JPH02141430A - Production of oxide-based magnetic powder - Google Patents

Production of oxide-based magnetic powder

Info

Publication number
JPH02141430A
JPH02141430A JP63294906A JP29490688A JPH02141430A JP H02141430 A JPH02141430 A JP H02141430A JP 63294906 A JP63294906 A JP 63294906A JP 29490688 A JP29490688 A JP 29490688A JP H02141430 A JPH02141430 A JP H02141430A
Authority
JP
Japan
Prior art keywords
magnetic powder
ions
oxide
crystal structure
dissolution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63294906A
Other languages
Japanese (ja)
Inventor
Koichi Ikemoto
浩一 池本
Hideo Torii
秀雄 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63294906A priority Critical patent/JPH02141430A/en
Publication of JPH02141430A publication Critical patent/JPH02141430A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title high-saturation-magnetization oxide-based magnetic powder having the uniaxial anisotropy due to crystal magnetic anisotropy by subjecting magnetic powder to acid dissolution treatment. CONSTITUTION:Hexagonal barium ferrite magnetic powder is subjected to acid dissolution treatment to obtain the high-saturation-magnetization oxide- based magnetic powder consisting of Ba, Fe, and other elements. Meanwhile, the oxide-based magnetic powder contg. a magnetoplumbite-type crystal structure part and a spinel-type crystal structure part in the same grain and having the uniaxial anisotropy due to crystal magnetic anisotropy is formed by the following method. Namely, an aq. soln. contg. one or >=2 kinds of the bivalent ions constituting the magnetoplumbite-type crystal structure hexagonal ferrite such as Ba<2+> ion, Sr<2+> ion, and Pb<2+> ion, >=12 mols of Fe ions based on the bivalent ions, and aq. soln. contg. extremely small amts. of other additive metal ions, and an aq. alkaline soln. are mixed to obtain a coprecipitate. The coprecipitate is calcined in a nonoxidizing atmosphere to obtain magnetic powder, and the magnetic powder is subjected to acid dissolution treatment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録方式塗布型媒体用材料として使用で
きる酸化物系磁性粉体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing oxide-based magnetic powder that can be used as a material for magnetic recording type coated media.

従来の技術 従来から、ビデオテープ、音楽テープ、フロッピーディ
スク等の磁気記録方式塗布型媒体の磁性粉材料には、7
−Fe2 o8.Co被着7  F e203 +メタ
ル粉等の針状磁性粉が使用されている。
2. Prior Art Conventionally, magnetic powder materials for magnetic recording type coated media such as video tapes, music tapes, floppy disks, etc.
-Fe2 o8. Acicular magnetic powder such as Co-coated 7 Fe203 + metal powder is used.

近年、記録媒体の高密度化が要求される中にあっては、
上記磁性粉の微粒子化と高密度充填化による媒体の製造
が行なわれている。
In recent years, with the demand for higher density recording media,
Media are being manufactured by making the magnetic powder finer and packing it with higher density.

発明が解決しようとする課題 しかしながら、上記磁性粉の微粒子化は、上記磁性粉が
形状磁気異方性による一軸異方性を利用しているため、
磁気異方性効果の面から考えて限界があるので、記録媒
体の高密度化を図るための磁性粉原料の改良は困難であ
るという課題があった。加えて、記録媒体用材料は、媒
体の信号出力を高くする必要があるため、高飽和磁化の
磁性粉体であることが課題であった。
Problems to be Solved by the Invention However, since the magnetic powder utilizes uniaxial anisotropy due to shape magnetic anisotropy, it is difficult to make the magnetic powder into fine particles.
Since there is a limit in terms of magnetic anisotropy effect, it is difficult to improve magnetic powder raw materials to increase the density of recording media. In addition, since the recording medium material needs to increase the signal output of the medium, it has been a problem that it is a magnetic powder with high saturation magnetization.

