JPH02143997A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH02143997A
JPH02143997A JP63298730A JP29873088A JPH02143997A JP H02143997 A JPH02143997 A JP H02143997A JP 63298730 A JP63298730 A JP 63298730A JP 29873088 A JP29873088 A JP 29873088A JP H02143997 A JPH02143997 A JP H02143997A
Authority
JP
Japan
Prior art keywords
output
mosfets
output buffer
vcc
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63298730A
Other languages
Japanese (ja)
Inventor
Yasuhiro Korogi
興梠 泰宏
Hiroyasu Makihara
牧原 浩泰
Kenji Koda
香田 憲次
Takeshi Toyama
毅 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63298730A priority Critical patent/JPH02143997A/en
Publication of JPH02143997A publication Critical patent/JPH02143997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce a switching noise at an output buffer circuit at the time of performing the verification of a program and to stably perform an operation by bi-secting a MOSFET into two parts, operating only a divided MOSFET on one side at the time of performing the verification, and operating both divided MOSFETs in ordinary readout. CONSTITUTION:A semiconductor integrated circuit device is provided with first and second MOSFETs 1 and 2 connected between an output terminal and a power source Vcc, third and fourth MOSFETs 3 and 4 connected between the output terminal and the ground, NAND gates 5 and 6 which drive the MOSFETs 1 and 2, respectively, and NOR gates 7 and 8 which drive the MOSFETs 3 and 4. The verification of the program in which the level of the power source Vcc is increased higher than that in the ordinary readout is performed by reducing the capacity of the output buffer circuit to 1/2. In such a way, it is possible to reduce the switch-noise at the output buffer, and to stably perform a program verify operation.

Description

【発明の詳細な説明】 〔産業上の利用分野j この発明は半導体集積回路装置の出力バッファ回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application j] This invention relates to an output buffer circuit for a semiconductor integrated circuit device.

〔従来の技術1 第4図は従来の半導体集積回路装置の出力バッフ7回路
の回路図で、図において、(1)は出力端子と電tA(
Vcc)に接続されたPチャネルlAOSF ET 、
 (3)は出力端子と接地間に接続されたUチャネ/L
/IJ OS F E T 、 (5)はPチャネ/L
’ Iil OS F ET (1)を駆動するNAN
Dゲート、(7)はNチャネルvosraT(3)を駆
動するNORゲートである。
[Prior art 1] Figure 4 is a circuit diagram of seven output buffer circuits of a conventional semiconductor integrated circuit device.
P-channel lAOSFET connected to Vcc),
(3) is the U channel/L connected between the output terminal and ground
/IJ OS FET, (5) is P channel/L
' Iil OS FET (1) is driven by NAN
The D gate (7) is a NOR gate that drives the N-channel vosraT (3).

次に動作についてF; P ROIilを用いて説明す
る。
Next, the operation will be explained using F; P ROIil.

EPROIJは通常の読み出しはVcc = 5 Vで
出力制御信号であるOe及びp信号がそれぞれ1H”’
L′とすると、内部データ信号が#H#の時NANDゲ
ート(5)の出力はL#になり、睨oRゲート(7)の
出力も#L#になりPチャネ3M!081;’ET(1
)は導通し、NチャネルM OS li’ g T (
3)は非導通になり出力端子には′H#が現われる。ま
た、内部データ信号がRL#の時NANJ)ゲート(5
)の出力は“H#になりNORゲートの出力も1H“に
なり、PチャネルMO8FET(1)は非導通となりN
チャネ/l/MO8Ii”ET(3)は導通になり出力
端子には1L#が現われる。ぞして、出力制御信号であ
るOe及び凸がそれぞれ# L #  IT H#の時
には内部デ゛−タ信号が# H#  # L 11のい
ずれでもNANDゲート(5)の出力は”H”  NO
Rゲート(7)の出力は1L”となり、チャネ)L/1
1!OS F g T(1)とaナヤネIL/ !1!
 OSF E T (3)は共に非導通にな)、出力端
子はフローティング状態即ち高インピーダンス状態にな
る。
For EPROIJ, normal readout is Vcc = 5 V and output control signals Oe and p signals are each 1H"'
When the internal data signal is #H#, the output of the NAND gate (5) becomes L#, and the output of the oR gate (7) also becomes #L#, so P channel 3M! 081;'ET(1
) conducts, and N-channel MOS li' g T (
3) becomes non-conductive and 'H#' appears at the output terminal. Also, when the internal data signal is RL#, the NANJ) gate (5
) output becomes “H#” and the output of the NOR gate also becomes “1H”, and the P-channel MO8FET (1) becomes non-conductive and N
Channel /l/MO8Ii''ET (3) becomes conductive and 1L# appears at the output terminal.Thus, when the output control signals Oe and convex are respectively #L #ITH#, the internal data is Whether the signal is #H# #L 11, the output of the NAND gate (5) is "H" NO
The output of R gate (7) becomes 1L", channel) L/1
1! OS F g T(1) and a Nayane IL/! 1!
OSF E T (3) are both non-conductive) and the output terminals are in a floating or high impedance state.

