JPH02138449A - Manufacture of wear resistant high permeability alloy - Google Patents
Manufacture of wear resistant high permeability alloyInfo
- Publication number
- JPH02138449A JPH02138449A JP26270089A JP26270089A JPH02138449A JP H02138449 A JPH02138449 A JP H02138449A JP 26270089 A JP26270089 A JP 26270089A JP 26270089 A JP26270089 A JP 26270089A JP H02138449 A JPH02138449 A JP H02138449A
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- temperature
- total
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000035699 permeability Effects 0.000 title claims abstract description 45
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 44
- 239000000956 alloy Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 230000005291 magnetic effect Effects 0.000 claims abstract description 68
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 30
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 29
- 230000004907 flux Effects 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 230000009466 transformation Effects 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 229910052737 gold Inorganic materials 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052790 beryllium Inorganic materials 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 229910052788 barium Inorganic materials 0.000 claims description 12
- 229910052793 cadmium Inorganic materials 0.000 claims description 12
- 229910052735 hafnium Inorganic materials 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052787 antimony Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims 2
- 238000005482 strain hardening Methods 0.000 abstract description 14
- 229910052759 nickel Inorganic materials 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910000796 S alloy Inorganic materials 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 239000010955 niobium Substances 0.000 description 11
- 229910052748 manganese Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910001257 Nb alloy Inorganic materials 0.000 description 6
- 238000005242 forging Methods 0.000 description 6
- 229910001004 magnetic alloy Inorganic materials 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910000702 sendust Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- -1 A4 ゚Sr Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はNi 、Nb、P、SおよびFeを主成分とし
、副成分としてCr、Mo、Ge、Au。Detailed Description of the Invention (Industrial Application Field) The present invention contains Ni, Nb, P, S, and Fe as main components, and Cr, Mo, Ge, and Au as subcomponents.
Co、V、W、Cu、Ta、Mn、Al、St 。Co, V, W, Cu, Ta, Mn, Al, St.
Ti、Zr、Hf、Sn、Sb、Ga、In。Ti, Zr, Hf, Sn, Sb, Ga, In.
Te、Zn 、Cd 、希土類元素、白金族元素。Te, Zn, Cd, rare earth elements, platinum group elements.
Be、Ag、Sr、Ba、Bの1種または2種以上を含
有する耐摩耗性高透磁率合金の製造法に関するもので、
その目的とするところは、鍛造加工が容易で、実効透磁
率が大きく、飽和磁束密度が40000以上で、(11
0) <112>+ +311) <112>の再結晶
集合組織を有して耐摩耗性が良好な磁性合金を得るにあ
る。This relates to a method for producing a wear-resistant high permeability alloy containing one or more of Be, Ag, Sr, Ba, and B.
The objectives are to have easy forging, high effective permeability, saturation magnetic flux density of 40,000 or more, and (11
0) <112>+ +311) To obtain a magnetic alloy having a recrystallized texture of <112> and good wear resistance.
(従来の技術)
テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において動作するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が大きいことが
必要とされ、また磁気テープが接触して摺動するため耐
摩耗性が良好であることが望まれている。現在、耐摩耗
性にすぐれた磁気ヘッド用磁性合金としてはセンダスト
(Fe−Si−Aρ系合金)およびフェライト(M n
0ZnOFezO3)があるが、これらは非常に硬く
脆いため、鍛造、圧延加工が不可能で、ヘッドコアの製
造には研削、研庭の方法が用いられており、従ってその
製品は高価である。またセンダストは飽和磁束密度は大
きいが薄板にできないので高周波磁界における実効透磁
率が比較的小さい。(Prior Art) Magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, so the magnetic alloys used therein are required to have high effective magnetic permeability in high-frequency magnetic fields, and the magnetic tape must be in contact with It is desired that the wear resistance is good because it slides on the surface. Currently, as magnetic alloys for magnetic heads with excellent wear resistance, Sendust (Fe-Si-Aρ alloy) and ferrite (M n
0ZnOFezO3), but these are extremely hard and brittle and cannot be forged or rolled. Grinding and grinding methods are used to manufacture head cores, and the products are therefore expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low.
またフェライトは実効透磁率は大きいが、飽和磁束密度
が約4000 Gで小さいのが欠点である。他方パーマ
ロイ(Ni−Fe系合金)は飽和磁束密度は大きいが、
実効透磁率は小さく、また鍛造、圧延加工および打抜き
は容易で量産性にすぐれているが、摩耗し・やすいのが
大きな欠点であり、これを改善することが強く望まれて
いる。Further, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at approximately 4000 G. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density, but
It has a small effective permeability and is easy to forge, roll and punch, making it suitable for mass production. However, its major drawback is that it is prone to wear, and there is a strong desire to improve this.
(発明が解決しようとする問題点)
本発明音らは、先にNi−Fe−Nb系合金は鍛造加工
が容易で硬度が高く、すぐれた裔透磁率合金であること
から、磁気記録再生ヘッド用磁性合金として好適である
ことを見い出し、これを特許出願した(特公昭47−2
9690号)。その後本発明者らは、Ni−Fe−Nb
系合金の摩耗について系統的な研究を行った結果、Ni
−Fe−Nb系合金の摩耗は硬度によって一義的に決定
されるものでなく、合金の再結晶集合組織と緊密な関係
があることが明らかとなった。(Problems to be Solved by the Invention) The present invention is based on the fact that the Ni-Fe-Nb alloy is easy to forge, has high hardness, and has excellent magnetic permeability. He discovered that it was suitable as a magnetic alloy for industrial use, and filed a patent application for it (Japanese Patent Publication No. 47-2
No. 9690). Afterwards, the present inventors discovered that Ni-Fe-Nb
As a result of systematic research on the wear of Ni-based alloys,
It has become clear that the wear of -Fe-Nb alloys is not uniquely determined by hardness, but is closely related to the recrystallization texture of the alloy.
(問題点を解決するための手段) 本発明の特徴とする所は次の通りである。(Means for solving problems) The features of the present invention are as follows.
第1発明
重量比にてNi60〜90%、Nb 0.5〜14%、
PおよびSの合計0.001〜1%(但し、S0.1%
以下、PおよびSは0%を含まず)および残部Feを主
成分とし、副成分としてCr、Mo、Ge。First invention weight ratio: Ni 60-90%, Nb 0.5-14%,
Total of P and S 0.001-1% (However, S0.1%
(Hereinafter, P and S do not include 0%) and the balance is Fe as the main components, and the subcomponents are Cr, Mo, and Ge.
Auをそれぞれ7%以下、、Co、Vをそれぞれ10%
以下、Wを15%以下、Cu 、Ta 、Mnをそれぞ
れ25%以下、Al、St 、Ti 、Zr、Hf 。Au: 7% or less each, Co, V: 10% each
Below, W is 15% or less, Cu, Ta, and Mn are each 25% or less, Al, St, Ti, Zr, and Hf.
Sn、 Sb、 Ga、 In、 Tl、 Zn、 C
d、希土類元素、白金族元素をそれぞれ5%以下、Be
。Sn, Sb, Ga, In, Tl, Zn, C
d, rare earth elements and platinum group elements each at 5% or less, Be
.