本発明は、上記課題に鑑み、磁気異方性効果が粒子の長
さと厚さに依存しない結晶磁気異方性による一軸異方性
を持つ高飽和磁化の酸化物系磁性粉体の製造方法を提供
するものである。
In view of the above problems, the present invention provides a method for producing oxide-based magnetic powder with high saturation magnetization and uniaxial anisotropy due to magnetocrystalline anisotropy, in which the magnetic anisotropy effect does not depend on the length and thickness of the particles. This is what we provide.

課題を解決するための手段 上記目的である結晶磁気異方性による一軸異方性を持つ
高飽和磁化の酸化物系磁性粉体を得るには、X線回折的
に、マグネットプランバイト型結晶構造部分を含む磁性
粉体の飽和磁化を向上させる方法を発明する必要があっ
た。
Means for Solving the Problem In order to obtain the above-mentioned objective of oxide-based magnetic powder with high saturation magnetization having uniaxial anisotropy due to magnetocrystalline anisotropy, it is necessary to obtain a magnetoplumbite-type crystal structure using X-ray diffraction. There was a need to invent a method for improving the saturation magnetization of magnetic powders containing moieties.

この考えに沿って、上記目的を達成すべく検討を重ねた
結果、該磁性粉体を酸溶解処理して、該磁性粉体中のB
aを溶解することが有効であることを見出し本発明を完
成するに至ったものであり、該磁性粉体を酸溶解処理す
るという構成を備えたものである。
In line with this idea, as a result of repeated studies to achieve the above objective, the magnetic powder was subjected to an acid dissolution treatment to reduce the amount of B in the magnetic powder.
The present invention was completed by discovering that it is effective to dissolve a, and the present invention is equipped with a structure in which the magnetic powder is subjected to an acid dissolution treatment.

作用 本発明は、上記した構成のように、磁性粉体を酸性水溶
液中に入れて酸溶解処理することによって、結晶磁気異
方性による一軸異方性を持つ高飽和磁化の酸化物系磁性
粉体が得られるという作用がなされる。
Function: As configured above, the present invention produces oxide-based magnetic powder with high saturation magnetization and uniaxial anisotropy due to magnetocrystalline anisotropy by placing magnetic powder in an acidic aqueous solution and subjecting it to acid dissolution treatment. The effect is that the body is gained.

実施例 以下本発明の一実施例の酸化物系磁性粉体の製造方法に
ついて説明する。
EXAMPLE A method for producing oxide-based magnetic powder according to an example of the present invention will be described below.

実施例1 ガラス結晶化法によって合成された化学量論のバリウム
フェライト磁性粉体 (BaFe、2−2 XCoxTiOI9)25gをあ
らかじめ用意しておいた3規定の塩酸(HC1!、)水
溶液II!、の入った2℃のビーカーに入れ、攪拌しな
がら1時間放置した。
Example 1 25 g of stoichiometric barium ferrite magnetic powder (BaFe, 2-2 The mixture was placed in a beaker at 2° C. and left to stand for 1 hour while stirring.

次に、磁性粉体を取り出し、洗浄し、ろ過し、乾燥した
The magnetic powder was then taken out, washed, filtered, and dried.

酸溶解処理前の磁性粉体と得られた磁性粉体は、化学分
析を行ないその組成を調べ、X線回折によりその結晶構
造を調べ、振動式磁力計で磁気特性を測定した。
The magnetic powder before the acid dissolution treatment and the obtained magnetic powder were subjected to chemical analysis to examine their composition, X-ray diffraction to examine their crystal structure, and magnetic properties to measurement using a vibrating magnetometer.

表1に、酸溶解処理前と後の磁性粉体の組成、結晶構造
、および磁気特性を示した。
Table 1 shows the composition, crystal structure, and magnetic properties of the magnetic powder before and after acid dissolution treatment.

表より明らかなように、磁性粉体を酸溶解処理すること
によって、飽和磁化が向上することがわかる。
As is clear from the table, it can be seen that the saturation magnetization is improved by subjecting the magnetic powder to acid dissolution treatment.

