JPH023412A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH023412A
JPH023412A JP14581588A JP14581588A JPH023412A JP H023412 A JPH023412 A JP H023412A JP 14581588 A JP14581588 A JP 14581588A JP 14581588 A JP14581588 A JP 14581588A JP H023412 A JPH023412 A JP H023412A
Authority
JP
Japan
Prior art keywords
epoxy resin
polymn
organopolysiloxane
compsn
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14581588A
Other languages
Japanese (ja)
Other versions
JPH0577689B2 (en
Inventor
Nobutaka Takasu
高須 信孝
Takeshi Yaomi
猛 八月朔日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP14581588A priority Critical patent/JPH023412A/en
Publication of JPH023412A publication Critical patent/JPH023412A/en
Publication of JPH0577689B2 publication Critical patent/JPH0577689B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the subject compsn. providing a cured product having excellent low stress property and impact resistance without lowering the glass transition temp. and mechanical characteristics below those of conventional products by using a block addition product obtd. by combining hydrogenpolysiloxanes having different degrees of polymn. CONSTITUTION:A compsn. wherein a block addition product obtd. by performing an addition reaction of a phenolic novolak epoxy resin partially contg. alkenyl groups with a mixture of an organopolysiloxane having a degree of polymn. of 20-150 and hydrogen atoms on both terminals and another organopolysiloxane having a degree of polymn. of 15-500 and hydrogen atoms on both terminals in the presence of a platinum catalyst, a phenolic novolak curing agent, a curing accelerator and an inorg. filler are incorporated as the essential components is melted and kneaded under heating. By said process, it is possible to obtain a compsn. of an epoxy resin molding material for sealing IC contg. little unreacted siloxane compd., having excellent kneading processability when a molding material is prepd., reduced in the occurrence of flashes and staining of mold and providing a cured sealing material having a high Tg, a high mechanical strength, low stress property and good stamping property.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガラス転移温度および機械性能を、従来品に
比較して低下させずに、低応力性、耐熱衝撃性が改良さ
れた硬化物が得られる半導体封止用エポキシ樹脂組成物
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a cured product that has improved low stress properties and thermal shock resistance without lowering the glass transition temperature and mechanical performance compared to conventional products. The present invention relates to an epoxy resin composition for semiconductor encapsulation that provides the following.

(従来の技術) 現在半導体素子を封止するエポキシ樹脂組成物としては
オルソ・クレゾールノボラックのエポキシ化物、フェノ
ールノボラック硬化剤・、硬化促進剤、無機充填剤を必
須成分とする混練組成物が広く用いられており、半導体
産業の伸長に伴ないその生産量が増大している。
(Prior art) Currently, kneaded compositions containing an epoxidized product of ortho-cresol novolak, a phenol novolak hardener, a hardening accelerator, and an inorganic filler are widely used as epoxy resin compositions for encapsulating semiconductor devices. The production volume is increasing with the growth of the semiconductor industry.

然しなから半導体素子の高集積化、デバイスの大型フラ
ット化、封止硬化物の薄肉化、基板への搭載時の表面実
装化等が進み、これに伴なう封止成形材料に要求される
性能も大幅に変化しつつある。
However, as semiconductor elements become more highly integrated, devices become larger and flatter, cured sealants become thinner, and surface mounting is used when mounting on substrates, etc., demands are placed on sealing molding materials. Performance is also changing significantly.

即ち温度変化に伴なうIC基板、キャリヤーフレームと
硬化成形物との熱膨張係数の差に起因する応力の顕在化
し、ICアルミ配線のスライド、ボンディング金線の断
線、IC界面と封止硬化物の剥離、封止硬化物のクラッ
ク等の具体的問題が生じている。
In other words, stress due to the difference in thermal expansion coefficient between the IC substrate, carrier frame, and cured molded product due to temperature changes becomes apparent, causing sliding of IC aluminum wiring, disconnection of bonding gold wire, and damage to the IC interface and sealed cured product. Specific problems such as peeling and cracking of the cured sealant have occurred.