EPROMは上記の出力バッファ回路が8個または16
個あり、通常のVcc = 5 V m作詩には全ての
出力バッファ回路が安定に高速動作する必要がある。ま
た、gPROVは書込みの際に1バイトまたは数バイト
単位で蓄込みを行ない、正常に書込めたかどうかを確認
するためにその読み出しを行なう◎これをフ”ログラム
ベリファイと言う。通常、書込みには書込み用電源vp
pに12.5Vを印加し、Vccを6■から6.5 V
 #J後にして書込み(プログラム)及びプログラムベ
リファイを行なう。
EPROM has 8 or 16 output buffer circuits as described above.
For normal Vcc = 5 Vm, all output buffer circuits must operate stably and at high speed. Also, when writing, gPROV stores data in units of one byte or several bytes, and reads the data to confirm whether the writing was successful. This is called "program verification." Normally, when writing Power supply for writing vp
Apply 12.5V to p, and increase Vcc from 6■ to 6.5V
Write (program) and program verify after #J.

読み出し時のVcc 5 Vよりも高い電圧で10グフ
ムベリフアイを行なう理由は、書込み後のメモリセール
が秒分に書込まれていることを確認するためである。正
常な書込み後のメモリセルの1蜀値は読み出しゲート電
圧(Vcc )よりも高くなっているが、充分なマージ
ンのある書込みがなされているかはこのゲート電圧を上
げること、つまりVccを上げて読み出しを行なうこと
によって確認できる訳である。しかしながら、Vccを
上げて動作させると、Vcc 5 Vでの動作時に比べ
、出力バッファ回路での出力充放電電流、貫通電流など
によるy、イツチングノイズが増加することにもなる。
The reason why the 10 ghum verification is performed at a voltage higher than Vcc 5 V during reading is to confirm that the memory sale after writing is written in seconds. The 1 value of the memory cell after normal writing is higher than the read gate voltage (Vcc), but whether writing with sufficient margin has been done can be determined by increasing this gate voltage, that is, by raising Vcc and reading. This can be confirmed by doing the following. However, when operating at a raised Vcc, switching noise due to output charging/discharging current, through current, etc. in the output buffer circuit increases compared to when operating at Vcc 5 V.

さらに、8個または16個と数も多いためこのVccを
上げての動作は特にノイズ問題を考慮する必要がある。
Furthermore, since there are a large number of them, such as 8 or 16, noise problems must be taken into consideration when operating with this Vcc raised.

〔発明が解決しようとする課題j 従来のKFROMの出力バッファ回路は以上のように構
成されていたので、プログラムベリファイ時Vccを上
げて動作させると、通常の読み出し時に比べ出力バッフ
ァ回路でのスイッチングノイズが大きくなり、プログラ
ムベリファイの安定動作をさまたげるなどの問題があり
、また1’JEPROMで使われ始めたページ書込み方
式では書込むデータを4バイト内部にラッチしておいて
同時にラッチしておいたデータを畜込み、プログツムベ
リフッイ時にノイズが大きいとこのラッチの内容を壊わ
してしまうなどの問題点があった。
[Problem to be Solved by the Invention j] Since the conventional KFROM output buffer circuit is configured as described above, when operating with Vcc raised during program verification, switching noise in the output buffer circuit is reduced compared to during normal readout. This causes problems such as interfering with the stable operation of program verify, and in the page write method that began to be used in 1' JEPROM, the data to be written is latched within 4 bytes and the data latched at the same time. There was a problem that the contents of this latch could be destroyed if there was a large amount of noise during programming.