以上のように、大方晶系バリウムフェライト磁性粉体を
酸溶解処理することにより、高飽和磁化化されたBaと
Feとその他の元素からなる酸化物系磁性粉体を得るこ
とができる。
As described above, by subjecting the orthogonal barium ferrite magnetic powder to acid dissolution treatment, it is possible to obtain highly saturated magnetized oxide-based magnetic powder consisting of Ba, Fe, and other elements.

(以 下 余 白) 実施例2 塩化バリウム(B a 2 C12・N20)4.86
 g。
(Left below) Example 2 Barium chloride (B a 2 C12/N20) 4.86
g.

塩化第二鉄(FeCffi3 ・6H,,0)81.0
9g塩化コバルト(Co C(!、2 ・6H20)5
.71 g塩化亜鉛(ZnC12)3.27 gを水に
溶解し、全量を10100Oとした。あらかじめ準備し
た水酸化ナトリウム(NaOH)水溶液と、上記の酸性
水溶液を、5!のフラスコ中で混合し、pH=13.2
の懸濁液を作製した。次に、この懸濁液を窒素ガスでバ
ブリングして攪拌しながら60°Cで30分間熟成し、
得られた共沈物を濾過により懸濁液から取り出し、水洗
後、乾燥し、粉砕して、原料粉を得た。
Ferric chloride (FeCffi3 ・6H,,0) 81.0
9g cobalt chloride (Co C(!,2 ・6H20)5
.. 71 g of zinc chloride (ZnC12) and 3.27 g were dissolved in water, and the total amount was adjusted to 10,100O. Add the sodium hydroxide (NaOH) aqueous solution prepared in advance and the above acidic aqueous solution to 5! mixed in a flask, pH=13.2
A suspension was prepared. Next, this suspension was bubbled with nitrogen gas and aged at 60°C for 30 minutes while stirring.
The obtained coprecipitate was taken out from the suspension by filtration, washed with water, dried, and pulverized to obtain raw material powder.

得られた原料粉10gを治具に入れ、N2ガス雰囲気中
において、660°Cで1時間焼成し、磁性粉を得た。
10 g of the obtained raw material powder was placed in a jig and fired at 660° C. for 1 hour in an N2 gas atmosphere to obtain magnetic powder.

さらに、得られた磁性粉5gを、1規定の塩酸(HC/
り水溶液200mffの入った300mI!。
Furthermore, 5 g of the obtained magnetic powder was added to 1N hydrochloric acid (HC/
300mI containing 200mff of aqueous solution! .

のビーカーに入れ、攪拌しながら80°Cで1時間放置
した。その後、磁性粉を濾過により水溶液から取り出し
、水洗後、乾燥した。
The mixture was placed in a beaker and left at 80°C for 1 hour while stirring. Thereafter, the magnetic powder was taken out from the aqueous solution by filtration, washed with water, and then dried.

合成した磁性粉体を試料1−Aとし、試料1−への酸溶
解処理後の磁性粉体を試料1−Bとする。
The synthesized magnetic powder is referred to as Sample 1-A, and the magnetic powder after acid dissolution treatment in Sample 1- is referred to as Sample 1-B.

上記と同様の方法を用い作製し、Baのモル数に対する
それ以外の元素のモル数の和の比が16.0で、含まれ
る元素がBa、Fe、NiAuである磁性粉体を、それ
ぞれ試料2−A、試料2−Bとし、Baのモル数に対す
るそれ以外の元素のモル数の和の比が19.0で、含ま
れる元素がBa、Fe、Co、Ti、Cuである磁性粉
体をそれぞれ試料3−A、試料3−Bとする。
Samples of magnetic powder were prepared using the same method as above, and the ratio of the sum of the moles of other elements to the number of moles of Ba was 16.0, and the elements contained were Ba, Fe, and NiAu. 2-A and Sample 2-B, a magnetic powder in which the ratio of the sum of the moles of other elements to the number of moles of Ba is 19.0, and the elements contained are Ba, Fe, Co, Ti, and Cu. are designated as sample 3-A and sample 3-B, respectively.

