JPH02141489A - Method and apparatus for producing compound semiconductor by boat growth method - Google Patents

Method and apparatus for producing compound semiconductor by boat growth method

Info

Publication number
JPH02141489A
JPH02141489A JP29333588A JP29333588A JPH02141489A JP H02141489 A JPH02141489 A JP H02141489A JP 29333588 A JP29333588 A JP 29333588A JP 29333588 A JP29333588 A JP 29333588A JP H02141489 A JPH02141489 A JP H02141489A
Authority
JP
Japan
Prior art keywords
port
boat
reactor
compound semiconductor
inert material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29333588A
Other languages
Japanese (ja)
Other versions
JP2760819B2 (en
Inventor
Katsushi Fujii
克司 藤井
Fumio Orito
文夫 折戸
Mikitoshi Ishida
石田 幹敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP63293335A priority Critical patent/JP2760819B2/en
Publication of JPH02141489A publication Critical patent/JPH02141489A/en
Application granted granted Critical
Publication of JP2760819B2 publication Critical patent/JP2760819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the sticking of a reactor and a boat and to prevent the deformation of the boat so as to allow the repetitive use of the boat and to reduce its cost by interposing boat rests consisting of an inert material which is stable at a high temp. between the reactor and the boat. CONSTITUTION:The boat rests 105 formed of the inert material, for example, boron nitride, more preferably thermally decomposed boron nitride, aluminum nitride, silicon nitride, etc., are interposed between the quartz reactor 101 and the boat 103 and a compd. semiconductor single crystal is grown. The deformation of the boat is prevented in spite of the repetitive use of the boat 103 if the boat rests 105 are made into the shape complying with the outside shape of the side face of the boat 103. The growth of the crystal in the state in which cristobalite layers are formed by the repetitive use is possible and the lower cost of the production and the higher quality of the crystal are attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポート成長法を用いたGaAs等■−■族化合
物半導体の製造方法および製造装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing a ■-■ group compound semiconductor such as GaAs using a port growth method.

〔従来の技術〕[Conventional technology]

一般にGaAs等の■−V族化合物半導体インゴットは
、石英管からなるリアクタ内に種結晶を収納した石英製
ポートを入れ、該ポート内で単結晶を成長させることに
より製造されることが多い。
In general, a -V group compound semiconductor ingot such as GaAs is often manufactured by inserting a quartz port containing a seed crystal into a reactor made of a quartz tube, and growing a single crystal within the port.

このようなポート成長法においてはポートの使用温度領
域が1200〜1300℃と石英の軟化点以上であるた
め、使用後ポートが変形してしまい、そのため通常は使
い捨てにしている。
In such a port growth method, the operating temperature range of the port is 1,200 to 1,300° C., which is above the softening point of quartz, so the port is deformed after use, so it is usually disposable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、ポート成長法においてGaAs融液とポート
との間で濡れが生ずると多結晶化が生じてしまうが、多
結晶化はポート表面にクリストバライト層を形成するこ
とにより避けられることが知られている。このクリスト
バライト層は、高温においてポートを繰返し使用するこ
とにより形成されるが、繰り返し使用するとポートが変
形してしまうという問題がある。
By the way, in the port growth method, polycrystalization occurs when wetting occurs between the GaAs melt and the port, but it is known that polycrystalization can be avoided by forming a cristobalite layer on the port surface. . This cristobalite layer is formed by repeatedly using the port at high temperatures, but there is a problem in that the port deforms when used repeatedly.

そこでポートの繰返し使用を可能にするために肉厚を数
mmと厚くし、ポート形状もインゴットの製造後インゴ
ットがすぐ外れるように構成して結晶成長を行わせてみ
たところ、リアクタとポートとが癒着してしまい、取れ
なくなってしまうという問題が生じてしまった。この場
合、フッ酸により溶かして取るのはかなり困難で、また
フッ酸によって、せっかくポート内面に形成されたクリ
ストバライト層も溶けてしまい、以後の結晶性に影響を
与えてしまう。
Therefore, in order to enable repeated use of the port, the wall thickness was increased to several mm, and the port shape was configured so that the ingot could be removed immediately after the ingot was manufactured to allow crystal growth. A problem arose in that it adhered and could not be removed. In this case, it is quite difficult to remove by dissolving it with hydrofluoric acid, and the cristobalite layer formed on the inner surface of the port will also be dissolved by the hydrofluoric acid, which will affect the subsequent crystallinity.