この発明は上記のような問題点を解消するためになされ
たもので、プログラムベリファイ時の出力バッファ回路
でのスイッチングノイズを減少させ、安定した動作の可
能なKPRO!iiの出力パラフッ回路を得ることを目
的とするう 〔課題を解決するための手段1 この発明に係るEPROMの出力バッファ回路は出力端
子と電源間のMO8F’ETを2分割して第1及び第2
のMO8F’ETとし、出力端子と接地間のMO81i
’ETも2分割して第3及び第4のMO8F’ETとし
、プログラムベリファイ時には分割された1方のMO8
Li’P2Tのみを動作させ、通常の読み出し時は分割
された画方のMOS rETt−動作させるようにした
ものである。
This invention was made in order to solve the above-mentioned problems, and it reduces switching noise in the output buffer circuit during program verification and enables stable operation of the KPRO! [Means for Solving the Problem 1] An output buffer circuit for an EPROM according to the present invention divides the MO8F'ET between the output terminal and the power supply into two, 2
MO8F'ET, and MO81i between the output terminal and ground.
'ET is also divided into two to form the third and fourth MO8F'ET, and one of the divided MO8F'ETs is used during program verification.
Only Li'P2T is operated, and during normal readout, the MOS rETt- of the divided screen is operated.

〔乍用1 この発明における出力バッファ回路は通常の読み出し時
に比べ、プログラムベリファイ時には出力バッファのサ
イズを半分にすることで能力を半減させ、出力バッファ
Vこおけるスイッチングノイズを軽減することができる
[Use 1] The output buffer circuit according to the present invention can reduce the capacity by half by halving the size of the output buffer during program verification compared to during normal reading, and can reduce switching noise in the output buffer V.

〔実施例j 以下、この発明の一実施例を図について説明する。第1
図において、(1)及び(2)は出力端子と電源(Vc
c )間に接続された第1及び第2の1dO3F’E 
T 、(3)及び(4)は出力端子と接置間に接続され
た@3及び第4の140 S F E T 、 (5)
 、 (6)けそれぞれMOSFET(1)および(2
)を駆動するNANDゲート、(7)、(8)はそれぞ
れ’/10 S F E T (3)、(4)を駆動す
るNORゲートである。oe、o6は出力制御信号、v
8、nは電源(VCC)電圧検知回路の出力である。ま
た、第2図は第1図における電源?電圧(Vcc )検
知回路の一実施例を示す回路図である。
[Embodiment j Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, (1) and (2) are the output terminal and the power supply (Vc
c) first and second 1dO3F'E connected between
T , (3) and (4) are @3 and 4th 140 S F E T , (5) connected between the output terminal and grounding.
, (6) respectively MOSFET (1) and (2
), and (7) and (8) are NOR gates that drive '/10 S F E T (3) and (4), respectively. oe, o6 are output control signals, v
8 and n are the outputs of the power supply (VCC) voltage detection circuit. Also, is Figure 2 the power supply in Figure 1? FIG. 2 is a circuit diagram showing one embodiment of a voltage (Vcc) detection circuit.

次に動作について説明する。Next, the operation will be explained.