得られた磁性粉体は、化学分析を行ないその組成を調べ
、X線回折によりその結晶構造を調べ、振動式磁力計で
磁気特性を測定した。
The obtained magnetic powder was chemically analyzed to determine its composition, its crystal structure was determined by X-ray diffraction, and its magnetic properties were measured using a vibrating magnetometer.

表2に、合成した磁性粉体とその酸溶解処理後の磁性粉
体の組成、結晶構造、および磁気特性を示した。
Table 2 shows the composition, crystal structure, and magnetic properties of the synthesized magnetic powder and the magnetic powder after acid dissolution treatment.

表より明らかなように、Ba”イオン、Sr2”イオン
、Pb”+イオン等のマグネットプランバイト型結晶構
造六方晶フェライトを形成する2価イオンのいずれか一
種、あるいは二種以上と、これらに対してモル比が12
倍以上のFeイオンと、さらに、その他の極く少量の添
加金属イオンを含む水溶液と、アルカリ水溶液とを混合
することによって得られた共沈物を、非酸化性雰囲気で
焼成させて磁性粉体を得、さらに、該磁性粉体を酸溶解
処理することによって、−軸異方性を持ち、より高飽和
磁化の酸化物系磁性粉体を得ることができる。
As is clear from the table, any one or more divalent ions forming hexagonal ferrite with a magnetoplumbite crystal structure, such as Ba" ions, Sr2" ions, and Pb"+ ions, and and the molar ratio is 12
A coprecipitate obtained by mixing an aqueous solution containing more than double the amount of Fe ions and a very small amount of other added metal ions with an alkaline aqueous solution is fired in a non-oxidizing atmosphere to form magnetic powder. By further subjecting the magnetic powder to an acid dissolution treatment, it is possible to obtain an oxide-based magnetic powder having -axis anisotropy and higher saturation magnetization.

(以 下 余 白) 実施例3 塩化ストロンチウム(SrCj!2−6H20)5.4
5g、塩化第二鉄(FeCI!、3・6H20)81.
09g、塩化コバルト(CoCj!2 ・6H20)7
、13 gを水に溶解し、全量を1000mnとした。
(Left below) Example 3 Strontium chloride (SrCj!2-6H20) 5.4
5g, ferric chloride (FeCI!, 3.6H20) 81.
09g, cobalt chloride (CoCj!2 ・6H20) 7
, 13 g was dissolved in water to make a total amount of 1000 mn.

あらかじめ準備した水酸化ナトリウム(NaOH)水溶
液と、上記の酸性水溶液を、52のフラスコ中で混合し
、pH=12.0の懸濁液を作製した。
A sodium hydroxide (NaOH) aqueous solution prepared in advance and the above acidic aqueous solution were mixed in a 52 flask to prepare a suspension having a pH of 12.0.

次に、この懸濁液を窒素ガスでバブリングして攪拌しな
がら60°Cで30分間熟成し、得られた共沈物を濾過
により懸濁液から取り出し、水洗後、乾燥し、粉砕して
、原料粉を得た。
Next, this suspension was bubbled with nitrogen gas and aged at 60°C for 30 minutes while stirring, and the resulting coprecipitate was removed from the suspension by filtration, washed with water, dried, and crushed. , raw material powder was obtained.

得られた原料粉10gを治具に入れ、N2−0.5χH
2ガス雰囲気中において、800°Cで1時間焼成し、
磁性粉を得た。
Put 10g of the obtained raw material powder into a jig and heat it with N2-0.5χH.
2. Baked at 800°C for 1 hour in a gas atmosphere,
Magnetic powder was obtained.

