JPH0214214A - Resin composition for sealing - Google Patents

Resin composition for sealing

Info

Publication number
JPH0214214A
JPH0214214A JP16255988A JP16255988A JPH0214214A JP H0214214 A JPH0214214 A JP H0214214A JP 16255988 A JP16255988 A JP 16255988A JP 16255988 A JP16255988 A JP 16255988A JP H0214214 A JPH0214214 A JP H0214214A
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
bismaleimide
polysiloxane
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16255988A
Other languages
Japanese (ja)
Other versions
JP2680351B2 (en
Inventor
Kenichi Suzuki
憲一 鈴木
Nobutaka Takasu
高須 信孝
Takeshi Yaomi
猛 八月朔日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP63162559A priority Critical patent/JP2680351B2/en
Publication of JPH0214214A publication Critical patent/JPH0214214A/en
Application granted granted Critical
Publication of JP2680351B2 publication Critical patent/JP2680351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide the title resin composition of high glass transition point and low stress, suitable for IC-sealed forms, comprising each specific polysiloxane-epoxy resin block-added form and bismaleimide resin and inorganic filler. CONSTITUTION:The objective composition comprising (A) a polysiloxane-epoxy resin block-added form produced by reaction, in the presence of a platinum-based catalyst, between a phenol-novolak epoxy resin partially containing alkenyl group and a hydrogenorganopolysiloxane of the formula (R1 and R2 are each alkyl, etc.; n is 50-300), (B) a bismaleimide resin produced by reaction between a bismaleimide (derivative) and an aromatic diamine and (C) an inorganic filler (pref. silica powder). This resin composition will give sealed forms excellent in soldering crack resistance reliability and temperature cycling resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はガラス転移点(Tg)が高く、且つ低応力であ
るrc封正正体得るための封止用樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sealing resin composition for obtaining an RC sealing body having a high glass transition point (Tg) and low stress.

〔従来の技術〕[Conventional technology]

現在半導体素子を封止する方法として、エポキシ樹脂成
形材料を用いるトランスファー成形による樹脂封止が一
般的に行なわれている。
Currently, as a method for encapsulating semiconductor elements, resin encapsulation by transfer molding using an epoxy resin molding material is generally performed.

然しなから、半導体素子の高集積化、デバイスの大型フ
ラット化、封止硬化物の薄肉化、基板上への搭載に際し
ての表面実装化等が進み、これに伴ない封止成形材料に
要求される性能も大巾に変化しつつ有る、即ち温度変化
に伴なう、IC基板キャリヤーフレームと硬化成形物と
の熱膨張系数の差に起因する応力の問題が顕在化し、I
Cアルミ配線のスライド、ボンディング金線の断線、I
C界面と封止硬化物の別離、封止硬化物のクランク等の
具体的問題が生じている。
However, as semiconductor elements become more highly integrated, devices become larger and flatter, cured encapsulation materials become thinner, and surface mounting is used for mounting on substrates, more and more are required of encapsulation molding materials. In other words, the problem of stress caused by the difference in thermal expansion coefficient between the IC substrate carrier frame and the cured molded product due to temperature changes has become apparent, and the
C Slide of aluminum wiring, disconnection of bonding gold wire, I
Specific problems have arisen, such as separation of the C interface and the cured sealant, and cranking of the cured sealant.

また、表面実装化への変化に伴ない半田耐熱性がクロー
ズアップされ硬化樹脂のクラックの問題が生じている。
Additionally, with the shift to surface mounting, solder heat resistance has come under scrutiny, resulting in the problem of cracks in the cured resin.

これ等問題に対処するためには、硬化樹脂のTgが可及
的に高く、望ましくは半田浴温度以上であること、およ
び硬化樹脂が低応力で有ることが必至となる。従って両
性能を同時に確保することがエポキシ樹脂では自ずと限
界が生じる。
In order to deal with these problems, it is essential that the Tg of the cured resin is as high as possible, preferably at or above the solder bath temperature, and that the cured resin has low stress. Therefore, there is a natural limit to the ability of epoxy resins to simultaneously ensure both performances.