第2図に示す′rJL源電圧(Vcc )検知回路は(
9)、(10)、(ll)、(12ンのNah M O
S F E Tの縦続接続により電源電圧(Vcc )
のレベルシフト2圧であるVRESを出力し、このVR
ESは次段のPch M OS F ET (43)と
Nch IJO8F ET(14)の入力となる。この
すOS E” E T (13)及び(14)で溝成さ
れるインバータけVINVなる開鎖を持ち、VREF’
値により出力をインバーp (15)に伝える。インバ
ータ(15)は波形整形及び増幅を行ないVSを出力し
、またインバータ(16)はVSを入力とし反転信号で
ある6を出力する。第3図は上記VRES及びVINV
と電源電圧(Vcc )の関係を示特性図で、!i! 
OS F E T (13)、(14)によるインバー
タの1翅値電圧VINVは通常の読み出し時の電源(V
cc=5V)電圧を超え、プログラムベリファイ時の電
源(Vcc = 6〜6.5V)電圧以下になるような
値に第1表の如く設定されている。
The 'rJL source voltage (Vcc) detection circuit shown in Figure 2 is (
9), (10), (ll), (12 Nah M O
Power supply voltage (Vcc) due to cascade connection of SFET
outputs VRES, which is the level shift 2 voltage, and this VR
ES becomes an input to the next stage Pch MOS FET (43) and Nch IJO8F ET (14). This OS E" E T has an open chain VINV formed by (13) and (14), and VREF'
The output is transmitted to the invert p (15) by the value. The inverter (15) performs waveform shaping and amplification and outputs VS, and the inverter (16) receives VS as input and outputs 6, which is an inverted signal. Figure 3 shows the above VRES and VINV.
A characteristic diagram showing the relationship between and power supply voltage (Vcc)! i!
The one-wing value voltage VINV of the inverter according to OS F E T (13) and (14) is the power supply (V
As shown in Table 1, the voltage is set to a value exceeding the voltage (Vcc = 5V) and less than the voltage of the power supply (Vcc = 6 to 6.5V) during program verification.

以上より第1図において通常の読み出し時にはVcc 
= 5 V テVS、 VSはそれぞれ’L”  ’H
“となり、oe、oe倍信号それぞれ“H” ′L′と
すると内部データ信号が“H“の時、NANDゲート(
5)及び(6)の出力は共にL#になりNORゲート(
7)及び(8)の出力も共にL#となり、第1及び第2
のMOSFET(1)及び(2)は導通し第3及び第4
のVOSF E T (3)及び(4)は非導通になり
出力端子にはH#が現われる。同様にして、内部データ
信号がL#の時、NANDゲート(5)及び(6)の出
力は共に#H#になυNORゲート(7)及び(8)の
出力も共に#H#となり、第1及び第2のMOSFET
(1)及び(2)は非導通第3及び第4のM OS F
 E T (3)及び(4)は導通となり出力端子には
“L#が現われる。上記の場合、出力の第1〜第4の%
108 F E T (1) (2) (3) (4)
は全て動作するので従来の動作と大差はない。
From the above, in FIG. 1, during normal reading, Vcc
= 5 V TeVS, VS are 'L' and 'H, respectively.
", and if the oe and oe times signals are respectively "H" and 'L', when the internal data signal is "H", the NAND gate (
The outputs of 5) and (6) both become L#, and the NOR gate (
The outputs of 7) and (8) are both L#, and the first and second
MOSFETs (1) and (2) are conductive and the third and fourth MOSFETs (1) and (2) are conductive.
VOSFET (3) and (4) become non-conductive, and H# appears at the output terminal. Similarly, when the internal data signal is L#, the outputs of NAND gates (5) and (6) are both #H#, and the outputs of υNOR gates (7) and (8) are also both #H#, and the 1 and 2nd MOSFET
(1) and (2) are non-conducting third and fourth MOS F
E T (3) and (4) become conductive and "L#" appears at the output terminal. In the above case, the first to fourth % of the output
108 FET (1) (2) (3) (4)
Since everything works, there is no big difference from the conventional operation.