さらに、得られた磁性粉5gを、2規定の塩酸(HCj
りと硝酸(HNO3)の混酸水溶液200m1(D入っ
た3 00mfのビーカーに入れ、攪拌しながら2時間
放置した。その後、磁性粉を濾過により水溶液から取り
出し、水洗後、乾燥した。
Furthermore, 5 g of the obtained magnetic powder was dissolved in 2N hydrochloric acid (HCj
The magnetic powder was placed in a 300 mf beaker containing 200 ml (D) of a mixed acid aqueous solution of nitric acid and nitric acid (HNO3), and left to stand for 2 hours while stirring.Then, the magnetic powder was removed from the aqueous solution by filtration, washed with water, and dried.

合成した磁性粉体を試料4−Aとし、試料4−Aの酸溶
解処理後の磁性粉体を試料4−Bとする。
The synthesized magnetic powder is designated as Sample 4-A, and the magnetic powder obtained after the acid dissolution treatment of Sample 4-A is designated as Sample 4-B.

得られた磁性粉体は、化学分析を行ない、その組成を調
べ、X線回折によりその結晶構造を調べ、振動式磁力計
で磁気特性を測定した。
The obtained magnetic powder was chemically analyzed to examine its composition, its crystal structure was examined by X-ray diffraction, and its magnetic properties were measured using a vibrating magnetometer.

表3に、試料4−Aと試料1−Bの組成、結晶構造、お
よび磁気特性を示した。
Table 3 shows the composition, crystal structure, and magnetic properties of Sample 4-A and Sample 1-B.

表より明らかなように、Ba”イオン、Sr”イオン 
Pb2″″イオン等のマグネットプランバイト型結晶構
造六方晶フェライトを形成する2価イオンのいずれか一
種、あるいは、二種以上と、これらに対してモル比が1
2倍以上のFeイオンと、さらに、その他の極く少量の
添加金属イオンを含む水溶液とアルカリ水溶液を混合す
ることによって得られた共沈物を、非酸化性雰囲気で焼
成させて磁性粉体を得、さらに、該磁性粉体を酸溶解処
理することによって、−軸異方性を持ち、より高飽和磁
化の酸化物系磁性粉体を得ることができる。
As is clear from the table, Ba” ion, Sr” ion
Any one type or two or more types of divalent ions forming hexagonal ferrite with a magnetoplumbite crystal structure such as Pb2'' ions, and a molar ratio of 1 to these ions.
A coprecipitate obtained by mixing an aqueous solution containing more than twice the amount of Fe ions and a very small amount of other added metal ions with an alkaline aqueous solution is fired in a non-oxidizing atmosphere to form magnetic powder. Furthermore, by subjecting the magnetic powder to an acid dissolution treatment, it is possible to obtain an oxide-based magnetic powder having -axis anisotropy and higher saturation magnetization.

発明の効果 以上のように本発明は、結晶磁気異方性による一軸異方
性を持つ酸化物系磁性粉体を酸溶解処理することにより
、高飽和磁化の酸化物系磁性粉体を提供するので、超微
粒子化と高飽和磁化を兼ね備えた磁性粉体の出現が可能
となる。
Effects of the Invention As described above, the present invention provides oxide-based magnetic powder with high saturation magnetization by subjecting oxide-based magnetic powder having uniaxial anisotropy due to magnetocrystalline anisotropy to acid dissolution treatment. Therefore, it becomes possible to create a magnetic powder that has both ultrafine particles and high saturation magnetization.

従って、これを高密度充填することによって、より高密
度の磁気記録方式塗布型媒体を作ることができる。
Therefore, by packing them at a high density, a magnetic recording type coated medium with a higher density can be produced.