これ等問題に対処するための1つの手法とじて封止樹脂
硬化物の低応力化が挙げられるが、単に硬化物を低弾性
率化するのみでは、同時にガラス転移点(Tg)も低下
し、従って高温での熱膨張係数が増大し、これに起因す
る応力が生じてしまい、また同時に機械的強度も低下せ
ざるを得ない。これら低弾性率化(低応力化)と高Tg
化という相反する特性要求を両立化する手法として、エ
ポキシ樹脂硬化物マトリックス中に、ゴム状低弾性微粒
子を均一分散させる謂ゆる樹脂のハイブリッド化が提案
され、広く採用されるに至っている。
One method to deal with these problems is to reduce the stress of the cured sealing resin, but simply reducing the elastic modulus of the cured product will also lower the glass transition point (Tg). Therefore, the coefficient of thermal expansion at high temperatures increases, resulting in stress, and at the same time, the mechanical strength inevitably decreases. These lower elastic modulus (lower stress) and higher Tg
As a method for reconciling the contradictory demands for properties, so-called resin hybridization, in which rubber-like low-modulus fine particles are uniformly dispersed in a matrix of cured epoxy resin, has been proposed and has been widely adopted.

具体的にはシリコンゴム粉末、エポキシ樹脂と反応し得
る官能基を有するオルガノポリシロキサンオイルを、樹
脂〜充填剤混練時に添加する方法である。然しなから該
方法は相溶性という見地から粒子の均一分散性に難点が
あり自ずとその添加量に限界が生じてしまい所望の高T
g且つ低弾性率硬化体を得るには至っていない。またこ
の場合オルガノポリシロキサンにより形成される謂ゆる
ドメイン粒径も非常に大となり、封止体にした場合分離
等を生じてしまい封止ICとしての種々の難点が生じて
しまう。
Specifically, this is a method in which an organopolysiloxane oil having a functional group capable of reacting with silicone rubber powder and an epoxy resin is added at the time of kneading the resin and the filler. However, this method has a problem with uniform dispersion of particles from the viewpoint of compatibility, and there is a natural limit to the amount of particles added, and it is difficult to achieve the desired high T.
g and a low elastic modulus cured product has not yet been obtained. In addition, in this case, the so-called domain particle size formed by the organopolysiloxane also becomes very large, and when it is made into a sealed body, separation etc. occur, resulting in various problems as a sealed IC.

これら難点を改良する方法として、通常の硬化性エポキ
シ樹脂および無機質充填剤からなる系に芳香族系重合体
とオルガノポリシロキサンとから形成されるブロック共
重合体を添加する方法(特公昭61−48544号公報
、特開昭58−21417号公報)、通常の硬化性エポ
キシ樹脂と硬化剤と無機充填剤とを含有するエポキシ樹
脂組成物に、アルケニル基台をエポキシ樹脂とオルガノ
ポリシロキサンとの付加反応により得られる共重合体を
配合する方法(特開昭62−84147号公報)等の方
法が提案されてはいる。
As a method to improve these difficulties, a method is proposed in which a block copolymer formed from an aromatic polymer and an organopolysiloxane is added to a system consisting of an ordinary curable epoxy resin and an inorganic filler (Japanese Patent Publication No. 61-48544). (Japanese Patent Application Laid-open No. 58-21417), an alkenyl base is added to an epoxy resin composition containing a conventional curable epoxy resin, a curing agent, and an inorganic filler by an addition reaction between an epoxy resin and an organopolysiloxane. Methods such as a method of blending a copolymer obtained by (JP-A-62-84147) have been proposed.

然しなからこの様な組成物の場合は、使用されるオルガ
ノポリシロキサンの重合度は実質的に低重合度体になら
ざるを得ない。
However, in the case of such a composition, the degree of polymerization of the organopolysiloxane used must be substantially low.

即ち、高重合度ポリシロキサンを用いた場合、■)芳香
族系重合体またはアルケニル基含有エポキシ樹脂との相
溶性が極端に悪く両者の完全なブロック共重合体反応は
実質的に期待出来ず、未反応オルガノポリシロキサンが
混在してしまう。
That is, when a high degree of polymerization polysiloxane is used, (1) its compatibility with aromatic polymers or alkenyl group-containing epoxy resins is extremely poor, and a complete block copolymer reaction between the two cannot be expected; Unreacted organopolysiloxane will be mixed in.