Ag、Sr、Baをそれぞれ3%以下、Bを1%以下の
1種または2種以上の合計0.01〜30%、少量の不
純物とからなる合金を900℃を超え1000℃以下の
温度で熱間加工した後冷却し、次に加工率50%以上の
冷間加工を施した後、900 ℃以上融点以下の温度で
加熱し、ついで規則−不規則格子変態点以上の温度から
100℃/秒〜1℃/時の組成に対応した適当な速度で
常温まで冷却することにより、1KHzにおける実効透
磁率3000以上、飽和磁束密度40000以上で、且
つ(001<112〉+{311) <112>の再結
晶集合組織を形成せしめることを特徴とする耐摩耗性高
透磁率合金の製造法。An alloy consisting of 3% or less each of Ag, Sr, and Ba, and 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, at a temperature of more than 900°C and less than 1000°C. After hot working, it is cooled, then cold worked at a processing rate of 50% or more, heated at a temperature of 900°C or more and below the melting point, and then heated to 100°C/100°C from a temperature above the regular-irregular lattice transformation point. By cooling to room temperature at an appropriate rate corresponding to the composition of seconds to 1°C/hour, the effective magnetic permeability at 1 KHz is 3000 or more, the saturation magnetic flux density is 40000 or more, and (001<112>+{311) <112> A method for producing a wear-resistant high permeability alloy characterized by forming a recrystallized texture.
第2発明
重量比にてNi60〜90%、Nb0.5〜14%、P
およびSの合計o、oot〜1%(但し、so、i%以
下、PおよびSは0%を含まず)および残部Feを主成
分とし、副成分としてCr、Mo、Ge。Second invention weight ratio: Ni60-90%, Nb0.5-14%, P
and S total o, oot~1% (however, so, i% or less, P and S do not include 0%) and the remainder Fe as the main components, and Cr, Mo, and Ge as subcomponents.
Auをそれぞれ7%以下、Co、Vをそれぞれ10%以
下、Wを15%以下、Cu 、Ta 、Mnをそれぞれ
25%以下、Ap、St 、Ti 、Zr、Hf 。Au: 7% or less, Co, V: 10% or less, W: 15% or less, Cu, Ta, Mn: 25% or less, Ap, St, Ti, Zr, Hf.
Sn、 Sb、 Ga、 In、 Tl、 Zn、 C
d、希土類元素、白金族元素をそれぞれ5%以下、Be
。Sn, Sb, Ga, In, Tl, Zn, C
d, rare earth elements and platinum group elements each at 5% or less, Be
.
Ag、Sr、Baをそれぞれ3%以下、Bを1%以下の
1種または2種以上の合計0.01〜30%、少量の不
純物とからなる合金を900℃を超え1000℃以下の
温度で熱間加工した後冷却し、次に加工率50%以上の
冷間加工を施した後、900℃以上融点以下の温度で加
熱し、ついで規則−不規則格子変態点以下の温度から1
00℃/秒〜1℃/時の組成に対応した適当な速度で冷
却し、これをさらに規則−不規則格子変態点以下の温度
で1分間以上100時間以下の組成に対応した適当時間
加熱し冷却することにより、1KHzにおける実効透磁
率3000以上、飽和磁束密度40000以上で、汀っ
(1101<112> + (3111<112>の再
結晶集合組織を形成せしめることを特徴とする耐摩耗性
高透磁率合金の製造法。An alloy consisting of 3% or less each of Ag, Sr, and Ba, and 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, at a temperature of more than 900°C and less than 1000°C. After hot working, it is cooled, then cold worked at a processing rate of 50% or more, heated at a temperature of 900°C or more and below the melting point, and then heated from a temperature below the regular-irregular lattice transformation point to 1
Cool at an appropriate rate corresponding to the composition, from 00°C/sec to 1°C/hour, and further heat at a temperature below the ordered-disorder lattice transformation point for an appropriate time corresponding to the composition, from 1 minute to 100 hours. High wear resistance characterized by forming a recrystallized texture of (1101<112> + (3111<112>) with an effective magnetic permeability of 3000 or more and a saturation magnetic flux density of 40000 or more at 1 KHz by cooling. Manufacturing method of magnetic permeability alloy.
(作 用)
一般に摩耗現象は合金結晶の方位によって大きな差異が
あり、結晶異方性が存在することが知られているが、N
i−Fe−Nb系合金においては(100) <001
>再結晶集合組織は摩耗し易ずく、+110) <11
2>とこの<112>方位を軸として多少回転した(3
11) <112>の再結晶集合組織が耐摩耗性にすぐ
れていることが明らかとな、った。すなわち、N i−
F e N b系合金は(110) <112〉+{
311+ <112>の再結晶集合組織を形成させるこ
とによって耐摩耗性が著しく向上することを見い出した
のである。(Function) In general, wear phenomena vary greatly depending on the orientation of alloy crystals, and it is known that crystal anisotropy exists.
In i-Fe-Nb alloys, (100) <001
> Recrystallized texture is easy to wear, +110) <11
2> and rotated somewhat around this <112> direction (3
11) It has become clear that the recrystallized texture of <112> has excellent wear resistance. That is, N i-
F e N b alloy is (110) <112> + {
They have discovered that wear resistance is significantly improved by forming a recrystallized texture of 311+<112>.
本発明者らはこの知見に基づいて、Ni−Fe−Nb系
合金のHlo) <112>+ (31,1) <11
.2>の再結晶集合組織を形成させるための研究を幾多
遂行した結果、これにPおよびSの合計o、ooi〜1
%(但し、5O61%以下、PおよびSは0%を含まず
)添加すると(100) <ool>再結晶集合組織の
発達は抑制され、(1101<112>十(31N <
112>の再結晶集合組織の形成が著しく促進すること
を見い出したのである。すなわちNi−Fe2元系合金
は冷間圧延加工すると[110) <112>+ (1
12) <111>の再結晶集合組繊が生じるが、これ
を高温加熱すると
(100) <001>再結晶集合i11織が発達する
ことが知られている。しかし2、これにNbを添加する
と積層欠陥エネルギーが低下するが、さらにこれにPお
よびSの合計o、ooi〜1%(但し、30.1%以下
、PおよびSは0%を含まず)添加すると、リン化物お
よび硫化物が粒界に析出して粒界エネルギーが低下して
、二次再結晶において(100) <001>再結晶集
合組織の発達を強く抑制し、(1101<11.2>+
(31]、j <112>の再結晶集合組織の成長が
優先的に促進され、+1it)) <112>+ (3
111<1.12>の再結晶集合組織が形成されて、耐
摩耗性が著しく向上する。またNi−Fe−Nb系合金
にPおよびSを添加すると硬いリン化物および硫化物が
マトリックス中にも析出し、耐摩耗性の向上に寄与する
とともに、これらの弱強磁性および非強磁性の微細なリ
ン化物および硫化物の分散析出によって磁区が分割され
て、交流磁界における渦電流損失が減少し、このために
実効透磁率が増大することも見い出した。要するにNb
とPおよびSの相乗的効果により、(1,10) <1
12〉+{311) <112>の再結晶集合Mn織が
発達するとともに実効透磁率が増大し、耐摩耗性のすぐ
れた高透磁率)1(!性合金が得られるのである。Based on this knowledge, the present inventors calculated Hlo) <112>+ (31,1) <11 of the Ni-Fe-Nb alloy.