Claims (2)

【特許請求の範囲】[Claims] (1)六方晶系バリウムフェライト磁性粉体を酸溶解処
理することによって、高飽和磁化化されることを特徴と
する酸化物系磁性粉体の製造方法。
(1) A method for producing oxide-based magnetic powder, characterized in that it is made highly saturated magnetized by subjecting hexagonal barium ferrite magnetic powder to acid dissolution treatment.
(2)マグネットプランバイト型結晶構造の部分とスピ
ネル型結晶構造の部分を同一粒子内に共存して持ち、か
つ、結晶磁気異方性による一軸異方性を持つ酸化物系磁
性粉体の製造方法であって、Ba^2^+イオン,Sr
^2^+イオン,Pb^2イオン等のマグネットプラン
バイト型結晶構造六方晶フェライトを形成する2価イオ
ンのいずれか一種、あるいは、二種以上と、これらに対
してモル比が12倍以上のFeイオンと、さらに、その
他の極く少量の添加金属イオンを含む水溶液と、アルカ
リ水溶液とを混合することによって得られた共沈物を、
非酸化性雰囲気で焼成させて磁性粉体を得、さらに、前
記磁性粉体を酸溶解処理することを特徴とする酸化物系
磁性粉体の製造方法。
(2) Production of oxide-based magnetic powder that has a magnetoplumbite-type crystal structure part and a spinel-type crystal structure part coexisting in the same particle, and has uniaxial anisotropy due to magnetocrystalline anisotropy. A method, comprising: Ba^2^+ ion, Sr
Any one type or two or more types of divalent ions forming hexagonal ferrite with a magnetoplumbite crystal structure such as ^2^+ ions, Pb^2 ions, etc., and a molar ratio of 12 times or more to these ions. A coprecipitate obtained by mixing Fe ions, an aqueous solution containing a very small amount of other added metal ions, and an alkaline aqueous solution,
1. A method for producing oxide-based magnetic powder, which comprises firing in a non-oxidizing atmosphere to obtain magnetic powder, and further subjecting the magnetic powder to acid dissolution treatment.
JP63294906A 1988-11-22 1988-11-22 Production of oxide-based magnetic powder Pending JPH02141430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294906A JPH02141430A (en) 1988-11-22 1988-11-22 Production of oxide-based magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294906A JPH02141430A (en) 1988-11-22 1988-11-22 Production of oxide-based magnetic powder

Publications (1)

Publication Number Publication Date
JPH02141430A true JPH02141430A (en) 1990-05-30

Family

ID=17813788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294906A Pending JPH02141430A (en) 1988-11-22 1988-11-22 Production of oxide-based magnetic powder

Country Status (1)

Country Link
JP (1) JPH02141430A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155023A (en) * 1980-04-28 1981-12-01 Toshiba Corp Preparation of ba-ferrite
JPS63277523A (en) * 1987-05-07 1988-11-15 Matsushita Electric Ind Co Ltd Production of platelike magnetic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155023A (en) * 1980-04-28 1981-12-01 Toshiba Corp Preparation of ba-ferrite
JPS63277523A (en) * 1987-05-07 1988-11-15 Matsushita Electric Ind Co Ltd Production of platelike magnetic powder

Similar Documents

Publication Publication Date Title
Jasrotia et al. Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites
JPH0212004B2 (en)
JPH0725553B2 (en) Method for producing plate-like magnetic powder
US4820433A (en) Magnetic powder for magnetic recording
JPH0347564B2 (en)
JPS605043B2 (en) Method for manufacturing magnetic materials with exchange anisotropy
JPH02141430A (en) Production of oxide-based magnetic powder
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
JPH0359007B2 (en)
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
JPS63260108A (en) Magnetic powder for magnetic recording
JPS63260110A (en) Magnetic powder for magnetic recording
JPH0417897B2 (en)
JP2745306B2 (en) Ferromagnetic fine powder for magnetic recording and method for producing the same
JPS5860624A (en) Ferromagnetic powder and its preparation
JPS63260106A (en) Magnetic powder for magnetic recording
JPH0419169B2 (en)
JPS63260109A (en) Magnetic powder for magnetic recording
JPS63260107A (en) Magnetic powder for magnetic recording
JPH0471012B2 (en)
JPS63260111A (en) Magnetic powder for magnetic recording
JP3328017B2 (en) Method for producing acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy
JPH0319171B2 (en)
JPS59174530A (en) Manufacture of w-phase type hexagonal ferrite particles
JPH0341412B2 (en)