一方エボキシ樹脂に替る高↑g樹脂としてビスマレイミ
ド系樹脂が有るがこの樹脂の硬化物は弾性率が高く温度
サイクルテストによりクランクを生してしまう ことの
他デバイスとの密着性および耐1!性に劣るという欠点
があった。このため従来樹脂は封止用樹脂としては高T
g硬化物が得られるにも拘らず、適用出来ないという評
価が成されていた。
On the other hand, there is bismaleimide resin as a high ↑g resin that can be used as an alternative to epoxy resin, but the cured product of this resin has a high modulus of elasticity and can cause cracks in temperature cycle tests. It had the disadvantage of being inferior in gender. For this reason, conventional resins have high T as sealing resins.
Although a cured product can be obtained, it has been evaluated that it cannot be applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本願発明は、従来のビスマレイミド系樹脂の欠点を改良
するため鋭意検討を行ない成されたものであり、その目
的とするところは■C封止硬化樹脂に要求される緒特性
を劣化させることなく、低応力性を有し、且つ高Tg硬
化樹脂を与えるIC封止用樹脂組成物を提供するにある
The present invention was achieved through intensive studies to improve the drawbacks of conventional bismaleimide resins, and its purpose is to: ■C without deteriorating the properties required for sealing cured resins. Another object of the present invention is to provide a resin composition for IC sealing that has low stress properties and provides a high Tg cured resin.

(課題を解決するための手段) 本発明は部分的にアルケニル基を含有する フェノール
、ノボラック系エポキシ樹脂に、ハイドロジエンオルガ
ノポリシロキサンを白金系触媒存在下に付加反応せしめ
て得られるポリシロキサン−エポキシ樹脂ブロック共重
合体とビスマレイミドおよび/またはその誘導体と芳香
族ジアミンの反応により得られる謂ゆるビスマレイミド
系樹脂、および無機質充填材を必須成分とする半導体封
止用組成物である。
(Means for Solving the Problems) The present invention provides a polysiloxane-epoxy resin obtained by subjecting a phenol or novolac epoxy resin partially containing an alkenyl group to an addition reaction with a hydrogen organopolysiloxane in the presence of a platinum catalyst. This composition for semiconductor encapsulation contains as essential components a so-called bismaleimide-based resin obtained by reacting a resin block copolymer, bismaleimide and/or its derivative, and an aromatic diamine, and an inorganic filler.

本発明に用いられるアルケニル基を部分的に含有するフ
ェノール・ノボラック系エポキシ樹脂は各種方法により
得られるものであり、その製法に制約されるものでは無
い。
The phenol-novolak epoxy resin partially containing alkenyl groups used in the present invention can be obtained by various methods, and the manufacturing method is not limited.

例として、アリルフェノールとフェノール類のホルマリ
ンから合成させる謂わる共縮合ノボラックのフェノール
性水酸基を常法によりエポキシ化して得られ樹脂、フェ
ノールノボラック系エポキシ樹脂に、トリブチルアミン
、トリフェニルフA・スファイト、イミダゾール類等の
触媒存在下にアリルフェノール、アリルアルコール等の
水酸基を有する化合物を付加せしめて得られる樹脂。フ
ェノール系ノボラックにアリルクロライドとエピクロル
ヒドリンを反応せしめて得られる。
For example, a resin obtained by epoxidizing the phenolic hydroxyl group of a so-called co-condensed novolac synthesized from formalin of allylphenol and phenols, a phenol novolac-based epoxy resin, tributylamine, triphenylph A sphite, imidazole, etc. A resin obtained by adding a compound having a hydroxyl group such as allylphenol or allyl alcohol in the presence of a catalyst such as. Obtained by reacting phenolic novolac with allyl chloride and epichlorohydrin.