また、使用温度が石英の軟化点付近であるために肉厚を
増してもどうしても変形が生じ、この変形は最初の使用
のときが一番大きく、使っていくうちに変形の度合は少
なくなるものの変形を防止することはできず、なるべく
使用温度を下げるようにしても完全には変形を防止する
ことはできない。そして変形が生じると、今まで使用し
ていたリアクタが使用できなくなったり、また径の大き
なリアクタを使用しなければならなくなってしまう。
In addition, since the operating temperature is near the softening point of quartz, deformation will inevitably occur even if the wall thickness is increased, and this deformation is greatest during the first use, and although the degree of deformation will decrease as it is used. Deformation cannot be prevented, and even if the operating temperature is lowered as much as possible, deformation cannot be completely prevented. When deformation occurs, the reactor that has been used up until now becomes unusable, or a reactor with a larger diameter must be used.

本発明は上記課題を解決するためのもので、リアクタと
ポートとの癒着を防止すると共に、ホトの変形をなくし
て繰返し使用を可能にし、製造コストの低減化を図り、
さらに高品質な結晶成長を行うことができるようにした
ポート成長法による化合物半導体製造方法および製造装
置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and it prevents adhesion between the reactor and the port, eliminates deformation of the photo, enables repeated use, and reduces manufacturing costs.
It is an object of the present invention to provide a compound semiconductor manufacturing method and manufacturing apparatus using a port growth method, which enables higher quality crystal growth.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、リアクタ内にポートを入れ、ポー
ト内で単結晶を成長させるポート成長法において、ポー
トとリアクタとの間に不活性な材質からなるポート受け
を介在させたことを特徴とし、またリアクタ内にポート
を挿入して単結晶を成長させる化合物半導体製造装置に
おいて、リアクタとポート間に不活性な材質からなるポ
ート受けを少なくとも1個介在させたこと、ポート受け
をポート側面外形形状に合わせたことを特徴とする。
To this end, the present invention is characterized in that a port receiver made of an inert material is interposed between the port and the reactor in a port growth method in which a port is placed in a reactor and a single crystal is grown within the port. In addition, in compound semiconductor manufacturing equipment in which a port is inserted into a reactor to grow a single crystal, at least one port receiver made of an inert material is interposed between the reactor and the port, and the port receiver is shaped to the external shape of the port side. It is characterized by the combination.

〔作用〕[Effect]

本発明はリアクタとポートとの間に不活性な材質、例え
ば窒化硼素、好ましくは熱分解窒化硼素、窒化アルミニ
ウム、窒化ケイ素等で形成したホト受けを介在させるこ
とにより、ポートとリアクタとが癒着せず、またポート
受けの形状をポートの側面外形形状に合わせることによ
りポートを繰返し使用してもポートの変形を防止でき、
繰返し使用によりクリストバライト層が形成された状態
での結晶成長が可能となり、製造コストの低減化と結晶
の高品質化を図ることが可能となる。
In the present invention, a photoreceptor made of an inert material such as boron nitride, preferably pyrolytic boron nitride, aluminum nitride, silicon nitride, etc. is interposed between the reactor and the port, thereby preventing the port and the reactor from adhering to each other. In addition, by matching the shape of the port receiver to the side profile of the port, deformation of the port can be prevented even if the port is used repeatedly.
Repeated use enables crystal growth with a cristobalite layer formed, making it possible to reduce manufacturing costs and improve crystal quality.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の一実施例を示す図で、図中101はリ
アクタ、103はポート、105はポート受けである。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 101 is a reactor, 103 is a port, and 105 is a port receiver.

