JPH02140937A - Silicon substrate - Google Patents

Silicon substrate

Info

Publication number
JPH02140937A
JPH02140937A JP29500788A JP29500788A JPH02140937A JP H02140937 A JPH02140937 A JP H02140937A JP 29500788 A JP29500788 A JP 29500788A JP 29500788 A JP29500788 A JP 29500788A JP H02140937 A JPH02140937 A JP H02140937A
Authority
JP
Japan
Prior art keywords
silicon substrate
oxygen
silicon
semiconductor device
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29500788A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suzuki
芳明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29500788A priority Critical patent/JPH02140937A/en
Publication of JPH02140937A publication Critical patent/JPH02140937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the mechanical strength of a silicon substrate and prevent the electric characteristic and the yield of a semiconductor element from decreasing by making a surface containing specific concentration of oxygen. CONSTITUTION:Decrease of the mechanical strength of the surface of a silicon substrate for intrinsic gettering can be prevented by making said surface of the silicon substrate contain 1X10<18>atoms/cm<2> or higher concentration of oxygen. Therefore, a crystal defect such as dislocation hardly occurs even under the stress along the edge of the thin film pattern of a silicon oxide film, a silicon nitride film, etc., the mechanical substance of a semiconductor device, by installing the semiconductor device on the silicon substrate. Thereby the electric characteristic of a semiconductor element does not decrease and high-quality semiconductor devices can be obtained with high yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン基板に関し、特に汚染不純物や微小欠
陥のゲッター能力をもつイントリンシックゲッタリング
用シリコン基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon substrate, and more particularly to a silicon substrate for intrinsic gettering that has the ability to getter contaminants and minute defects.

〔従来の技術J イントリンシックゲッタリン、グ(以下IGと略す)は
、シリコン基板内部の結晶欠陥領域に半導体装置製造過
程で潜入する汚染不純物や微小欠陥をゲッターする技術
である。
[Prior Art J Intrinsic gettering (hereinafter abbreviated as IG) is a technology for gettering contaminant impurities and minute defects that sneak into crystal defect regions inside a silicon substrate during the manufacturing process of semiconductor devices.

従来この種のシリコン基板では、シリコン基板表面数μ
mから数十μmの深さでは酸素析出による結晶欠陥の無
い領域であるので、シリコン基板内部に比べ酸素濃度が
極端に低く10”乃至1o17原子/cot(ASTM
  F−121−76による測ぬ以下同様)であった。
Conventionally, with this type of silicon substrate, the silicon substrate surface has a
At a depth of several tens of micrometers from m, there are no crystal defects due to oxygen precipitation, so the oxygen concentration is extremely low compared to the inside of the silicon substrate.
F-121-76 was unexpected (the same applies hereafter).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

単結晶中の酸素は転位を固着しシリコン基板の機械的強
度をあげる働きがあることが一般に知られている。しか
し、酸素濃度が1×1018原子/cm3より低いとそ
の働きが急激に低下する。
It is generally known that oxygen in a single crystal has the function of fixing dislocations and increasing the mechanical strength of a silicon substrate. However, when the oxygen concentration is lower than 1×10 18 atoms/cm 3 , its function decreases rapidly.

上述した従来のイントリンシックゲッタリング用シリコ
ン基板は、表面の酸素濃度が1016乃至loH程度と
なっているため、シリコン基板表面の機械的強度の低下
がある。従って、このようなシリコン基板に半導体装置
を設けた場合、半導体装置の構成物質である酸化シリコ
ン膜や窒化シリコン膜等のパターン端部での応力により
転位等の結晶欠陥が導入されやすいという欠点がある。
Since the above-described conventional silicon substrate for intrinsic gettering has a surface oxygen concentration of about 1016 to loH, the mechanical strength of the silicon substrate surface is reduced. Therefore, when a semiconductor device is provided on such a silicon substrate, there is a drawback that crystal defects such as dislocations are easily introduced due to stress at the pattern edges of the silicon oxide film, silicon nitride film, etc. that are the constituent materials of the semiconductor device. be.