エポキシ樹脂等が用いられる。Epoxy resin or the like is used.

本発明に用いられるポリシロキサン−エポキシブロック
ンク共重合体は、上記アリル基を部分的に含有するエポ
キシ樹脂と、ハイドロジエンオルガノポリシロキサンの
白金系触媒存在下に反応せしめて得られた反応生成物で
有る。
The polysiloxane-epoxy block copolymer used in the present invention is a reaction product obtained by reacting the above-mentioned epoxy resin partially containing allyl groups with hydrogen organopolysiloxane in the presence of a platinum-based catalyst. There is.

用いられるハイドロジエンオルガノポリシロキサンは次
式で示されるポリシロキサンでありその重合度は50〜
300の範囲である。
The hydrogen organopolysiloxane used is a polysiloxane represented by the following formula, and its degree of polymerization is from 50 to
The range is 300.

重合度が50以下の場合、硬化樹脂の低応力化効果が低
下し、300以上ではエポキシ樹脂とのハイドロシリル
化反応が完結し難い。
If the degree of polymerization is less than 50, the stress reduction effect of the cured resin will be reduced, and if it is more than 300, the hydrosilylation reaction with the epoxy resin will be difficult to complete.

更にエポキシ樹脂へのポリシロキサンの付加量(Wtχ
)は適宜選択可能であるが、10〜50%で有ることが
好ましい。
Furthermore, the amount of polysiloxane added to the epoxy resin (Wtχ
) can be selected as appropriate, but is preferably 10 to 50%.

なお、反応方法は適宜選択可能であるが好ましくは芳香
族炭化水素系溶媒での反応が好ましく、その際の触媒は
塩素酸白金の水和物のイソプロパツール溶液が好んで用
いられる。当然ながら反応終了後加熱減圧により溶媒を
除去し、室温で固形の白色ブロック共重合体が得られる
。共重合体が白色を呈するのはポリシロキサンユニット
の凝集に伴ないエポキシ樹脂マトリックス中にドメイン
が形成されることに起因し、この高次の謂ゆる海島構造
が低応力化特性・発現の主因となる。
Although the reaction method can be selected as appropriate, it is preferable to use an aromatic hydrocarbon solvent, and as a catalyst, an isopropanol solution of platinum chlorate hydrate is preferably used. Naturally, after the reaction is completed, the solvent is removed by heating under reduced pressure to obtain a white block copolymer that is solid at room temperature. The white color of the copolymer is due to the formation of domains in the epoxy resin matrix due to the aggregation of polysiloxane units, and this higher-order so-called sea-island structure is the main cause of the stress-lowering properties. Become.

また、本発明組成物を構成するためのビスマレイミド系
樹脂は、ビスマレイミドおよび、またはその誘導体と芳
香族シミアンとのマイケル付加反応により得られる。オ
リゴマーであり市販品としてはローヌブーラン社のケル
イミドが代表的である。当然ながら両成分の比率、得ら
れるオリゴマーの重合度分布等が最終硬化物のTgに影
響を及ぼすため適宜合成して用いることは好ましい。な
お該樹脂のみによるラジカル開始剤またはシミアンによ
る硬化物は高Tgでは有るものの密着性、機械的強靭性
に劣るためエポキシ樹脂との組合せで成形材料組成物を
得るのが一般的であり、この手法は広く用いられている
方法である。
Further, the bismaleimide resin for constituting the composition of the present invention can be obtained by a Michael addition reaction between bismaleimide and/or a derivative thereof and an aromatic simian. It is an oligomer, and a typical commercially available product is Kelimide from Rhone-Bouland. Naturally, the ratio of both components, the polymerization degree distribution of the obtained oligomer, etc. affect the Tg of the final cured product, so it is preferable to synthesize and use it as appropriate. Although cured products using a radical initiator or simian using only the resin have a high Tg, they are inferior in adhesion and mechanical toughness, so it is common to obtain a molding material composition in combination with an epoxy resin, and this method is a widely used method.