.. As a result of carrying out numerous studies to form the recrystallized texture of
% (however, 5O 61% or less, P and S not included 0%), the development of (100) <ool> recrystallized texture is suppressed, and (1101 <112> 0 (31N <
112> was found to significantly promote the formation of recrystallized texture. In other words, when the Ni-Fe binary alloy is cold rolled, it becomes [110) <112>+ (1
12) A <111> recrystallized aggregated texture is produced, but it is known that when this is heated at a high temperature, a (100) <001> recrystallized aggregated i11 weave develops. However, 2. When Nb is added to this, the stacking fault energy decreases, but in addition, the total of P and S is o, ooi ~1% (however, 30.1% or less, P and S do not include 0%) When added, phosphides and sulfides precipitate at the grain boundaries, lowering the grain boundary energy, strongly suppressing the development of the (100) <001> recrystallization texture in secondary recrystallization, and (1101<11. 2>+
(31], j The growth of the recrystallized texture of <112> is preferentially promoted, +1it)) <112>+ (3
A recrystallized texture of 111<1.12> is formed, and wear resistance is significantly improved. In addition, when P and S are added to Ni-Fe-Nb alloys, hard phosphides and sulfides are precipitated in the matrix, contributing to improved wear resistance, as well as weakly ferromagnetic and non-ferromagnetic fine particles. We also found that the dispersed precipitation of phosphides and sulfides splits the magnetic domains, reducing eddy current losses in alternating magnetic fields, thereby increasing the effective permeability. In short, Nb
Due to the synergistic effect of P and S, (1,10) <1
As the recrystallized Mn weave of 12>+{311)<112> develops, the effective magnetic permeability increases, and a high magnetic permeability)1(!) alloy with excellent wear resistance is obtained.
本発明の合金を造るには、Ni60〜90%、Nho、
5〜14%、PおよびSの合計o、oot〜1%(但し
、50.1%以下、PおよびSは0%を含まず)および
残部Feの適当量を空気中、好ましくは非酸化性雰囲気
(水素、アルゴン、窒素など)中あるいは真空中におい
て適当な溶解炉を用いて溶解する。上記合金に副成分と
してCr、Mo、Ge。To make the alloy of the present invention, 60-90% Ni, Nho,
5 to 14%, a total of P and S, o, oot to 1% (however, 50.1% or less, P and S do not include 0%) and the balance Fe in an appropriate amount in air, preferably a non-oxidizing Melt in an atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum using a suitable melting furnace. The above alloy contains Cr, Mo, and Ge as subcomponents.
Auの7%以下、Co、Vの10%以下、Wの15%以
下、Cu 、Ta 、Mnの25%以下、A1.Si。7% or less of Au, 10% or less of Co, V, 15% or less of W, 25% or less of Cu, Ta, Mn, A1. Si.
Ti 、Zr、Hf 、Sn、sb、Ga、In。Ti, Zr, Hf, Sn, sb, Ga, In.
Ti、Zn、Cd、希土類元素、白金族元素の5%以下
、Be、Ag、Sr、Baの3%以下、Bを1%以下の
1種または2種以上の合計0.01〜30%の所定量を
更に添加する。また、鍛造性および加工性を改善する為
、必要に応じて脱酸剤としてC,Ca 、Mg等を少量
(各0.5%以下)添加する。かくして得た混合物を充
分に撹拌して組成的に均一な熔融合金を造る。5% or less of Ti, Zn, Cd, rare earth elements, platinum group elements, 3% or less of Be, Ag, Sr, Ba, 1% or less of B, a total of 0.01 to 30% of one or more types. Further add a predetermined amount. Furthermore, in order to improve forgeability and workability, a small amount (0.5% or less of each) of C, Ca, Mg, etc. is added as a deoxidizing agent if necessary. The mixture thus obtained is sufficiently stirred to produce a compositionally uniform molten alloy.
次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに高温において鍛造あるいは熱
間加工を施して適当な形状のもの、例えば棒あるいは板
となし、また、必要ならば焼鈍する。次いでこれに冷間
圧延などの方法によって加工率50%以上の冷間加工を
施し、目的の形状のもの、例えば厚さ0.I n+mの
薄板を造る。次にその薄板から例えば外径45mm、内
径33mmの環状板を打抜き、これを水素中その他の適
当な非酸化性雰囲気(水素、アルゴン、窒素など)中あ
るいは真空中で900℃以上融点以下の温度で適当時間
加熱し、ついで規則−不規則格子変態点(約600℃)
以上の温度から100℃/秒〜1℃/時の組成に対応し
た適当な速度で冷却するかあるいはこれをさらに規則−
不規則格子変態点(約600℃)以下の温度で適当時間
再加熱し、冷却する。このようにして実効透磁率300
0以上、飽和磁束密度40000以上を有し、且つ(1
10) <112>+ (311) <112>の再結
晶集合組織を有した耐摩耗性高透磁率合金が得られる。Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then forged or hot-worked at high temperatures to form an appropriate shape, such as a bar or plate. , annealed if necessary. Next, this is subjected to cold working at a processing rate of 50% or more by a method such as cold rolling to obtain the desired shape, for example, a thickness of 0. Make a thin plate of I n+m. Next, an annular plate having an outer diameter of 45 mm and an inner diameter of 33 mm, for example, is punched out from the thin plate, and this is held in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature of 900°C or higher and lower than the melting point. Heating for an appropriate time at
From the above temperature, cool at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour, or further regulate this.
The mixture is reheated at a temperature below the irregular lattice transformation point (approximately 600° C.) for a suitable period of time, and then cooled. In this way, the effective permeability is 300
0 or more, has a saturation magnetic flux density of 40,000 or more, and (1
10) A wear-resistant high permeability alloy having a recrystallized texture of <112>+ (311) <112> is obtained.
次に本発明を図面につき説明する。The invention will now be explained with reference to the drawings.
第1図は80%Ni−Fe3%Nb−P−3系合金(但
し、P:5=10:1)について加工率90%の冷間圧
延し、1100℃で加熱した後1000℃/時の速度で
冷却した場合の再結晶集合組織および緒特性とPおよび
slとの関係を示したものである。Figure 1 shows an 80%Ni-Fe3%Nb-P-3 alloy (P:5=10:1) cold-rolled at a processing rate of 90%, heated at 1100°C, and then heated at 1000°C/hour. This figure shows the relationship between the recrystallized texture and crystal properties and P and sl when cooling at a high speed.