従ってこれら組成物はロール混練時、成形時にブリード
現象を生じ、ロール混練作業性、成形時の型よごれ、成
形体への捺印不良等が生じる結果となる。2)組成物を
構成するポリシロキサン−芳香族系重合体のブロック共
重合物と硬化性エポキシ樹脂との相溶性が悪く、成形に
際して両樹脂の金型微細部で流動時の分離が生じパリの
発生量が増大する。3)形成されるドメイン粒径が比較
的大きなものになり低応力化効果を低減し、且つマトリ
ックスである樹脂層との密着が悪く機械的強度を低下さ
せることになる等の問題点を有している。
Therefore, these compositions cause a bleed phenomenon during roll kneading and molding, resulting in poor roll kneading workability, mold staining during molding, and poor marking on molded products. 2) The polysiloxane-aromatic polymer block copolymer that makes up the composition has poor compatibility with the curable epoxy resin. The amount generated increases. 3) There are problems such as the formed domain grain size is relatively large, reducing the stress reduction effect, and poor adhesion with the resin layer that is the matrix, resulting in a decrease in mechanical strength. ing.

また高重合度ポリシロキサンを用いた場合の上記欠点を
避ける目的で低重度ポリシロキサンを用いると、l)相
溶性が向上するため完全なブロック共重合体が得られる
ものの逆に形成されるドメインが小さくなり過ぎるため
Tg1機械的性能が低下する。2)耐クラツク性が低下
する、といった目的達成のための致命的欠陥が生じる。
In addition, if a low polymerization degree polysiloxane is used in order to avoid the above-mentioned disadvantages when using a high polymerization degree polysiloxane, l) compatibility is improved and a complete block copolymer can be obtained, but on the contrary, the domains formed are Since it becomes too small, the Tg1 mechanical performance deteriorates. 2) A fatal flaw occurs in achieving the objective, such as a decrease in crack resistance.

(発明が解決しようとする課題) 本発明は、上記従来技術の欠点を改良し、未反応シロキ
サン化合物が少なく成形材料化に際しての混線作業性に
優れ、成形時のパリの発生、金型汚れが少なく、高Tg
で機械強度が大であり、且つ低応力化された、捺印性を
有する硬化封IL体の得られるエポキシ樹脂IC封止用
成形材料組成物を提供する目的で成された発明である。
(Problems to be Solved by the Invention) The present invention improves the above-mentioned drawbacks of the prior art, has less unreacted siloxane compounds, is excellent in cross-wire workability when used as a molding material, and eliminates the occurrence of flakes and mold stains during molding. Low, high Tg
This invention was made for the purpose of providing a molding material composition for epoxy resin IC encapsulation, which provides a cured sealed IL body with high mechanical strength, low stress, and sealability.

(課題を解決するための手段) 本発明者等は上記目的を達成するために鋭意検討を重ね
た結果、部分的にアルケニル基を含有するフェノール系
ノボラックエポキシ樹脂に、重合度の異なる2種以上の
両末端ハイドロジエンオルガノポリシロキサンの混合物
を白金触媒下に反応せしめて得られるブロック付加体と
硬化剤であるフェノール系ノボラック、硬化促進剤およ
び無機充填剤を必須成分として構成される樹脂組成物が
目的達成のために有効であるとの知見を得、本発明を成
すに到った。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have made intensive studies and found that two or more types of phenolic novolak epoxy resins partially containing an alkenyl group have two or more types with different degrees of polymerization. A resin composition is composed of a block adduct obtained by reacting a mixture of hydrogen-terminated organopolysiloxanes in the presence of a platinum catalyst, a phenolic novolak as a curing agent, a curing accelerator, and an inorganic filler as essential components. The present invention was realized based on the knowledge that the present invention is effective for achieving the objective.

即ち重合度の異なるポリシロキサンを併用することによ
り、 ■)低重合度ノ\イドロジエンポリシロキサンと
アルケニル基を含むエポキシ樹脂の完全なブロック体が
得られこのものが相溶化剤の役目を果すため高重合度ハ
イドロジエンポリシロキサンのエポキシ樹脂、との反応
が完結し未反応物が無くなり、2)硬化によって形成さ
れるドメイン粒径の分布が広がり(高重合体の場合は低
重合体の場合よりドメインは大きくなる)、耐衝撃性効
果、低応力化効果が大となることを見い出し本発明に到
達した。
That is, by using polysiloxanes with different degrees of polymerization together, (1) A complete block of low polymerization degree hydrodiene polysiloxane and an epoxy resin containing an alkenyl group is obtained, which acts as a compatibilizer. The reaction between the high polymerization degree hydrogen polysiloxane and the epoxy resin is completed, and unreacted materials are eliminated. The present invention was achieved based on the discovery that the impact resistance effect and stress reduction effect are large.