図においてリアクタ101は通常の石英製のものであり
、この中に熱分解窒化硼素(PyroliticBor
on N1tride ; p BN)からなるポート
受け105を挿入する。pBNは2000℃程度まで安
定で、強度が大きく石英とは反応を生じない。′そして
リアクタ内に肉厚を5+++m程度と厚くしたポート1
03を入れ、ポート受け105で支持する。
In the figure, a reactor 101 is made of ordinary quartz, and contains pyrolytic boron nitride (Pyrolitic Bor nitride).
Insert the port receiver 105 consisting of N1tride; pBN). pBN is stable up to about 2000°C, has high strength, and does not react with quartz. 'Then, there is a port 1 with a wall thickness of about 5+++m inside the reactor.
03 and support it with the port receiver 105.

ポート103内には図示しない種結晶が入れてあり、1
200〜1300℃で結晶成長を行わせる。
A seed crystal (not shown) is placed in the port 103, and 1
Crystal growth is performed at 200-1300°C.

このような方法により結晶成長をさせたところ、ポート
とリアクタ−とは癒着せず簡単にポートを取り出すこと
ができた。
When crystal growth was performed using this method, the port and the reactor did not stick together and the port could be easily taken out.

なお、上記実施例ではポートをpBN製としたが、これ
以外にも窒化アルミニウム、窒化ケイ素等を使用しても
よい。
In the above embodiment, the port is made of pBN, but other materials such as aluminum nitride, silicon nitride, etc. may also be used.

ところで第1図の実施例のものは、ポート受け105が
いわばリアクタとポート間のスペーサとして機能してい
るのみで、ポートの肉厚を通常使用の4〜9mm程度に
厚くしても何回か使用しているうちにどうしても変形が
生じてしまう。
By the way, in the embodiment shown in Fig. 1, the port receiver 105 only functions as a spacer between the reactor and the port, and even if the wall thickness of the port is increased to about 4 to 9 mm, which is normally used, it will not work several times. Deformation inevitably occurs during use.

ポートは、通常第2図に示すような形状をしている。第
2図(a)は平面図、第2図(b)は横断面図、第2図
(c)は縦断面図である。
The port typically has a shape as shown in FIG. FIG. 2(a) is a plan view, FIG. 2(b) is a cross-sectional view, and FIG. 2(c) is a longitudinal sectional view.

第3図はポートの変形を防止し、繰返し使用を可能にし
たポート受けを用いた実施例を示す図である。第3図(
a>は平面図、第3図(b)は横断面図、第3図(c)
は縦断面図である。
FIG. 3 is a diagram showing an embodiment using a port receiver that prevents deformation of the port and enables repeated use. Figure 3 (
a> is a plan view, Fig. 3(b) is a cross-sectional view, Fig. 3(c)
is a vertical sectional view.

本実施例ではポート受けを第2図に示したポートの側面
外形形状に合わせた形状とし、この中にポートを入れて
結晶成長させることによりポートの変形を防止し、何回
でも使用することが可能となり、大幅なコスト低減を図
ることができる。また繰返し使用によりポート内面にク
リストバライト層が形成され、ポートからの一純物の混
入を防止して高品質な結晶成長を行わせることができる
In this example, the port receiver is shaped to match the side profile of the port shown in Figure 2, and by placing the port inside and growing crystals, the port is prevented from deforming and can be used multiple times. This makes it possible to significantly reduce costs. Moreover, by repeated use, a cristobalite layer is formed on the inner surface of the port, which prevents contamination of pure substances from the port and allows high-quality crystal growth to occur.