Ni−Fe−Nb系合金は冷間圧延加工すると(110
) <112>+ (112) <111>の再結晶集
合組織が生じるが、これを高温加熱すると(100)
<001>とHIO) <112>+ (311) <
112>の再結晶集合組織が生成する。しかし、これに
PおよびSを添加すると(100) <001>再結晶
集合組繊の生成が抑制され、1tlo) <112>+
(311) <112>の再結晶集合組織が発達し、
それとともに摩耗量は減少する。また実効透磁率はPお
よびSの添加によって増大するが、PおよびSの1%以
上では鍛造加工が困難となり好ましくない。第2図は8
0%Ni−Fe−5%Nb−0,05%P−0,01%
S合金について、1100℃で加熱した場合の再結晶集
合組織および緒特性と冷間加工率との関係を示したもの
で、冷間加工率の増加は(110) <112>+ (
3111<112>の再結晶集合組織の発達をもたらし
、耐摩耗性を向上させ、実効透磁率を高める。When Ni-Fe-Nb alloy is cold rolled (110
) <112>+ (112) A recrystallized texture of <111> occurs, but when this is heated at high temperature, it becomes (100)
<001> and HIO) <112>+ (311) <
112> recrystallized texture is generated. However, when P and S are added to this, the formation of (100) <001> recrystallized aggregate fibers is suppressed, and 1tlo) <112>+
(311) <112> recrystallization texture develops,
At the same time, the amount of wear decreases. Further, the effective magnetic permeability increases by adding P and S, but if P and S exceed 1%, forging becomes difficult, which is not preferable. Figure 2 is 8
0%Ni-Fe-5%Nb-0,05%P-0,01%
This figure shows the relationship between the recrystallized texture and core properties and cold working rate when S alloy is heated at 1100°C, and the increase in cold working rate is (110) <112>+ (
3111<112> resulting in the development of recrystallized texture, improving wear resistance and increasing effective magnetic permeability.
第3図は80%Ni−Fe−5%Nb−0,05%P−
0,01%S合金を冷間加工率85%で圧延した後の加
熱温度と再結晶集合Mi織および緒特性との関係を示し
たもので、加熱温度の上昇とともに(112) <11
1>成分が減少し、(110) <112>+ (31
1) <112>が発達して耐摩耗性が向上し、また実
効透磁率は増大する。第4図は合金番号7(81,5%
Ni−Fe−2%Nb−0,155%P−0,022%
S合金)、合金番号45 (79,3%Ni−Fe−7
%Nb−0,04%P−0.008%S−2%Mo合金
)、合金番号37 (82%Ni−Fe−3,5%Nb
−0,062%P−0.01%S−5%V合金)につい
て実効透磁率と冷却速度との関係およびこれをさらに再
加熱処理を施した場合の実効透磁率(×印)を示したも
のである。合金の組成に対応した最適冷却速度、最適再
加熱温度および再加熱時間が存在することが判る。Figure 3 shows 80%Ni-Fe-5%Nb-0.05%P-
This figure shows the relationship between the heating temperature after rolling a 0.01% S alloy at a cold working rate of 85%, the recrystallized Mi texture, and the properties of the metal. As the heating temperature increases, (112) < 11
1> component decreases, (110) <112>+ (31
1) <112> develops, improving wear resistance and increasing effective magnetic permeability. Figure 4 shows alloy number 7 (81.5%
Ni-Fe-2%Nb-0,155%P-0,022%
S alloy), alloy number 45 (79,3%Ni-Fe-7
%Nb-0,04%P-0.008%S-2%Mo alloy), alloy number 37 (82%Ni-Fe-3,5%Nb
-0,062%P-0.01%S-5%V alloy), the relationship between effective magnetic permeability and cooling rate and the effective magnetic permeability (x mark) when this is further subjected to reheating treatment are shown. It is something. It can be seen that there is an optimal cooling rate, optimal reheating temperature, and optimal reheating time that correspond to the composition of the alloy.
第5図は80%Ni−Fe3%Nb−0,05%P−〇
、01%S合金にCr 、Mo 、Ge 、Auあるい
はCoを添加した場合の磁気ヘッドの摩耗量の特性図で
、Cr 、Mo 、Ge 、AuあるいはCOを添加す
ると、何れも実効透磁率は高くなり、摩耗量は減少する
が、Cr 、Mo 、GeあるいはAuの7%以上では
飽和磁束密度が4000 G以下となり好ましくない。Figure 5 is a characteristic diagram of the wear amount of the magnetic head when Cr, Mo, Ge, Au or Co is added to the 80%Ni-Fe3%Nb-0.05%P-〇,01%S alloy. When Cr, Mo, Ge, Au, or CO is added, the effective magnetic permeability increases and the amount of wear decreases, but when Cr, Mo, Ge, or Au exceeds 7%, the saturation magnetic flux density becomes less than 4000 G, which is not preferable. .
またCo 10%以上では残留磁気が大きくなり、帯磁
ノイズが増大するので好ましくない。Further, if the Co content exceeds 10%, residual magnetism becomes large and magnetization noise increases, which is not preferable.
第6図は同じ<80%Ni−Fe−5%Nb−0,05
%P−0,01%S合金にV、W、Cu 、Taあるい
はMnを添加した場合の磁気ヘッドの摩耗量および実効
透磁率の特性図で、V、 W、 Cu 、 Taあるい
はMnを添加すると、何れも実効透磁率は高くなり、摩
耗量は減少するが、■を10%以上、Wを15%以上、
Cu、TaあるいはMnを25%以上添加すると飽和磁
束密度が4000 C,以下となり好ましくない。Figure 6 is the same <80%Ni-Fe-5%Nb-0,05
This is a characteristic diagram of the amount of wear and effective magnetic permeability of the magnetic head when V, W, Cu, Ta or Mn is added to the %P-0,01%S alloy. , the effective magnetic permeability increases and the amount of wear decreases in both cases, but ■ is 10% or more, W is 15% or more,
If Cu, Ta or Mn is added in an amount of 25% or more, the saturation magnetic flux density becomes 4000 C or less, which is not preferable.
第7図は同じ<80%Nt−Fe−5%Nb−0,05
%P−0,01%S合金にAl、Si 、Ti 、Zr
。Figure 7 shows the same <80%Nt-Fe-5%Nb-0,05
%P-0,01%S alloy with Al, Si, Ti, Zr
.
Hf、Sn、Sb、Ga、InあるいはTlを添加した
場合の特性図で、Af、Si 、Ti 、Zr。This is a characteristic diagram when Hf, Sn, Sb, Ga, In, or Tl is added. Af, Si, Ti, and Zr.
Hf、Sn、Sb、Ga、InあるいはTffiを添加
すると、何れも実効透磁率は高くなり、摩耗量は減少す
るが、Si 、Ti 、Zr、Hf 、Ga。When Hf, Sn, Sb, Ga, In, or Tffi is added, the effective magnetic permeability increases and the amount of wear decreases, but Si, Ti, Zr, Hf, and Ga.
InあるいはTffi5%以上では飽和磁束密度は40
00 G以下となり、Aj!、Snあるいはsbが5%
以上では鍛造加工が困難となり好ましくない。When In or Tffi is 5% or more, the saturation magnetic flux density is 40
00 G or less, Aj! , Sn or sb is 5%
If this is the case, forging becomes difficult, which is not preferable.
0.01%S合金にZn、Cd、La、Pt、Be。Zn, Cd, La, Pt, Be in 0.01% S alloy.
Ag、Sr、BaあるいはBを添加した場合の特性図で
、Zn、Cd、La、Pt、Be、A4゜Sr、Baあ
るいはBを添加すると、何れも実効透磁率は高くなり、
摩耗量は減少するが、Zn。In the characteristic diagram when Ag, Sr, Ba or B is added, when Zn, Cd, La, Pt, Be, A4゜Sr, Ba or B is added, the effective magnetic permeability increases,
Although the amount of wear decreases, Zn.