以下に本発明の詳細につき述べる。The details of the present invention will be described below.

本願発明に用いられる部分的にアルケニル基を含有する
ノボラック系エポキシ樹脂は、ノボラック系エポキシ樹
脂とアリルフェノールとの反応により得られ、次式(1
)で表されるエポキシ樹脂であり、反応触媒としては第
3級アミンおよびその誘導体、シクロアミジン系誘導体
等が用いられる。
The novolak epoxy resin partially containing alkenyl groups used in the present invention is obtained by the reaction of a novolak epoxy resin and allylphenol, and is obtained by the following formula (1
), and tertiary amines, derivatives thereof, cycloamidine derivatives, etc. are used as reaction catalysts.

〔但し式中R1は水素原子又はアルキル基を、n、mは
1以上の整数をそれぞれ表す。〕なお本反応は公知の反
応でありこの他、アルケニル基を部分的にエポキシ樹脂
に導入する方法はすべて使用可能である。
[However, in the formula, R1 represents a hydrogen atom or an alkyl group, and n and m each represent an integer of 1 or more. ] Note that this reaction is a known reaction, and any method for partially introducing an alkenyl group into an epoxy resin can be used.

次いで得られたアルケニル基含有エポキシ樹脂をトルエ
ン、ベンゼン、キシレン等の芳香族系溶媒に溶解し少く
とも2ヶ以上のハイドロジエンシリル基を有するオルガ
ノポリシロキサンを添加して反応せしめる。
Next, the obtained alkenyl group-containing epoxy resin is dissolved in an aromatic solvent such as toluene, benzene, xylene, etc., and an organopolysiloxane having at least two or more hydrogen silyl groups is added and reacted.

この際ハイドロジエンポリシロキサンの重合度の異なる
2PN以上のオルガノポリシロキサンを添加することが
肝要であり、好ましくは重合度20〜150の両末端ハ
イドロジエンポリシロキサンと重合度 150〜500
の両末端ハイドロジエンオルガノポリシロキサンとの組
合せが目的達成のために有効な組合せでありその比率は
適宜選定される。
At this time, it is important to add organopolysiloxanes of 2PN or more having different degrees of polymerization, preferably hydrogen polysiloxanes at both ends with a degree of polymerization of 20 to 150 and hydrogen polysiloxanes having a degree of polymerization of 150 to 500.
A combination of the two terminals with hydrogen-terminated organopolysiloxane is an effective combination for achieving the objective, and the ratio thereof is appropriately selected.

また本ハイドロシリル化反応の触媒としては通常、塩素
酸白金等の白金系触媒が用いられる。反応終了後は溶媒
を完全に除去し、乾燥することにより固型のハイドロシ
リル化エポキシ樹脂が得られる。
Further, as a catalyst for this hydrosilylation reaction, a platinum-based catalyst such as platinum chlorate is usually used. After the reaction is completed, the solvent is completely removed and the resin is dried to obtain a solid hydrosilylated epoxy resin.

本発明において硬化剤として用いるノボラック型フェノ
ール樹脂としてはフェノール、アルキルフェノール等の
フェノール類とホルムアルデヒド、パラホルムアルデヒ
ドを反応させて得られるノボラック型フェノール樹脂お
よびキシレン変性フェノールノボラック等の変性樹脂が
用いられる。
As the novolac type phenol resin used as a curing agent in the present invention, a novolac type phenol resin obtained by reacting phenol such as phenol or alkylphenol with formaldehyde or paraformaldehyde, and a modified resin such as xylene-modified phenol novolak are used.

更に本発明において用いられる硬化促進剤としては一般
にエポキシ樹脂とフェノールノボラックの反応促進剤は
すべて使用可能であり、例えばイミダゾールあるいはそ
の誘導体、第3級アミン系誘導体、ホスフィン系誘導体
、シクロアミジン系誘導体等が挙げられる。
Furthermore, as the curing accelerator used in the present invention, all reaction accelerators for epoxy resins and phenol novolacs can be used, such as imidazole or its derivatives, tertiary amine derivatives, phosphine derivatives, cycloamidine derivatives, etc. can be mentioned.