ポリシロキサン−エポキシ樹脂ブロンク付加体とビスマ
レイミド系樹脂の配合割合は適宜、硬化物の特性に鑑み
決定される。なお両者の混合物の硬化樹脂は黄白色であ
り硬化伎もオリガリポリシロキサンユニントの凝集に起
因するトメイアは安定に残存することが判る。
The blending ratio of the polysiloxane-epoxy resin bronch adduct and the bismaleimide resin is appropriately determined in view of the properties of the cured product. The cured resin of the mixture of the two is yellowish white, and it can be seen that even after curing, the tomeia caused by the aggregation of the origaripolysiloxane units remains stably.

本発明に用いる無機質充填材としてはシリカ粉末、アル
ミナ、二酸化アンチモン、水酸化アルミニウム水和物、
酸化チタン、等が挙げられ、単独または2種以上混合し
て用いられる。
Inorganic fillers used in the present invention include silica powder, alumina, antimony dioxide, aluminum hydroxide hydrate,
Examples include titanium oxide, which may be used alone or in combination of two or more.

このうち半導体封止材料組成物としてはシリカ粉末が好
んで用いられる。なお無機質充填材の配合量は樹脂組成
物と充填材の全体に対して50〜80重贋%含有するこ
とが必要であり、50重世%以下では硬化組成物の性能
が不充分であり80重量%以上の場合は成形性が悪く実
用に適さない。
Among these, silica powder is preferably used as the semiconductor encapsulating material composition. The amount of inorganic filler blended must be 50 to 80% by weight based on the total resin composition and filler, and if it is less than 50% by weight, the performance of the cured composition will be insufficient. If it exceeds % by weight, the moldability is poor and it is not suitable for practical use.

なお、上記必須成分の他成形材料化に際しては硬化促進
剤、滑剤ξ難燃化剤、離形剤、シランカップリング剤等
を適宜配合添加することが出来る。
In addition to the above-mentioned essential components, a curing accelerator, a lubricant, a flame retardant, a mold release agent, a silane coupling agent, etc. can be added as appropriate when forming the molding material.

本発明の半導体封止用樹脂組成物を成形材料として調整
する場合の一般的な方法としては、前述の必須成分配合
物に各種添加剤を加えて混合した組成物をニーダ−1熱
ロールによる混練処理を行ない、これを冷却後粉砕して
成形材料とすることが出来る。得られた成形材料を半導
体の封止に適用し、高Tg低応力特性の両立化を図るこ
とが出来る。
A general method for preparing the resin composition for semiconductor encapsulation of the present invention as a molding material is to knead the composition obtained by adding various additives to the above-mentioned essential component mixture using a kneader 1 heated roll. After processing, it can be cooled and pulverized to form a molding material. The obtained molding material can be applied to semiconductor encapsulation to achieve both high Tg and low stress characteristics.

〔作  用〕[For production]

本発明になる樹脂組成物を成形材料化し、これを用いて
成形・硬化させることにより、半導体を封止することに
より、以下の作用に起因して信顛性の高い封止体を得る
ことが出来る。
By converting the resin composition of the present invention into a molding material and molding and curing it to encapsulate a semiconductor, a highly reliable encapsulated body can be obtained due to the following effects. I can do it.

1)相互に相溶したエポキシ樹脂ユニットとビスマレイ
ミド系樹脂によりマトリックスが形成されるため高Tg
硬化体が得られ、半田浸漬時の耐りランク信転性が大巾
に向上する。
1) High Tg because the matrix is formed by mutually compatible epoxy resin units and bismaleimide resin.
A cured product is obtained, and the durability rank reliability during solder immersion is greatly improved.