Cd、La、PLを5%以上、Be、Sr、Baを3%
以上添加すると飽和磁束密度が4000 C以下となり
、Agを3%以上あるいはBを1%以上添加すると鍛造
加工が困難となり好ましくない。Cd, La, PL 5% or more, Be, Sr, Ba 3%
If more than 3% is added, the saturation magnetic flux density becomes 4000 C or less, and if 3% or more of Ag or 1% or more of B is added, forging becomes difficult, which is not preferable.
第8図は同じ<80%Ni−Fe3%Nb−0,05%
F−0,01%S合金にZn、Cd、La、PL。Figure 8 is the same <80%Ni-Fe3%Nb-0.05%
F-0,01%S alloy with Zn, Cd, La, and PL.
Be、Ag、Sr、BaあるいはBを添加した場合の特
性図で、Zn、Cd、L、a、PL、Be。Characteristic diagram when Be, Ag, Sr, Ba or B is added, Zn, Cd, L, a, PL, Be.
Ag、Sr、BaあるいはBを添加すると、何れも実効
透磁率は高くなり、摩耗量は減少するが、Zn、Cd、
La、Ptを5%以上、Be、5rBaを3%以上添加
すると飽和磁束密度が4000 G以下となり、Agを
3%以上あるいはBを1%以上添加すると鍛造加工が困
難となり好ましくない。Adding Ag, Sr, Ba or B increases the effective magnetic permeability and reduces the amount of wear, but Zn, Cd,
If 5% or more of La or Pt or 3% or more of Be or 5rBa is added, the saturation magnetic flux density becomes 4000 G or less, and if 3% or more of Ag or 1% or more of B is added, forging becomes difficult, which is not preferable.
第9図は80%Ni−Fe3%Nb−0,05%P−0
,01%S合金を実施例1に準じて製造した場合の熱間
圧延加工の温度と再結晶集合組織および摩耗量との関係
を示す図である。80%Nt−Fe−5%Nb−0,0
5%p−o、oi%S合金を約1000’cT:鍛造し
て厚さ7mmの板とした。さらに種々な加熱温度で厚さ
1.0 mmまで熱間圧延加工し、ついで常温で冷間圧
延加工を施して0.1 mmの薄板(冷間加工率90%
)とした。この薄板を1100℃の水素中で2時間加熱
後800℃/hrの速度で常温まで冷却した場合の熱間
圧延加工の温度と再結晶集合組織および摩耗量との関係
を第9図に示した。熱間圧延加工の温度が900℃以下
では摩耗の激しい(112) <111>が残留し摩耗
量が大きいが、900℃〜1000℃間の温度では(1
101<112>と(311/) <112>の再結晶
集合組織が発達し摩耗量が特に小くなる。Figure 9 shows 80%Ni-Fe3%Nb-0.05%P-0
, 01% S alloy manufactured according to Example 1 is a diagram showing the relationship between hot rolling temperature, recrystallization texture, and wear amount. 80%Nt-Fe-5%Nb-0,0
A 5% po, oi% S alloy was forged at approximately 1000'cT to form a plate with a thickness of 7 mm. Furthermore, it was hot rolled to a thickness of 1.0 mm at various heating temperatures, and then cold rolled at room temperature to form a 0.1 mm thin plate (cold working rate 90%).
). Figure 9 shows the relationship between hot rolling temperature, recrystallization texture, and wear amount when this thin plate was heated in hydrogen at 1100°C for 2 hours and then cooled to room temperature at a rate of 800°C/hr. . When the hot rolling temperature is below 900°C, severe wear occurs due to residual (112) <111>, but at temperatures between 900°C and 1000°C, (111)
The recrystallized texture of 101<112> and (311/)<112> develops, and the amount of wear becomes particularly small.
本発明において、冷間加工は(110) <112>−
+−+112) <111>の集合組織を形成し、これ
を基として(110) <112>+ (31L) <
112>の再結晶集合Mn織を発達させるために必要で
、第1図および第2図に見られるようにPおよびSの合
計0.001%以上において、特に加工率50%以上の
冷間加工を施した場合にfllo) <112>++3
11) <112>の再結晶集合組織の発達が顕著で、
耐摩耗性は著しく向上し、その実効透磁率も高い。また
上記の冷間加工に次いで行われる加熱は、組織の均一化
、加工歪の除去とともに、。In the present invention, cold working is (110) <112>-
+-+112) <111> is formed, and based on this, (110) <112>+ (31L) <
112> is necessary to develop a recrystallized Mn texture, and as shown in Figs. 1 and 2, cold working at a processing rate of 50% or more is necessary when the total amount of P and S is 0.001% or more. fllo) <112>++3
11) The development of recrystallized texture of <112> is remarkable,
Its wear resistance is significantly improved and its effective magnetic permeability is also high. Furthermore, the heating performed after the above-mentioned cold working not only homogenizes the structure but also removes processing distortion.
(110) <112>+ (311) <112>の
再結晶集合組織を発達させ、高い実効透磁率とすぐれた
耐摩耗性を得るために必要であるが、第3図に見られる
ように特に900℃以上の加熱によって実効透磁率およ
び耐摩耗性は顕著に向上する。It is necessary to develop a recrystallized texture of (110) <112> + (311) <112> and obtain high effective permeability and excellent wear resistance, but as shown in Figure 3, Effective magnetic permeability and wear resistance are significantly improved by heating to 900° C. or higher.
尚、上記の900 ℃以上1000℃以下の熱間圧延加
工と、冷間加工と、次いで行われる900 ”C以ト融
点以下の加熱を繰り返し行うことは、
(110) <112>+ (3H) <112>の再
結晶集合組織の集積度を高め、耐摩耗性を向上させるた
めに有効である。50%以下でも+110) <112
〉+{311) <112>の再結晶集合組織が得られ
るが、本発明の技術的思想に包含されるものである。し
たがって、本発明の冷間加工率は、全製造工程における
冷間加工を総計した加工率を意味し、最終冷間加工率の
みを意味するものではない。Incidentally, repeating the above-mentioned hot rolling at a temperature of 900°C or higher and 1000°C or lower, cold working, and subsequent heating at a temperature of 900°C or higher and lower than the melting point is (110) <112>+ (3H) It is effective for increasing the degree of accumulation of recrystallized texture of <112> and improving wear resistance.Even if it is less than 50%, it is +110) <112
〉+{311) A recrystallized texture of <112> is obtained, which is included in the technical idea of the present invention. Therefore, the cold working rate of the present invention means the total working rate of cold working in all manufacturing processes, and does not mean only the final cold working rate.
上記の900℃以上融点以下の温度から規則−不規則格
子変態点(約600℃)以上の温度までの冷却は、急冷
しても徐冷しても得られる磁性には大した変りはないが
、第4図に見られるようにこの変態点以下の冷却速度は
磁性に大きな影響を及ぼす。When cooling from a temperature above 900°C below the melting point to a temperature above the regular-irregular lattice transformation point (approximately 600°C), there is not much difference in the magnetic properties obtained whether the cooling is rapid or gradual. As seen in FIG. 4, the cooling rate below this transformation point has a large effect on magnetism.