次に、プログラムベリファイ時について説明する) V
cc =6 V (または6.25−(,5v )でV
S、VSはそれぞれ#H“′L“になる。oe%暮信号
はそれぞれIT HS  # L #とすると、HAN
Dゲート(6)は内部データ信号がH“、L#のいずれ
でも出力は#H#となり、第2の1,40SF’ET(
2)は常に非導通となる。同様に、NORゲート(8)
は内部データ信号がH″ ′L“いずれでも出力は#L
“となり、第4のMOSFET(4)は常に非導通とな
る。このとき、NANDゲート(5)とNORゲート(
7)は通常の読み出しと同様に動作するので第1のMO
8F’ET (1)及び第3の11!OS FE T(
3)は内部データ信号に従って導通・非導通し、出力端
子にH#またはL”が現われる。ただし、VOSF”E
l:Tは共に通常の読み出し時の半分しか動作していな
いので出力のスイッチングノイズは減少する。
Next, we will explain about program verification)
cc = 6 V (or V at 6.25-(,5v)
S and VS each become #H"'L". If the OE% signal is IT HS # L #, then HAN
The D gate (6) outputs #H# whether the internal data signal is H" or L#, and the second 1,40SF'ET (
2) is always non-conducting. Similarly, NOR gate (8)
Whether the internal data signal is H'''L'', the output is #L
", and the fourth MOSFET (4) is always non-conductive. At this time, the NAND gate (5) and the NOR gate (
7) operates in the same way as normal reading, so the first MO
8F'ET (1) and the third 11! OS FET (
3) becomes conductive or non-conductive according to the internal data signal, and H# or L" appears at the output terminal. However, VOSF"E
Since both l and T operate only half of the normal read operation, the output switching noise is reduced.

プログラムベリファイ時のアクセスタイムは通常のアク
セスタイムよりも遅くてもかまわないので、出カバソフ
ァ回路のサイス”が半減しても支障ない。
Since the access time during program verification may be slower than the normal access time, there is no problem even if the size of the output sofa circuit is halved.

その他の動作説明は従来のものと同様なので省略する。The explanation of other operations is the same as the conventional one, so the explanation will be omitted.

第2表  (本発明の出力バッファ回路の動作)なお、
上記実施例ではFJPROMのプログラムベリファイ時
の出力バッファのスイッチングノイズの場合について述
べたが、この発明は@f’!if源電圧範囲の広い他の
半導体集積回路装置においても同様の効果を奏する。
Table 2 (Operation of the output buffer circuit of the present invention)
In the above embodiment, the case of switching noise of the output buffer during program verification of FJPROM was described, but this invention provides @f'! Similar effects can be achieved in other semiconductor integrated circuit devices having a wide if source voltage range.

[発明の効果1 以上のようにこの発明によれば、Vccを通常の読み出
し時よりも高くして行なうプログラムベリファイ時には
出力バッファ回路の能力を半分にして行なうようにした
ので、出力バッファでのスイッチングノイズを軽減でき
、安定したプログラムベリファイ動作が可能なEPRO
Mが得られる効果がある。
[Effect of the invention 1] As described above, according to the present invention, the capacity of the output buffer circuit is halved during program verification, which is performed with Vcc higher than during normal reading, so that switching in the output buffer is reduced. EPRO that can reduce noise and enable stable program verification operation
There is an effect that M can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す半導体集積回路装置
の出力バッファ回路の回路図、第2図は第1図における
電源電圧(Vcc )検知回路の一実施例を示す回路図
、第3図は第2図のVRESとVINVとVccの関係
の特性曲線図、第4図は従来の半導体集積回路装置の出
力バッファ回路の回路図、第5図iEPROMのメモリ
トランジスタの消去、書込み状態のVG−VD特性を示
す図である。 図において、(1)は第1のli!08Ii”ET、(
2)は第2のViOS F’ E ’I’ 、 (3)
は第3のIA OS r I T 、 (4)は第4の
M OS F E T 、 (5)と(6)はNAND
ゲート、(7)と(8)はNORゲート、(9)〜(1
2)はNチャネル1i(O8FET、(13)はPチャ
ネ/l/IAO8FET。 (14)はNチャネルMOSFET。 ンパータを示す。 なお、図中、同一符号は同一、 示すり
FIG. 1 is a circuit diagram of an output buffer circuit of a semiconductor integrated circuit device showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing an embodiment of the power supply voltage (Vcc) detection circuit in FIG. 1, and FIG. The figure is a characteristic curve diagram of the relationship between VRES, VINV, and Vcc in Figure 2, Figure 4 is a circuit diagram of an output buffer circuit of a conventional semiconductor integrated circuit device, and Figure 5 is a VG diagram of the erase and write state of the memory transistor of an iEPROM. It is a diagram showing -VD characteristics. In the figure, (1) is the first li! 08Ii”ET, (
2) is the second ViOS F' E 'I', (3)
is the third IA OS r I T , (4) is the fourth M OS FET , (5) and (6) are NAND
gates, (7) and (8) are NOR gates, (9) to (1
2) is an N-channel 1i (O8FET), (13) is a P-channel/l/IAO8FET, and (14) is an N-channel MOSFET.