2)上記マトリックス中に柔構造を有するポリシロキサ
ンドメインが微小且つ均一に分散されている。−め硬化
樹脂の弾性率が低下し、低応力硬化体となる。
2) Polysiloxane domains having a flexible structure are minutely and uniformly dispersed in the matrix. - The elastic modulus of the cured resin decreases, resulting in a low stress cured product.

3)エポキシ樹脂成分を含有するため、半導体IC表面
リードフレーム等との密着性に優れ耐湿信転性が向上す
る。
3) Since it contains an epoxy resin component, it has excellent adhesion to semiconductor IC surface lead frames, etc., and improves moisture resistance.

4)ポリシロキサン成分がエポキシ樹脂とのブロンク付
加体の形で導入されているため成形に際してのブリード
、薄パリ等の問題が無くなり、更に良好な捺印性が得ら
れる。
4) Since the polysiloxane component is introduced in the form of a bronch adduct with the epoxy resin, problems such as bleeding and thinning during molding are eliminated, and even better marking properties can be obtained.

〔発明の効果] 本発明による封止用樹脂組成物を用いた成形材料硬化物
は高Tgであるため、封止体の耐半田クラック信顛性に
優れ、且つ低応力であり耐温度サイクル性に優れた封止
体を得るために極めて有効な樹脂組成物である。
[Effects of the Invention] Since the cured molding material using the encapsulating resin composition of the present invention has a high Tg, the encapsulated body has excellent solder crack resistance and reliability, has low stress, and has good temperature cycle resistance. This is an extremely effective resin composition for obtaining a sealed body with excellent properties.

以下に実施例を示す。Examples are shown below.

〔参考例 l] エポキシ当量210、軟化点70°Cのオルソクレゾー
ルノボラックエポキシ樹脂100部を170℃にて加熱
し、溶融状態にて撹拌した。
[Reference Example 1] 100 parts of an orthocresol novolac epoxy resin having an epoxy equivalent of 210 and a softening point of 70°C was heated at 170°C and stirred in a molten state.

これにオルソアリルフェノール2,5部、1.8−ジア
ザビシクロ[5,4,0〕−7−ウンデセン0.5部の
混合物を1時間にわたって滴下し、その後2時間反応を
続けた。
A mixture of 2.5 parts of orthoallylphenol and 0.5 parts of 1,8-diazabicyclo[5,4,0]-7-undecene was added dropwise to this over 1 hour, and the reaction was then continued for 2 hours.

こうして得られたアリル基含有エポキシ樹脂のエポキシ
当量は223で、軟化点は73゛Cであった。
The allyl group-containing epoxy resin thus obtained had an epoxy equivalent of 223 and a softening point of 73°C.

このアリル基含有エポキシ樹脂100部、トルエン20
0部を80°Cに加熱、撹拌して均一の溶液とした。こ
れに1重量%の塩化白金酸イリプロパノール溶液0.6
部を添加した後、平均重合度300の両末端にのみ水素
基をもつハイドロジエンジメチルポリシロキサン(以下
オイルAと称すN2部と平均重合度40の両末端にのみ
水素基をもつハイドロジエンジメチルポリシロキサン(
以下オイルBと称す)18部との混合物を1時間にわた
って滴下し、その後、系を100°Cに昇温しで反応を
3時間続けた。
100 parts of this allyl group-containing epoxy resin, 20 parts of toluene
0 part was heated to 80°C and stirred to form a homogeneous solution. To this, 1% by weight chloroplatinic acid iripropanol solution 0.6
After adding 50% of the N2 part, a hydrodiene dimethylpolysiloxane having an average degree of polymerization of 300 and having hydrogen groups only at both ends (hereinafter referred to as oil A) and a hydrodiene dimethylpolysiloxane having an average degree of polymerization of 40 and having hydrogen groups only at both ends. Siloxane (
A mixture of 18 parts of oil (hereinafter referred to as oil B) was added dropwise over 1 hour, and then the system was heated to 100°C and the reaction was continued for 3 hours.