本発明に用いられる無機充填剤としては一般にシリカ粉
末が用いられるがその他、アルミナ、三酸化アンチモン
、水酸化アルミニウム、酸化チタン、タルク等のフィラ
ーも使用目的により使用することが出来る。なお無機質
充填剤の配合量は配合物全体の50%〜80%であり、
50%以下では成形品にした場合の性能が不足となり8
0%以上では成形性に難点が生じる。
Silica powder is generally used as the inorganic filler used in the present invention, but fillers such as alumina, antimony trioxide, aluminum hydroxide, titanium oxide, and talc can also be used depending on the purpose of use. The amount of inorganic filler blended is 50% to 80% of the entire compound,
If it is less than 50%, the performance will be insufficient when made into a molded product.8
If it is 0% or more, there will be a problem in moldability.

なお本願発明の骨子であるブロック体のポリシロキサン
ユニットの凝集に伴ない形成されるドメインサイズの観
察を行う場合は充填剤を含まない成形体での観察が有効
である。
Note that when observing the size of domains formed due to aggregation of polysiloxane units of a block body, which is the gist of the present invention, it is effective to observe a molded body that does not contain a filler.

本発明の封止用樹脂成形材料を得るための一般的な方法
としては前述の配合組成物をミキサー等により充分混合
した後熱ロール又はニーグーにより溶融混練処理を行な
い、次いで冷却固化させた後、粉砕することにより得ら
れる。
A general method for obtaining the sealing resin molding material of the present invention is to thoroughly mix the above-mentioned compounded composition using a mixer or the like, then perform a melt-kneading treatment using a heated roll or a niegu, and then cool and solidify. Obtained by grinding.

(発明の効果) 本発明の対土用組成物は、ハイドロシリル化反応時に低
重合体と高重合体のハイドロジエンポリシロキサンを組
合せることにより、均−且つ完全にブロック体が形成さ
れているエポキシ樹脂を用いているため、ロール混練時
のスリップ等の現象が全くなく均一に混練された組成物
である。
(Effects of the Invention) The soil composition of the present invention has a block body formed uniformly and completely by combining a low polymer and a high polymer hydrodiene polysiloxane during the hydrosilylation reaction. Since epoxy resin is used, the composition is uniformly kneaded without any phenomenon such as slip during roll kneading.

また同様の理由により未反応ポリシロキサン成分が無い
ため、成形に際してのパリの発生、金型汚れ等が無く、
更に成形体表面への印刷性も優れているものである。
In addition, for the same reason, there is no unreacted polysiloxane component, so there is no generation of flakes or mold stains during molding.
Furthermore, the printability on the surface of the molded product is also excellent.

更に、重合度の異なるハイドロジエンポリシロキサン単
位から構成されるドメイン粒径はその分布が広く、従っ
て低応力化とTgのキープといった相反する特性が両立
化され、優れた封止成形体の得られる成形材料組成物で
あった。
Furthermore, the particle size of domains composed of hydrogen polysiloxane units with different degrees of polymerization has a wide distribution, and therefore conflicting properties such as low stress and maintenance of Tg are compatible, and an excellent sealed molded product can be obtained. It was a molding material composition.

(参 考 例) エポキシ当量200、軟化点65℃のオルソクレゾール
ノボラックエポキシ樹脂1.000部を150℃にて加
熱し、溶融状態にて撹拌した。
(Reference Example) 1.000 parts of an orthocresol novolac epoxy resin having an epoxy equivalent of 200 and a softening point of 65°C was heated at 150°C and stirred in a molten state.

これに、オルソアリルフェノール25部、1.8−ジア
ザビシクロ(5,4,0) −7−ウンデセン5部の混
合物を1時間にわたって滴下し、その後2時間反応を続
けた。
A mixture of 25 parts of orthoallylphenol and 5 parts of 1,8-diazabicyclo(5,4,0)-7-undecene was added dropwise to this over 1 hour, and the reaction was then continued for 2 hours.

こうして得られたアリル基含有エポキシ樹脂のエポキシ
当量は214で、軟化点は67℃であった。
The allyl group-containing epoxy resin thus obtained had an epoxy equivalent of 214 and a softening point of 67°C.