すなわちこの変態点以上の温度より100℃/秒〜ビC
/時の組成に対応した適当な速度で常温迄冷却すること
により、地の規則度が適度に調整され、すぐれた磁性が
得られる。そして上記の冷却速度の内100℃/秒に近
い速度で冷却すると、規則度が小さくなり、これ以上速
く冷却すると規則化が進まず、規則度はさらに小さ(な
り磁性は劣化する。しかし、その規則度の小さい合金を
その変態点以下の200℃〜600℃の組成に対応して
、1分間以上100時間以下再加熱し冷却すると、規則
化が進んで適度な規則度となり磁性は向上する。In other words, from the temperature above this transformation point to 100℃/sec ~ BiC
By cooling to room temperature at an appropriate rate corresponding to the composition of 1/2 hour, the degree of regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. When cooling at a rate close to 100°C/sec among the above cooling rates, the degree of order decreases; if the cooling rate is any faster, order does not progress, and the degree of order decreases even further (and the magnetism deteriorates. However, the degree of order decreases. When an alloy with a low degree of order is reheated and cooled for 1 minute or more and 100 hours or less depending on the composition at 200° C. to 600° C. below its transformation point, the ordering progresses to a suitable degree of order and the magnetism improves.
他方、上記の変態点以上の温度から、例えば1℃/時時
下下速度で徐冷すると、規則化は進みすぎ、磁性は低下
する。On the other hand, if the material is slowly cooled from a temperature above the above-mentioned transformation point at a rate of 1° C./hour, for example, ordering will proceed too much and the magnetism will decrease.
尚、上記の熱処理を水素が存在する雰囲気中で施すこと
は、実効透磁率を高めるのに特に効果があるので好まし
い。Note that it is preferable to perform the above heat treatment in an atmosphere where hydrogen is present, since this is particularly effective in increasing the effective magnetic permeability.
(実施例) 次に本発明を実施例につき説明する。(Example) Next, the invention will be explained with reference to examples.
実施燃上 合金番号45(組成N1=79.3%、Nb=7%。Implementation burning Alloy number 45 (composition N1 = 79.3%, Nb = 7%.
P =0.04%、 S=0.008%、Mo=2%
、Fe−残部)の合金の製造
原料として99.8%純度の電解ニッケル、99.9%
純度の電解鉄、99.8%純度のニオブ、99.5%純
度の硫黄、モリブデンと、リン10%の鉄−リン母合金
を用いた。試料を造るには、原料は全重量800gでア
ルミナ坩堝に入れ、真空中で高周波誘導電気炉によって
溶かした後、よく撹拌して均質な溶融合金とした。次に
これを直径25mm、高さ1701の孔をもつ鋳型に注
入し、得られた鋳塊を約ioo。P = 0.04%, S = 0.008%, Mo = 2%
, 99.8% pure electrolytic nickel, 99.9%
An iron-phosphorus master alloy containing pure electrolytic iron, 99.8% pure niobium, 99.5% pure sulfur, molybdenum, and 10% phosphorus was used. To prepare the sample, raw materials were placed in an alumina crucible with a total weight of 800 g, melted in a high-frequency induction electric furnace in a vacuum, and then thoroughly stirred to obtain a homogeneous molten alloy. Next, this was poured into a mold with holes of 25 mm in diameter and 1,701 mm in height, and the resulting ingot was approximately io.
℃で鍛造して厚さ約7mmの板とした。さらに約900
℃〜1ooo’cの間で適当な厚さまで熱間圧延し、つ
いで常温で種々な加工率で冷間圧延を施して0.1 m
mの薄板とし、それから外径45mm、内径331の環
状板を打ち抜いた。It was forged at ℃ to form a plate with a thickness of about 7 mm. Approximately 900 more
It was hot rolled to a suitable thickness between ℃ and 1ooo'c, and then cold rolled at room temperature at various processing rates to a thickness of 0.1 m.
A circular plate having an outer diameter of 45 mm and an inner diameter of 33 mm was punched out from the thin plate.
次にこれに種々な熱処理を施して、磁気特性および磁気
ヘッドのコアとして使用した場合湿度80%、温度40
℃においてCry、磁気テープによる200時間時間後
の摩耗量をタリサーフ表面粗さ計で測定を行い、第1表
のような特性を得た。Next, various heat treatments are applied to this material to improve its magnetic properties and when used as the core of a magnetic head, the humidity is 80% and the temperature is 40%.
The amount of abrasion after 200 hours using Cry and magnetic tape at ℃ was measured using a Talysurf surface roughness meter, and the characteristics shown in Table 1 were obtained.
なお代表的な合金の特性は第2表に示す通りである。The characteristics of typical alloys are shown in Table 2.
上記のように本発明合金は加工が容易で、耐摩耗性にす
ぐれ、40000以上の飽和磁束密度3000以上の高
い実効透磁率、低保磁力を有しているので、磁気記録再
生ヘッドのコアおよびケース用磁性合金として好適であ
るばかりでなく、耐摩耗性および高透磁率を必要とする
一般の電磁器機の磁性材料としても好適である。As mentioned above, the alloy of the present invention is easy to process, has excellent wear resistance, and has a saturation magnetic flux density of 40,000 or more, a high effective magnetic permeability of 3,000 or more, and a low coercive force. It is suitable not only as a magnetic alloy for cases, but also as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability.
次に本発明において合金の組成をNi60〜90%、N
b 0.5〜14%、PおよびSの合計0.001〜1
%(但し、30.1%以下、PおよびSは0%を含まず
)および残部Feと限定し、これに副成分として添加す
る元素をCr、Mo、Ge、Auを7%以下、Co、V
を10%以下、Wを15%以下、Cu。Next, in the present invention, the composition of the alloy is 60 to 90% Ni, N
b 0.5-14%, total of P and S 0.001-1
% (30.1% or less, P and S do not include 0%) and the balance is Fe, and the elements added as subcomponents are Cr, Mo, Ge, Au 7% or less, Co, V
10% or less, W 15% or less, Cu.
Ta、Mnを25%以下、Af、Si 、Ti 、Zr
。Ta, Mn 25% or less, Af, Si, Ti, Zr
.
Hf 、Sn、Sb、Ga、In、Tl、Zn。Hf, Sn, Sb, Ga, In, Tl, Zn.
Cd 、希土類元素、白金族元素を5%以下、Be。Cd, rare earth elements, platinum group elements at 5% or less, Be.
Ag、Sr、Baを3%以下、Bを1%以下の1種また
は2種以上の合計で0.01〜30%と限定した理由は
各実施例、第2表および図面で明らかなように、この組
成範囲の実効透磁率は3000以上、飽和磁束密度40
000以上で、且つ
(110) <112>+ (311) <112>の
再結晶集合組織を有し、耐摩耗性がすぐれているが、こ
の組成範囲をはずれると磁気特性あるいは耐摩耗性が劣
化するからである。The reason why Ag, Sr, Ba was limited to 3% or less, and B was limited to 1% or less, the total of 0.01 to 30% of one or more types, is clear from each example, Table 2, and the drawings. , the effective magnetic permeability in this composition range is 3000 or more, and the saturation magnetic flux density is 40
000 or more and has a recrystallized texture of (110) <112> + (311) <112>, and has excellent wear resistance. However, if the composition falls outside this composition range, magnetic properties or wear resistance deteriorate. Because it does.
すなわち、Nb 0.5%以下およびPおよびSの合計
0.001%以下では(110) <112>+ (3
11) <112>の再結晶集合組織が充分発達しない
ので耐摩耗性が悪く、Nb14%以上およびPおよびS
の合計1%以上および30.1%以上では鍛造加工が困
難となり、また実効透磁率3000以下、飽和磁束密度
4000 G以下になるからである。That is, when Nb is 0.5% or less and the total of P and S is 0.001% or less, (110) <112>+ (3
11) The recrystallized texture of <112> is not sufficiently developed, resulting in poor wear resistance.