特に最近の高密度、高集積化した半導体装置においては
顕著にみられる。
This is particularly noticeable in recent high-density, highly integrated semiconductor devices.

これら結晶欠陥が導入された半導体装置では、半導体素
子の電気特性の劣化を招き、歩留りの低下を引き起こし
、ひいては信頼性の低下にもなる。
In a semiconductor device into which these crystal defects are introduced, the electrical characteristics of the semiconductor element deteriorate, resulting in a decrease in yield and, in turn, a decrease in reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のシリコン基板は、I X 10 ”g子/dよ
り高い濃度の酸素を含む表面を有している。
The silicon substrate of the present invention has a surface containing oxygen at a concentration higher than I x 10''g/d.

上述した従来のシリコン基板に対し、本発明はイントリ
ンシックゲッタリング用シリコン基板でありながら、シ
リコン基板表面の酸素濃度が1×10′″原子/dより
高く、シリコン基板表面で半導体装置を構成するシリコ
ンと異なる物質の応力に十分耐えうる機械的強度を持つ
In contrast to the conventional silicon substrate described above, the present invention is a silicon substrate for intrinsic gettering, but the oxygen concentration on the silicon substrate surface is higher than 1 x 10'' atoms/d, and a semiconductor device is configured on the silicon substrate surface. It has sufficient mechanical strength to withstand the stress of materials different from silicon.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例におけるPNダイオードの逆
方向電流・電圧特性を示す図である。
FIG. 1 is a diagram showing the reverse current/voltage characteristics of a PN diode in an embodiment of the present invention.

すなわち、シリコン基板内部で結晶欠陥層が、表面付近
で無欠陥層がそれぞれ形成され、1.4×101′原子
/dの酸素を表面から裏面まで均一に含むシリコン基板
に通常の方法で半導体素子を形成して半導体装置を完成
させ、その特性を測定した。第1図において、曲線Aは
従来のシリコン基板に用いた場合の、曲線Bは本実施例
の特性曲線である。なお、この従来のシリコン基板は表
面の酸素濃度が3X10”原子/aIIである。
That is, a crystal defect layer is formed inside the silicon substrate, a defect-free layer is formed near the surface, and a semiconductor element is formed by a normal method on a silicon substrate that uniformly contains 1.4 x 101' atoms/d of oxygen from the front surface to the back surface. A semiconductor device was completed by forming a semiconductor device, and its characteristics were measured. In FIG. 1, curve A is the characteristic curve when a conventional silicon substrate is used, and curve B is the characteristic curve of this embodiment. Note that this conventional silicon substrate has a surface oxygen concentration of 3×10″ atoms/aII.

第1図から明らかな様に、従来のシリコン基板を用いた
半導体装置に比べ本実施例では逆バイアスに対する電流
は極めて小さい。
As is clear from FIG. 1, the current for reverse bias is extremely small in this embodiment compared to a conventional semiconductor device using a silicon substrate.

本願発明者が曲線A、Bの測定結果が得られた試料の表
面の結晶欠陥を選択エツチング法により観察したところ
、本発明の試料には、結晶欠陥が全く観察されなかった
が、従来のシリコン基板を用いた試料には10個/dの
転位が半導体素子分離のフィールド酸化シリコン膜のパ
ターン端部に観察された。これは、本発明のシリコン基
板では、表面の酸素濃度が1.4X10”原子/aaと
高いために、シリコン基板表面がフィールド酸化シリコ
ン膜の応力に十分耐えたためである。
When the inventor of the present application observed the crystal defects on the surface of the samples from which the measurement results of curves A and B were obtained using the selective etching method, no crystal defects were observed in the samples of the present invention, whereas conventional silicon In the sample using the substrate, 10 dislocations/d were observed at the pattern end of the field silicon oxide film for semiconductor element isolation. This is because in the silicon substrate of the present invention, the surface oxygen concentration was as high as 1.4×10'' atoms/aa, so the silicon substrate surface could sufficiently withstand the stress of the field silicon oxide film.