(実 施 例) 参考例のアリル基含有エポキシ樹脂t、ooo部、トル
エン2.000部を80℃に加熱、撹拌して均一の溶液
とした。これに1重量%の塩化白金酸イソプロパツール
溶液6部を添加した後、平均重合度300の両末端にの
み水素基をもつハイドロジエンジメチルポリシロキサン
(以下オイルAと称す)120部と平均重合度40の両
末端にのみ水素基をもつハイドロジエンジメチルポリシ
ロキサン(以下オイルBと称す)180部との混合物を
1時間にわたって滴下し、その後糸を100℃に昇温し
で反応を3時間続けた。
(Example) Parts of the allyl group-containing epoxy resin t of the reference example, ooo parts, and 2.000 parts of toluene were heated to 80°C and stirred to form a uniform solution. After adding 6 parts of 1% by weight isopropanol chloroplatinate solution to this, 120 parts of hydrodiene dimethyl polysiloxane (hereinafter referred to as oil A) having an average degree of polymerization of 300 and having hydrogen groups only at both ends was polymerized. A mixture of 180 parts of hydrodiene dimethylpolysiloxane (hereinafter referred to as oil B) having hydrogen groups only at both ends of 40 °C was added dropwise over 1 hour, and then the thread was heated to 100 °C and the reaction was continued for 3 hours. Ta.

冷却後減圧下トルエンを溜去することで、エポキシ当1
1278、軟化点71”Cのブロック付加体Cを得た。
After cooling, the toluene is distilled off under reduced pressure to remove 1 epoxy
1278, a block adduct C having a softening point of 71''C was obtained.

得られた付加体と硬化剤としてOH当量103のフェノ
ールノボラック樹脂、硬化促進剤としてトリフェニルホ
スフィン、結晶性シリカ、3−グリシドキシプロピルト
リメトキシシラン、カルナバワックス、カーボンブラッ
クを第1表に示した量で配合し、加熱ロールにて混練す
ることで成形材料を得た。
Table 1 shows the obtained adduct, a phenol novolak resin with an OH equivalent of 103 as a curing agent, triphenylphosphine, crystalline silica, 3-glycidoxypropyltrimethoxysilane, carnauba wax, and carbon black as a curing accelerator. A molding material was obtained by blending the mixture in the following amounts and kneading it with a heating roll.

材料化の際のロール作業性、得られた成形材料のトラン
スファー成形での成形性、硬化物特性を第2表に示す。
Table 2 shows the roll workability during material preparation, the moldability of the obtained molding material in transfer molding, and the properties of the cured product.

比較例 1 実施例に於いて、オイルAl2O部、オイル8180部
を用いる代わりにオイルA300部を用いた以外は実施
例と全く同様にしてブロック付加体りを得た。この樹脂
のエポキシ当量は278、軟化点は09℃であった。
Comparative Example 1 A block adduct was obtained in exactly the same manner as in the example except that 300 parts of oil A was used instead of 8180 parts of oil Al2O and oil. This resin had an epoxy equivalent of 278 and a softening point of 09°C.

付加体りを第1表の如き配合により、材料化したものの
ロール作業性、成形性、軟化物特性を第2表に示す。
Table 2 shows the roll workability, moldability, and softened material properties of the materials made from the adducts according to the formulations shown in Table 1.

比較例 2 実施例の反応に於いて、オイルA 120部、オイル8
180部を用いる代わりにオイル8300部を用いた以
外は実施例と全く同様にしてブロック付加体Eを得た。
Comparative Example 2 In the reaction of Example, 120 parts of oil A, 8 parts of oil
Block adduct E was obtained in exactly the same manner as in Example except that 8300 parts of oil was used instead of 180 parts.

この樹脂のエポキシ当量は278、軟化点は70℃であ
った。
This resin had an epoxy equivalent of 278 and a softening point of 70°C.

付加体Eを第1表の如き配合により、材料化したものの
ロール作業性、成形性、軟化物特性を第2表に示す。
Table 2 shows the roll workability, moldability, and softened material properties of materials made from Adduct E according to the formulations shown in Table 1.

比較例 3 実施例に於いて、付加体Cの代わりにエポキシ当ffi
 200、軟化点65℃のオルソクレゾールノボラック
エポキシ樹脂を用いて、第1表の如き配合により材料化
したもののロール作業性、成形性、硬化物特性を第2表
に示す。
Comparative Example 3 In the example, epoxy ffi was used instead of adduct C.
Table 2 shows the roll workability, moldability, and properties of the cured product of materials prepared using orthocresol novolak epoxy resin No. 200 and a softening point of 65° C. according to the formulations shown in Table 1.