If the total of 1% or more and 30.1% or more, forging becomes difficult, and the effective magnetic permeability becomes 3000 or less and the saturation magnetic flux density becomes 4000G or less.
そしてNi60〜90%、Nb 0.5〜14%、Pお
よびSの合計0.001〜1%(但し、so、i%以下
、PおよびSは0%を含まず)および残部Feの組成範
囲の合金は、実効透磁率3000以上、飽和磁束密度4
0000以上で、耐摩耗性がすぐれ、且つ加工性が良好
であるが、一般にこれにさらにCr。And the composition range of Ni 60-90%, Nb 0.5-14%, P and S total 0.001-1% (however, so, i% or less, P and S do not include 0%), and the balance Fe The alloy has an effective magnetic permeability of 3000 or more and a saturation magnetic flux density of 4.
0000 or more, it has excellent wear resistance and good workability, but generally it is further supplemented with Cr.
Mo、Ge、Au、W、V、Cu、Ta、Mn。Mo, Ge, Au, W, V, Cu, Ta, Mn.
Al、Zr、Si、Tt、Hf、Ga、In。Al, Zr, Si, Tt, Hf, Ga, In.
Tl、Zn 、Cd 、希土類元素、白金族元素。Tl, Zn, Cd, rare earth elements, platinum group elements.
Be、Ag、Sr、Ba、B等を添加すると特に実効透
磁率を高める効果があり、Coを添加すると特に飽和磁
束密度を高める効果があり、Au。Adding Be, Ag, Sr, Ba, B, etc. has the effect of particularly increasing the effective magnetic permeability, adding Co has the effect of particularly increasing the saturation magnetic flux density, and adding Co has the effect of particularly increasing the saturation magnetic flux density.
Mn、Ti、Co、希土類元素、Be、Sr。Mn, Ti, Co, rare earth elements, Be, Sr.
Ba、Bを添加すると鍛造、加工を良好にする効果があ
り、AI!、、Sn、Sb、Au、Ag、Ti。Adding Ba and B has the effect of improving forging and processing, and AI! ,,Sn,Sb,Au,Ag,Ti.
Zn、Cd、Be、Ta、Vの添加および副成分の各元
素のリン化物および硫化物は(110) <112>+
+311) <112>の再結晶集合組織を発達させ
、耐摩耗性を向上する効果がある。The addition of Zn, Cd, Be, Ta, and V and the phosphide and sulfide of each element as a subcomponent are (110) <112>+
+311) It has the effect of developing a <112> recrystallized texture and improving wear resistance.
(発明の効果)
要するに本発明合金は鍛造加工が容易で、(1101<
112>+ +311) <112>の再結晶集合組織
を形成させることによって耐摩耗性がすぐれ、飽和磁束
密度が40000以上で、実効透磁率が高いので、磁気
記録再生ヘッド用磁性合金として好適であるばかりでな
く、耐摩耗性および高透磁率を必要とする一般の電磁器
機の磁性材料としても好適である。(Effect of the invention) In short, the alloy of the present invention can be easily forged, and (1101<
112>+ +311) By forming a recrystallized texture of <112>, it has excellent wear resistance, has a saturation magnetic flux density of 40,000 or more, and has a high effective permeability, so it is suitable as a magnetic alloy for magnetic recording/reproducing heads. In addition, it is suitable as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability.
第1図は80%Ni−Fe−5%Nb−P−3系合金の
緒特性とPおよびSl(但し、P:5=lO:l)との
関係を示す特性図、
第2図は80%Nt−Fe−5%Nb 0.05%P
=0.01%S合金の緒特性と冷間加工率との関係を示
す特性図、
第3図ハ80%Ni−Fe−5%Nb−0,05%P−
o、oi%S合金の緒特性と加熱温度との関係を示す特
性図、
第4図は81.5%Ni−Fe−2%Nb−0,155
%P−0,022%S合金(合金番号7 ’) 、79
゜3%Ni−Fe−7%Nb−0,04%P−0.00
8%S−2%M。
合金(45) 、および82%Ni−Fe 3.5%
Nb−0,062%P−0.01%S−5%■合金(3
7)の実効透磁率と冷却速度、再加熱温度および再加熱
時間との関係を示す特性図、
第5図は80%Ni−Fe−5%Nb−0,05%P−
0,01%S合金にCr、Mo、Ge、AuあるいはC
oを添加した場合の緒特性と各元素の添加量との関係を
示す特性図、
第6図は80%Ni−Fe3%Nb−0,05%P−〇
、01%S合金にV、 W、 Cu 、 Taあるい
はMnを添加した場合の緒特性と各元素の添加量との関
係を示す特性図、
第7図は80%Ni−Fe−5%Nh−0.05%P−
〇、01%S合金にAI、Si 、Ti 、Zr、Hf
。
Sn、Sb、Ga、InあるいはTiを添加した場合の
緒特性と各元素の添加量との関係を示す特性図、
第8図は80%Ni−Fc−5%Nb−0,05%P−
〇、01%S合金にZn、Cd、La、Pt、Be。
Ag、Sr、BaあるいはBを添加した場合の緒特性と
各元素の添加量との関係を示す特性図である。
第9図は80%Ni−Fe3%Nb−0,05%P0.
01%S合金の熱間圧延加工温度と再結晶集合組織と摩
耗量との関係を示す特性図である。
第2図
;令九Qf、ロ エ培’p t5)
第1図
P十5(%ン(1’+5二f(J
第3図
nO部瓜友(℃)
第4図
;A却l屋(℃/峙)
第5図
Cr、 No、θe、Co or Au (%)第7図
jA間ffLt力ロエ温度(℃)
第8図
zn、Cd、La、Pt、Be(%)
Al、5r、Ba、 B (%)
上
申
書
平成元年12
月
日Figure 1 is a characteristic diagram showing the relationship between the properties of the 80%Ni-Fe-5%Nb-P-3 alloy and P and Sl (where P:5=lO:l). %Nt-Fe-5%Nb 0.05%P
=Characteristic diagram showing the relationship between the properties of the 0.01% S alloy and the cold working rate, Figure 3: 80%Ni-Fe-5%Nb-0.05%P-
Figure 4 is a characteristic diagram showing the relationship between the initial properties and heating temperature of the o,oi%S alloy.
%P-0,022%S alloy (alloy number 7'), 79
゜3%Ni-Fe-7%Nb-0.04%P-0.00
8%S-2%M. Alloy (45), and 82%Ni-Fe 3.5%
Nb-0,062%P-0.01%S-5% ■Alloy (3
7) Characteristic diagram showing the relationship between effective magnetic permeability, cooling rate, reheating temperature and reheating time, Figure 5 is 80%Ni-Fe-5%Nb-0,05%P-
0.01% S alloy with Cr, Mo, Ge, Au or C
Figure 6 is a characteristic diagram showing the relationship between the initial characteristics and the amount of each element added when O is added. , a characteristic diagram showing the relationship between the characteristics and the amount of each element added when Cu, Ta or Mn is added.