冷却後、減圧下トルエンを溶去することで、エポキシ5
計280、軟化点73°Cとのブロック付加体(c)を
得た。
After cooling, epoxy 5 is removed by eluting toluene under reduced pressure.
A block adduct (c) with a total of 280 and a softening point of 73°C was obtained.

〔参考例 2] 4.4゛−ジアミノジフェニルメタン(口DM) 18
部を、浴温150°Cで加熱融解し、これに撹拌下、懸
濁状態を維持しながら、N 、 N’−4,4°−ジフ
ェニルメタンビスマレイミド(B旧)82部を徐々に添
加し、添加後反応液が透明となり、冷えても透明性がな
くならない時点で反応を紡了しビスマレイミド系樹脂(
0)を得た。
[Reference example 2] 4.4゛-diaminodiphenylmethane (DM) 18
1 part was melted by heating at a bath temperature of 150 °C, and 82 parts of N,N'-4,4°-diphenylmethane bismaleimide (old B) was gradually added thereto while stirring and maintaining a suspended state. When the reaction solution becomes transparent after addition and does not lose its transparency even after cooling, the reaction is completed and the bismaleimide resin (
0) was obtained.

得られたビスマレイミド系樹脂は融点が100°Cであ
った。
The resulting bismaleimide resin had a melting point of 100°C.

〔実施例 1〜2〕 第1表に示す組成で、参考例1.2で得られたブロック
付加体(C)、ビスマレイミド系樹脂(D)に硬化促進
剤、シリカ粉末、アミノシラン着色剤、および離型剤を
配合し、ロール混練して成形材料を得た。これをトラン
スファー成形により、iso″C13分で成形した。成
形品は180°C8時間ポストキュアーした。その特性
は、第1表に示す。
[Examples 1 to 2] With the composition shown in Table 1, the block adduct (C) obtained in Reference Example 1.2, the bismaleimide resin (D), a curing accelerator, silica powder, an aminosilane colorant, and a mold release agent were blended and kneaded with rolls to obtain a molding material. This was molded by transfer molding at iso''C for 13 minutes. The molded product was post-cured at 180° C. for 8 hours. Its properties are shown in Table 1.

〔比較例 1〕 実施例1のビスマレイミド樹脂系(D)を1ボラツク型
フエノール樹脂に替えておこなった。
[Comparative Example 1] A test was carried out by replacing the bismaleimide resin system (D) of Example 1 with a 1-borac type phenolic resin.

〔比較例 2〕 実施例Iのブロック付加体(C)をオルソクレゾール型
エポキシ樹脂に、ビスマレイミド系樹脂(D)をノボラ
ック型フェノール樹脂に替えておこなった。
[Comparative Example 2] A test was carried out by replacing the block adduct (C) of Example I with an orthocresol type epoxy resin and replacing the bismaleimide resin (D) with a novolac type phenol resin.

ブロック付加体(C)およびビスマレイミド系樹脂(D
)の入った実施例1〜2は、低弾性率でガラス転移点(
Tg)が大巾に向上している。
Block adduct (C) and bismaleimide resin (D
) Examples 1 and 2 have a low elastic modulus and a glass transition point (
Tg) has been significantly improved.