なお、第3図の実施例で示したポート受けにおいてはポ
ートの長手方向端部側面は受けない構造としているが、
長手方向端部側面も受ける構造としてもよく、またポー
ト受けの底部をリアクタの内面形状に合うようにするこ
とにより、振動に対して強いものとすることが可能であ
る。
Note that the port receiver shown in the embodiment of FIG. 3 has a structure in which the side surfaces of the longitudinal ends of the ports are not supported.
It is also possible to have a structure in which the longitudinal end side faces are also supported, and by making the bottom of the port receiver match the inner shape of the reactor, it is possible to make it strong against vibrations.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、リアクタとポートとの間
に高温において安定な不活性な材質からなるポート受け
を介在させることにより、ポートとリアクタとの癒着を
防止し、また、ポート受けの形状をポート側面外形形状
に合わせることによりポートの変形を防止して繰返し使
用が可能となり、ポート成長法における大幅なコスト低
減を図ると共に、クリストバライト層の形成により高品
質な結晶成長が可能となる。
As described above, according to the present invention, by interposing the port receiver made of an inert material that is stable at high temperatures between the reactor and the port, it is possible to prevent adhesion between the port and the reactor, and to prevent the port receiver from colliding with the reactor. By matching the shape to the outer shape of the port side surface, the port can be prevented from deformation and can be used repeatedly, which significantly reduces the cost of the port growth method, and enables high-quality crystal growth by forming a cristobalite layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側面図、第2図は第1
図のポートを示し、同図(a)は平面図、同図(b)は
横断面図、同図(c)は縦断面図、第3図は第1図のポ
ート受けを示し、同図(a)は平面図、同図(b)は横
断面図、同図(c)は縦断面図である。 101・・・リアクタ、103・・・ポート、105・
・・ポート受け。 出  願  人 三菱モンサント化成株式会社(外1名
FIG. 1 is a side view showing one embodiment of the present invention, and FIG. 2 is a side view showing one embodiment of the present invention.
3 shows the port shown in FIG. 1, FIG. 3 shows the port in FIG. 1, FIG. (a) is a plan view, (b) is a cross-sectional view, and (c) is a longitudinal cross-sectional view. 101...Reactor, 103...Port, 105...
...Port receiver. Applicant: Mitsubishi Monsanto Chemicals Co., Ltd. (1 other person)

Claims (6)

【特許請求の範囲】[Claims] (1)リアクタ内にポートを入れ、ポート内で単結晶を
成長させるポート成長法において、ポートとリアクタと
の間に不活性な材質からなるポート受けを介在させたこ
とを特徴とするポート成長法による化合物半導体製造方
法。
(1) A port growth method in which a port is placed in a reactor and a single crystal is grown within the port, which is characterized in that a port receiver made of an inert material is interposed between the port and the reactor. Compound semiconductor manufacturing method.
(2)前記ポートは繰り返し使用する請求項1記載のポ
ート成長法による化合物半導体製造方法。
(2) A compound semiconductor manufacturing method using a port growth method according to claim 1, wherein the port is used repeatedly.
(3)不活性な材質は窒化硼素、窒化アルミニウム、窒
化ケイ素である請求項1記載のポート成長法による化合
物半導体製造方法。
(3) The method of manufacturing a compound semiconductor by a port growth method according to claim 1, wherein the inert material is boron nitride, aluminum nitride, or silicon nitride.
(4)リアクタ内にポートを挿入して単結晶を成長させ
る化合物半導体製造装置において、リアクタとポート間
に不活性な材質からなるポート受けを少なくとも1個介
在させたことを特徴とするポート成長法による化合物半
導体製造装置。
(4) In a compound semiconductor manufacturing apparatus in which a port is inserted into a reactor to grow a single crystal, a port growth method characterized in that at least one port receiver made of an inert material is interposed between the reactor and the port. Compound semiconductor manufacturing equipment by
(5)リアクタ内にポートを挿入して単結晶を成長させ
る化合物半導体製造装置において、リアクタとポート間
にポート側面外形形状に合わせた形状の不活性な材質か
らなるポート受けを介在させたことを特徴とするポート
成長法による化合物半導体製造装置。
(5) In a compound semiconductor manufacturing device that grows a single crystal by inserting a port into a reactor, a port receiver made of an inert material and shaped to match the external shape of the side surface of the port is interposed between the reactor and the port. Compound semiconductor manufacturing equipment using the characteristic port growth method.
(6)不活性な材質は熱分解窒化硼素、窒化アルミニウ
ム、窒化ケイ素である請求項3又は4記載のポート成長
法による化合物半導体製造装置。
(6) The compound semiconductor manufacturing device using the port growth method according to claim 3 or 4, wherein the inert material is pyrolytic boron nitride, aluminum nitride, or silicon nitride.
JP63293335A 1988-11-19 1988-11-19 Method and apparatus for manufacturing compound semiconductor by boat growth method Expired - Lifetime JP2760819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293335A JP2760819B2 (en) 1988-11-19 1988-11-19 Method and apparatus for manufacturing compound semiconductor by boat growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293335A JP2760819B2 (en) 1988-11-19 1988-11-19 Method and apparatus for manufacturing compound semiconductor by boat growth method