表 *1 *2 ピエゾ抵抗素子をICフレーム上にセットして、・トラ
ンスファー成形し、素子への応力を抵抗値変化により評
価したもの。
Table *1 *2 A piezoresistive element was set on an IC frame and transferred molded, and the stress on the element was evaluated by changes in resistance value.

I6ピンリードフレーム上に4X7.5mmの素子をマ
ウント後トランスファー成形した成形体を一196℃及
び150℃の雰囲気で30秒ずつ交互に処理を繰返し、
300サイクル後の成形体表面のクラック発生を観察し
た。
After mounting a 4 x 7.5 mm element on an I6-pin lead frame, the transfer-molded molded body was repeatedly treated in an atmosphere of -196°C and 150°C for 30 seconds each.
The occurrence of cracks on the surface of the molded product after 300 cycles was observed.

Claims (1)

【特許請求の範囲】[Claims] (1)部分的にアルケニル基を含有する、フェノールノ
ボラック系エポキシ樹脂に、重合度20〜150の両末
端ハイドロジエンオルガノポリシロキサンと重合度15
0〜500の両末端ハイドロジエンオルガノポリシロキ
サン混合物を、白金系接触存在下に付加反応せしめて得
られるブロック付加体と、硬化剤であるフェノール系ノ
ボラック、硬化促進剤および無機充填剤を必須成分とし
、該組成物を熱溶融混練して得られることを特徴とする
エポキシ樹脂組成物。
(1) A phenol novolac epoxy resin partially containing alkenyl groups, a hydrodiene organopolysiloxane at both ends with a polymerization degree of 20 to 150, and a polymerization degree of 15
The essential components are a block adduct obtained by addition-reacting a mixture of 0 to 500 hydrogen-terminated organopolysiloxanes in the presence of a platinum contact, a phenolic novolak as a curing agent, a curing accelerator, and an inorganic filler. An epoxy resin composition obtained by hot-melting and kneading the composition.
JP14581588A 1988-06-15 1988-06-15 Epoxy resin composition Granted JPH023412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14581588A JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14581588A JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH023412A true JPH023412A (en) 1990-01-09
JPH0577689B2 JPH0577689B2 (en) 1993-10-27

Family

ID=15393782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14581588A Granted JPH023412A (en) 1988-06-15 1988-06-15 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH023412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296526A (en) * 1990-04-17 1991-12-27 Shin Etsu Chem Co Ltd Epoxy resin composition and curing product thereof
JPH04173830A (en) * 1990-11-05 1992-06-22 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device therefor
JPH04214714A (en) * 1990-12-11 1992-08-05 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296526A (en) * 1990-04-17 1991-12-27 Shin Etsu Chem Co Ltd Epoxy resin composition and curing product thereof
JPH04173830A (en) * 1990-11-05 1992-06-22 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device therefor
JPH04214714A (en) * 1990-12-11 1992-08-05 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2541015B2 (en) * 1990-12-11 1996-10-09 信越化学工業株式会社 Epoxy resin composition for semiconductor device encapsulation and semiconductor device

Also Published As

Publication number Publication date
JPH0577689B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
US8309652B2 (en) Curable silicone composition and cured product therefrom
JPS6355532B2 (en)
JP3685253B2 (en) Resin composition containing silicone-modified epoxy resin or silicone-modified phenol resin, and semiconductor device using the same
US5190995A (en) Naphthalene ring containing epoxy resin composition and semiconductor device encapsulated therewith
JPS62212417A (en) Epoxy resin composition
TWI814868B (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
JPH023412A (en) Epoxy resin composition
JPH0450925B2 (en)
JP3821218B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPS59197421A (en) Curable epoxy resin composition
JPH0477013B2 (en)
JPH0346486B2 (en)
JPH06256364A (en) Organic silicon compound, its production and resin composition containing the same
JP3268818B2 (en) Semiconductor sealing composition
JPH02147619A (en) Epoxy resin composition
JP2987180B2 (en) Curable epoxy resin composition
JP2703045B2 (en) Epoxy resin composition
JPS614721A (en) Epoxy resin composition
JPH05175369A (en) Epoxy resin molding material for sealing electronic component
JP2680351B2 (en) Resin composition for sealing
JP2938158B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH023411A (en) Epoxy resin composition
JP2874090B2 (en) Epoxy resin composition and semiconductor device
JPH03275710A (en) Curable epoxy resin composition
JP2987179B2 (en) Curable epoxy resin composition