*1 ピエゾ抵抗素子をICフレーム上にセットして、
トランスファー成形し、素子への応力を抵抗値変化によ
り評価したもの ネ216ビンリードフレーム上に4 X7.5msの素
子をマウント後トランスファー成形した成形体を−19
6°Cおよび200℃の雰囲気で30秒づつ交互に処理
を繰り返し、300サイクル後の成形体表面のクラック
発生を観察した。
*1 Set the piezoresistive element on the IC frame,
After transfer molding, the stress on the element was evaluated by the change in resistance value. After mounting a 4 x 7.5 ms element on a 216-bin lead frame, the molded body was transfer molded.
The treatment was repeated alternately for 30 seconds each in an atmosphere of 6°C and 200°C, and the occurrence of cracks on the surface of the molded product was observed after 300 cycles.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)部分的にアルケニル基を含有するフェノー
ルボラック系エポキシ樹脂に、次式で表されるハイドロ
ジエンオルガノポリシロキサンを白金系触媒存在下に反
応せしめて得られるポリシロキサン〜エポキシ樹脂ブロ
ック付加体 ▲数式、化学式、表等があります▼ 〔式中R_1R_2はアルキルまたはフエニス基nは5
0〜300の整数を表す〕 (B)ビスマレイミドおよび、またはその誘導体と芳香
族ジアミンの反応により得られるビスマレイミド系樹脂 (C)無機質充填材を必須成分とする封止用樹脂組成物
(1) (A) A polysiloxane to epoxy resin obtained by reacting a phenolborac epoxy resin partially containing an alkenyl group with a hydrogen organopolysiloxane represented by the following formula in the presence of a platinum catalyst. Block adduct ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ [In the formula, R_1R_2 is alkyl or Phenis group n is 5
represents an integer from 0 to 300] (B) A bismaleimide resin obtained by reacting bismaleimide and/or a derivative thereof with an aromatic diamine. (C) A sealing resin composition containing an inorganic filler as an essential component.
JP63162559A 1988-07-01 1988-07-01 Resin composition for sealing Expired - Lifetime JP2680351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162559A JP2680351B2 (en) 1988-07-01 1988-07-01 Resin composition for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162559A JP2680351B2 (en) 1988-07-01 1988-07-01 Resin composition for sealing

Publications (2)

Publication Number Publication Date
JPH0214214A true JPH0214214A (en) 1990-01-18
JP2680351B2 JP2680351B2 (en) 1997-11-19

Family

ID=15756890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162559A Expired - Lifetime JP2680351B2 (en) 1988-07-01 1988-07-01 Resin composition for sealing

Country Status (1)

Country Link
JP (1) JP2680351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296526A (en) * 1990-04-17 1991-12-27 Shin Etsu Chem Co Ltd Epoxy resin composition and curing product thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620023A (en) * 1979-07-26 1981-02-25 Hitachi Chem Co Ltd Curable composition
JPS6322822A (en) * 1986-07-15 1988-01-30 Shin Etsu Chem Co Ltd Silicone-modified epoxy resin and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620023A (en) * 1979-07-26 1981-02-25 Hitachi Chem Co Ltd Curable composition
JPS6322822A (en) * 1986-07-15 1988-01-30 Shin Etsu Chem Co Ltd Silicone-modified epoxy resin and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296526A (en) * 1990-04-17 1991-12-27 Shin Etsu Chem Co Ltd Epoxy resin composition and curing product thereof

Also Published As

Publication number Publication date
JP2680351B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JPS6355532B2 (en)
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JPH0214214A (en) Resin composition for sealing
JPH0564990B2 (en)
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JPH044213A (en) Production of resin for sealing semiconductor
JP2692519B2 (en) Epoxy resin composition
JPH0346486B2 (en)
JP3268818B2 (en) Semiconductor sealing composition
JPH0577686B2 (en)
JPH02147619A (en) Epoxy resin composition
JPS6356518A (en) Epoxy resin composition
JPS62192422A (en) Epoxy resin composition and its production
JPH03167250A (en) Epoxy resin composition
JPH023412A (en) Epoxy resin composition
JPH023411A (en) Epoxy resin composition
JPH02132155A (en) Resin composition for sealing
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JP2732939B2 (en) Epoxy resin composition and semiconductor device sealed with the same
JPH0267312A (en) Epoxy resin composition
JPH03197526A (en) Resin composition
JPH02138332A (en) Epoxy resin composition
JPH05343570A (en) Epoxy resin composition
JPS62209125A (en) Epoxy resin composition for sealing semiconductor