以上のように、本実施例によれば、フィールド酸化シリ
コン膜のパターン端部で結晶欠陥の発生がなく、PN接
合の逆方向電流が減少し高性能かつ高品質の半導体装置
を高歩留りで得ることができる。
As described above, according to this embodiment, there are no crystal defects at the pattern ends of the field silicon oxide film, the reverse current of the PN junction is reduced, and high performance and high quality semiconductor devices can be obtained at a high yield. be able to.

第2図は本発明の他の実施例のシリコン基板中の酸素濃
度をSIMS(2次イオン質量分析)により測定した時
の深さ方法の分布図である。本発明のシリコン基板を得
るためには、例えば以下の処理を施せば良い。まず、1
.8X10”原子/−の酸素を含むシリコン基板を12
00℃で3時間の熱処理を施し、シリコン基板表面付近
の酸素を外方拡散するとシリコン基板表面の酸素濃度は
10′′原子/dとなる(第2図(a))、次に、70
0℃4時間の熱処理を施し酸素濃度が高いシリコン基板
内部に酸素析出核を成長させる。この後、既知のLPC
UD (減圧気相成長)法により窒化シリコン膜を圧さ
60μmシリコン基板に被着し、1200℃、3時間の
熱処理を施すとシリコン基板内部から表面へ酸素が拡散
する。(第2図−(b))。これらの処理を施せば、本
発明のシリコン基板が得られる。
FIG. 2 is a distribution diagram of the depth method when oxygen concentration in a silicon substrate is measured by SIMS (secondary ion mass spectrometry) according to another embodiment of the present invention. In order to obtain the silicon substrate of the present invention, the following treatment may be performed, for example. First, 1
.. 12 silicon substrates containing 8X10” atoms/- of oxygen
When heat treatment is performed at 00°C for 3 hours and oxygen near the silicon substrate surface is diffused outward, the oxygen concentration on the silicon substrate surface becomes 10'' atoms/d (Fig. 2(a)).
Heat treatment is performed at 0° C. for 4 hours to grow oxygen precipitation nuclei inside the silicon substrate, which has a high oxygen concentration. After this, the known LPC
A silicon nitride film is deposited on a silicon substrate to a thickness of 60 μm using the UD (low pressure vapor deposition) method, and heat treated at 1200° C. for 3 hours to cause oxygen to diffuse from the inside of the silicon substrate to the surface. (Figure 2-(b)). By performing these treatments, the silicon substrate of the present invention can be obtained.

この実施例では、シリコン基板表面の酸素濃度をあげる
方法として、表面に酸素の耐拡散マスクとして窒化シリ
コン膜な被着し、シリコン基板内部の酸素を表面に拡散
させたが、イオン注入等で酸素を導入してもかまわない
In this example, as a method of increasing the oxygen concentration on the surface of the silicon substrate, a silicon nitride film was deposited on the surface as an oxygen diffusion-resistant mask to diffuse the oxygen inside the silicon substrate to the surface. It is okay to introduce.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、イントリンシックゲッタ
リング用シリコン基板において、1×101″原子/a
aより高い酸素濃度の表面を有するシリコン基板とする
ことにより、シリコン基板表面の機械的強度の低下がな
くなる効果がある。
As explained above, the present invention provides a silicon substrate for intrinsic gettering with 1 x 101'' atoms/a.
By using a silicon substrate having a surface with an oxygen concentration higher than a, there is an effect that the mechanical strength of the silicon substrate surface does not decrease.