Publications (2)

Publication Number Publication Date
JPH02141489A true JPH02141489A (en) 1990-05-30
JP2760819B2 JP2760819B2 (en) 1998-06-04

Family

ID=17793484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293335A Expired - Lifetime JP2760819B2 (en) 1988-11-19 1988-11-19 Method and apparatus for manufacturing compound semiconductor by boat growth method

Country Status (1)

Country Link
JP (1) JP2760819B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185776U (en) * 1981-05-19 1982-11-25
JPS589597A (en) * 1981-07-10 1983-01-19 Fuji Xerox Co Ltd Stepping motor driving circuit
JPS5891095A (en) * 1981-11-24 1983-05-30 Hitachi Cable Ltd Production of single crystal of compound semiconductor
JPS5895697A (en) * 1981-11-28 1983-06-07 Hitachi Cable Ltd Preparation of compound semiconductor single crystal of groups 3[5 having low dislocation density
JPS6147077U (en) * 1984-08-31 1986-03-29 日立電線株式会社 Gallium arsenide single crystal production equipment
JPS61227983A (en) * 1985-04-03 1986-10-11 Hitachi Cable Ltd Preparation of ga-as single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185776U (en) * 1981-05-19 1982-11-25
JPS589597A (en) * 1981-07-10 1983-01-19 Fuji Xerox Co Ltd Stepping motor driving circuit
JPS5891095A (en) * 1981-11-24 1983-05-30 Hitachi Cable Ltd Production of single crystal of compound semiconductor
JPS5895697A (en) * 1981-11-28 1983-06-07 Hitachi Cable Ltd Preparation of compound semiconductor single crystal of groups 3[5 having low dislocation density
JPS6147077U (en) * 1984-08-31 1986-03-29 日立電線株式会社 Gallium arsenide single crystal production equipment
JPS61227983A (en) * 1985-04-03 1986-10-11 Hitachi Cable Ltd Preparation of ga-as single crystal

Also Published As

Publication number Publication date
JP2760819B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2849602B2 (en) Joining method of single crystal sapphire
JPH11302096A (en) Seed crystal for producing single crystal, its production, and production of single crystal
JPH02141489A (en) Method and apparatus for producing compound semiconductor by boat growth method
KR20050021459A (en) Large-diameter sic wafer and manufacturing method thereof
CN106835264A (en) A kind of seedholder
JPS61225816A (en) Manufacture of compound semiconductor device
JP4156755B2 (en) Container for single crystal production
WO2001094669A1 (en) Polycrystalline silicon rod and method for processing the same
JP2006266813A (en) Melt collection tool, and ingot manufacturing device using melt collection tool
JPH11268994A (en) Production of silicon carbide single crystal
US11926923B2 (en) Indium phosphide single crystal and indium phosphide single crystal substrate
US20210079556A1 (en) Gallium arsenide single crystal and gallium arsenide single crystal substrate
JPH0558793A (en) Method for liquid phase growth of silicon carbide and substrate holder therefor
JPH069024Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH1143392A (en) Washing of quartz glass crucible for pulling up single crystal
JPH072593A (en) Apparatus for producing compound semiconductor crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004259823A (en) Wafer supporting device
JPH038792A (en) Boron nitride crucible
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2014201515A (en) Method of manufacturing single crystal
JP3010010B2 (en) Lifting method of crucible made of carbon fiber reinforced carbon
JPH11199362A (en) Production of compound semiconductor single crystal
JP2706272B2 (en) Compound semiconductor single crystal growth method
JPH0432561A (en) Heat resistant vessel made of thermally decomposed boron nitride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11