Claims (1)

【特許請求の範囲】[Claims] 電源電圧検知回路を有し、出力端子と電源間に接続され
た第1及び第2のMOSFETと出力端子と接地間に接
続された第3及び第4のMOSFETにより構成され上
記、電源電圧検知回路は第1の電源電圧検知時において
第1、第2、第3及び第4のMOSFETが内部の出力
信号に応じて導通または非導通状態になり、出力端子よ
り信号を出力する制御信号を出力し、第2の電源電圧検
知時に、第1及び第3のMOSFETは内部の出力信号
に応じて導通または非導通状態になり、第2及び第4の
MOSFETは常に非導通状態とする制御信号を出力す
ることを特徴とする半導体集積回路装置。
The above-mentioned power supply voltage detection circuit has a power supply voltage detection circuit, and is composed of first and second MOSFETs connected between the output terminal and the power supply, and third and fourth MOSFETs connected between the output terminal and ground. When the first power supply voltage is detected, the first, second, third and fourth MOSFETs become conductive or non-conductive depending on the internal output signal, and output a control signal to output a signal from the output terminal. , when the second power supply voltage is detected, the first and third MOSFETs become conductive or non-conductive depending on the internal output signal, and the second and fourth MOSFETs output a control signal that always makes them non-conductive. A semiconductor integrated circuit device characterized by:
JP63298730A 1988-11-26 1988-11-26 Semiconductor integrated circuit device Pending JPH02143997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298730A JPH02143997A (en) 1988-11-26 1988-11-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298730A JPH02143997A (en) 1988-11-26 1988-11-26 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH02143997A true JPH02143997A (en) 1990-06-01

Family

ID=17863529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298730A Pending JPH02143997A (en) 1988-11-26 1988-11-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02143997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275976B2 (en) 2003-03-28 2007-10-02 Konami Digital Entertainment Co., Ltd. Game toy device using remote-controlled traveling toy, remote-controlled traveling toy, and game board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275976B2 (en) 2003-03-28 2007-10-02 Konami Digital Entertainment Co., Ltd. Game toy device using remote-controlled traveling toy, remote-controlled traveling toy, and game board

Similar Documents

Publication Publication Date Title
JPH02125521A (en) Buffer circuit
JPH09180477A (en) Non-volatile semiconductor memory device and its reading/programming method
JPS63153799A (en) Semiconductor memory
JPH0666115B2 (en) Semiconductor memory device
KR100351934B1 (en) Flash memory device with a status read operation
JP3548830B2 (en) Flash memory system and method with reduced disturbance
JPH0679440B2 (en) Nonvolatile semiconductor memory device
TW434553B (en) Nonvolatile memory semiconductor devices having alternative programming operations
JPS6240697A (en) Semiconductor memory device
JPH0814994B2 (en) Semiconductor memory device
JPH0766675B2 (en) Programmable ROM
US5416737A (en) MOS memory unit for serial information processing
JPH02143997A (en) Semiconductor integrated circuit device
JP3838401B2 (en) Nonvolatile memory and system
JPS6027118B2 (en) semiconductor memory device
JP2655441B2 (en) Read-only semiconductor memory device
JPS6236800A (en) Ic memory device
US6646468B2 (en) Switching device with high-voltage translator
JP2591340B2 (en) Semiconductor integrated circuit device
EP0268288A2 (en) Semiconductor memory device
KR960003402B1 (en) Semiconductor memory device
JPH10340592A (en) Current control circuit and nonvolatile semiconductor storage device including the circuit
JP4004659B2 (en) High voltage input interface circuit and semiconductor integrated circuit
JPS61270921A (en) Decoder circuit
JPS6224878B2 (en)