従って、本発明のシリコン基板に半導体装置を設けるこ
とにより、半導体装置の機械物質である酸化シリコン膜
や窒化シリコン膜等の薄膜パターン端部での応力に対し
ても転位等の結晶欠陥が導入されにくく、半導体素子の
電気特性の劣化がなく、高品質の半導体装置を高歩留り
で提供することができる。
Therefore, by providing a semiconductor device on the silicon substrate of the present invention, crystal defects such as dislocations are not introduced even under stress at the edge of a thin film pattern such as a silicon oxide film or a silicon nitride film, which is a mechanical substance of the semiconductor device. It is possible to provide high-quality semiconductor devices at a high yield without deteriorating the electrical characteristics of semiconductor elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるPNダイオードの逆
方向電流−電圧特性を示す図、第2図(a) 、 (b
)は本発明の他の実施例のシリコン基板中の酸素濃度を
SIMSにより測定した深さ方向の分布図である。 代理人 弁理士  内 原   晋 茅 菌 (α) θ、l ÷Lノ<Aアズ lθ(V) 第 茅 圀(b)
FIG. 1 is a diagram showing the reverse current-voltage characteristics of a PN diode in an embodiment of the present invention, and FIGS. 2(a) and (b)
) is a distribution diagram in the depth direction of the oxygen concentration in a silicon substrate measured by SIMS in another example of the present invention. Agent Patent Attorney Uchihara Shin Kaya (α) θ, l ÷ Lノ<A as l θ (V) Dai Kayakuni (b)

Claims (1)

【特許請求の範囲】[Claims] シリコン基板の内部を酸素析出物による結晶欠陥層と、
シリコン基板の表面を無欠陥層としたシリコン基板にお
いて、1×10^1^8原子/cm^3より高い濃度の
酸素を含む表面を有することを特徴とするシリコン基板
The inside of the silicon substrate has a crystal defect layer caused by oxygen precipitates,
A silicon substrate whose surface is a defect-free layer, characterized by having a surface containing oxygen at a concentration higher than 1×10^1^8 atoms/cm^3.
JP29500788A 1988-11-21 1988-11-21 Silicon substrate Pending JPH02140937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29500788A JPH02140937A (en) 1988-11-21 1988-11-21 Silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29500788A JPH02140937A (en) 1988-11-21 1988-11-21 Silicon substrate

Publications (1)

Publication Number Publication Date
JPH02140937A true JPH02140937A (en) 1990-05-30

Family

ID=17815129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29500788A Pending JPH02140937A (en) 1988-11-21 1988-11-21 Silicon substrate

Country Status (1)

Country Link
JP (1) JPH02140937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873823A1 (en) * 2006-06-26 2008-01-02 SUMCO Corporation Method of producing bonded wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873823A1 (en) * 2006-06-26 2008-01-02 SUMCO Corporation Method of producing bonded wafer
US7507641B2 (en) 2006-06-26 2009-03-24 Sumco Corporation Method of producing bonded wafer

Similar Documents

Publication Publication Date Title
JP3143473B2 (en) Silicon-on-porous silicon; manufacturing method and material
US5244819A (en) Method to getter contamination in semiconductor devices
JPS62500414A (en) 3-V and 2-6 group compound semiconductor coating
EP0449589A1 (en) Method of producing a SOI structure
JPH0555230A (en) Soi wafer and manufacture thereof
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
US11646208B2 (en) Method for manufacturing semiconductor device
JPH02140937A (en) Silicon substrate
JPH0410544A (en) Manufacture of semiconductor device
JPS62176145A (en) Manufacture of semiconductor substrate
JPH0297015A (en) Heat treatment method
JPH04206932A (en) Semiconductor device and manufacture thereof
JP2518378B2 (en) Method for manufacturing semiconductor device
JPH0282578A (en) Manufacture of thin film transistor
JPH10214843A (en) Manufacturing method of semiconductor substrate
JPS58132919A (en) Manufacture of semiconductor device
KR100390909B1 (en) Method for gettering semiconductor device
JPS6149427A (en) Manufacture of semiconductor device
JP2689946B2 (en) Manufacturing method of infrared detector
JPH02218109A (en) Method of forming silicon leyar in when lating layer
JPH03166726A (en) Method and device for forming silicon oxide
KR0124562B1 (en) Method of forming the isolation layer on a bipolar device
JP2002289819A (en) Simox substrate
JPH03136324A (en) Manufacture of semiconductor device
JPH0396223A (en) Forming method for soi structure