 is a vertical cross-sectional view of a cell structure showing one embodiment of the present invention, and Fig. 2 (a), (b), and (c) show the molecular arrangement of ferroelectric chiral or mectic liquid crystal used in the present invention. Schematic 5... Sealing material 6... Ferroelectric smectic liquid crystal 7.8.
...Alignment film 9.10...Transparent electrode 11.12...Transparent substrate 13.14...Polarizer

Claims (1)

【特許請求の範囲】[Claims] 透明電極を形成し、配向処理された透明電極の間に、強
誘電性液晶物質を封入して成る光変調素子において、液
晶分子を所定方向に配列させる為の配向膜として絶縁性
を有するポリスチレン系の高分子膜を用いたことを特徴
とする光変調素子。
In a light modulation element in which transparent electrodes are formed and a ferroelectric liquid crystal substance is sealed between the transparent electrodes, an insulating polystyrene-based film is used as an alignment film to align liquid crystal molecules in a predetermined direction. A light modulation element characterized by using a polymer film of.
JP7886985A 1985-04-12 1985-04-12 Optical modulation element Pending JPS61236526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7886985A JPS61236526A (en) 1985-04-12 1985-04-12 Optical modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7886985A JPS61236526A (en) 1985-04-12 1985-04-12 Optical modulation element

Publications (1)

Publication Number Publication Date
JPS61236526A true JPS61236526A (en) 1986-10-21

Family

ID=13673827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7886985A Pending JPS61236526A (en) 1985-04-12 1985-04-12 Optical modulation element

Country Status (1)

Country Link
JP (1) JPS61236526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402103A2 (en) * 1989-06-06 1990-12-12 Nippon Oil Company, Limited Method for orienting a liquid crystal polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186933A (en) * 1985-02-15 1986-08-20 Canon Inc Liquid crystal element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186933A (en) * 1985-02-15 1986-08-20 Canon Inc Liquid crystal element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402103A2 (en) * 1989-06-06 1990-12-12 Nippon Oil Company, Limited Method for orienting a liquid crystal polymer

Similar Documents

Publication Publication Date Title
JPS58173718A (en) Optical modulating device of liquid crystal and its production
JP3322197B2 (en) Liquid crystal display
JPH01302226A (en) Ferroelectric liquid crystal element
JPH05273554A (en) Ferroelectric liquid crystal element
JP2647828B2 (en) Liquid crystal device manufacturing method
JP2927662B2 (en) Liquid crystal display
JPS61236526A (en) Optical modulation element
JPS58176623A (en) Electrooptic device
JP3586779B2 (en) Ferroelectric liquid crystal display
JPH06265909A (en) Liquid crystal display device
JP2693558B2 (en) Light modulation element
JP2610516B2 (en) Liquid crystal electro-optical device
JPH09133930A (en) Liquid crystal display element
JP2692673B2 (en) Optical shutter device
JP2598276B2 (en) Ferroelectric liquid crystal device
JPH0754382B2 (en) Method for manufacturing liquid crystal electro-optical device
JPH01140126A (en) Liquid crystal display device
JP2681779B2 (en) Liquid crystal cell
KR0161377B1 (en) Ferroelectric liquid crystal display element
JP2845236B2 (en) Manufacturing method of liquid crystal electro-optical element
JPH06289407A (en) Production of bistable liquid crystal display device
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH0777707A (en) Liquid crystal display device
JPH06138441A (en) Bistable liquid crystal display device
JPH01217319A (en) Ferroelectric liquid crystal display device