〇, 01% S alloy with AI, Si, Ti, Zr, Hf
. A characteristic diagram showing the relationship between the characteristics and the amount of each element added when Sn, Sb, Ga, In or Ti is added.
〇, 01% S alloy with Zn, Cd, La, Pt, Be. FIG. 2 is a characteristic diagram showing the relationship between the initial characteristics and the amount of each element added when Ag, Sr, Ba, or B is added. Figure 9 shows 80%Ni-Fe3%Nb-0.05%P0.
FIG. 2 is a characteristic diagram showing the relationship between hot rolling temperature, recrystallization texture, and wear amount of 01% S alloy. Figure 2; Rei9 Qf, Roe Pei'p t5) Figure 1 P15 (%n(1'+52f(J) Figure 3 nO section Uryu (℃) Figure 4; A (℃/direction) Fig. 5 Cr, No, θe, Co or Au (%) Fig. 7 jA ffLt force Loe temperature (°C) Fig. 8 zn, Cd, La, Pt, Be (%) Al, 5r , Ba, B (%) Report December 1989
Claims (1)
、PおよびSの合計0.001〜1%(但し、50.1
%以下、PおよびSは0%を含まず)および残部Feを
主成分とし、副成分として Cr、Mo、Ge、Auをそれぞれ7%以下、Co、V
をそれぞれ10%以下、Wを15%以下、Cu、Ta、
Mnをそれぞれ25%以下、Al、Si、Ti、Zr、
Hf、Sn、Sb、Ga、In、Ti、Zn、Cd、希
土類元素、白金族元素をそれぞれ5%以下、Be、Ag
、 Sr、Baをそれぞれ3%以下、Bを1%以下の1種ま
たは2種以上の合計0.01〜30%、少量の不純物と
からなる合金を900℃を超え1000℃以下の温度で
熱間加工した後冷却し、次に加工率50%以上の冷間加
工を施した後、900℃以上融点以下の温度で加熱し、
ついで規則−不規則格子変態点以上の温度から100℃
/秒〜1℃/時の組成に対応した適当な速度で常温まで
冷却することにより、1KHzにおける実効透磁率30
00以上、飽和磁束密度4000G以上で、且つ{11
0}〈112〉+{311}〈112〉の再結晶集合組
織を形成せしめることを特徴とする耐摩耗性高透磁率合
金の製造法。 2、重量比にてNi60〜90%、Nb0.5〜14%
、PおよびSの合計0.001〜1%(但し、50.1
%以下、PおよびSは0%を含まず)および残部Feを
主成分とし、副成分として Cr、Mo、Ge、Auをそれぞれ7%以下、Co、V
をそれぞれ10%以下、Wを15%以下、Cu、Ta、
Mnをそれぞれ25%以下、Al、Si、Ti、Zr、
Hf、Sn、Sb、Ca、In、Tl、Zn、Cd、希
土類元素、白金族元素をそれぞれ5%以下、Be、Ag
、 Sr、Baをそれぞれ3%以下、Bを1%以下の1種ま
たは2種以上の合計0.01〜30%、少量の不純物と
からなる合金を900℃を超え1000℃以下の温度で
熱間加工した後冷却し、次に加工率50%以上の冷間加
工を施した後、900℃以上融点以下の温度で加熱し、
ついで規則−不規則格子変態点以上の温度から100℃
/秒〜1℃/時の組成に対応した適当な速度で冷却し、
これをさらに規則−不規則格子変態点以下の温度で1分
間以上100時間以下の組成に対応した適当時間加熱し
冷却することにより、1KHzにおける実効透磁率30
00以上、飽和磁束密度4000G以上で、且つ{11
0}〈112〉+{311}〈112〉の再結晶集合組
織を形成せしめることを特徴とする耐摩耗性高透磁率合
金の製造法。[Claims] 1. Ni 60-90%, Nb 0.5-14% by weight
, P and S total 0.001-1% (however, 50.1
% or less, P and S do not include 0%) and the balance is Fe as the main component, Cr, Mo, Ge, Au as subcomponents are each 7% or less, Co, V
10% or less each, W 15% or less, Cu, Ta,
Mn is 25% or less, Al, Si, Ti, Zr,
Hf, Sn, Sb, Ga, In, Ti, Zn, Cd, rare earth elements, platinum group elements each at 5% or less, Be, Ag
, an alloy consisting of 3% or less each of Sr and Ba, and 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, is heated at a temperature of more than 900°C and less than 1000°C. After being cold worked, it is cooled, and then cold worked at a working rate of 50% or more, and then heated at a temperature of 900°C or more and below the melting point,
Then, from the temperature above the regular-irregular lattice transformation point to 100°C
By cooling to room temperature at an appropriate rate corresponding to the composition of
00 or more, saturation magnetic flux density 4000G or more, and {11
A method for producing a wear-resistant high magnetic permeability alloy, characterized by forming a recrystallized texture of 0}<112>+{311}<112>. 2.Ni60-90%, Nb0.5-14% by weight
, P and S total 0.001-1% (however, 50.1
% or less, P and S do not include 0%) and the balance is Fe as the main component, Cr, Mo, Ge, Au as subcomponents are each 7% or less, Co, V
10% or less each, W 15% or less, Cu, Ta,
Mn is 25% or less, Al, Si, Ti, Zr,
Hf, Sn, Sb, Ca, In, Tl, Zn, Cd, rare earth elements, platinum group elements each at 5% or less, Be, Ag
, an alloy consisting of 3% or less each of Sr and Ba, and 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, is heated at a temperature of more than 900°C and less than 1000°C. After being worked, it is cooled, and then cold worked at a working rate of 50% or more, and then heated at a temperature of 900°C or more and below the melting point,
Then, from the temperature above the regular-irregular lattice transformation point to 100°C
Cool at an appropriate rate corresponding to the composition/second to 1°C/hour,
By further heating this at a temperature below the regular-disorder lattice transformation point for an appropriate time corresponding to the composition for 1 minute to 100 hours and cooling, the effective magnetic permeability at 1 KHz is 30.
00 or more, saturation magnetic flux density 4000G or more, and {11
A method for producing a wear-resistant high magnetic permeability alloy, characterized by forming a recrystallized texture of 0}<112>+{311}<112>.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26270089A JPH0645849B2 (en) | 1989-10-07 | 1989-10-07 | Manufacturing method of wear resistant high permeability alloy. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26270089A JPH0645849B2 (en) | 1989-10-07 | 1989-10-07 | Manufacturing method of wear resistant high permeability alloy. |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59211504A Division JPS6191340A (en) | 1984-10-11 | 1984-10-11 | Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02138449A true JPH02138449A (en) | 1990-05-28 |
JPH0645849B2 JPH0645849B2 (en) | 1994-06-15 |
Family
ID=17379382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26270089A Expired - Lifetime JPH0645849B2 (en) | 1989-10-07 | 1989-10-07 | Manufacturing method of wear resistant high permeability alloy. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645849B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741891A (en) * | 1993-07-30 | 1995-02-10 | Res Inst Electric Magnetic Alloys | Wear resistant high permeability alloy, its production and magnetic recording and reproducing head |
JP2001303242A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
-
1989
- 1989-10-07 JP JP26270089A patent/JPH0645849B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741891A (en) * | 1993-07-30 | 1995-02-10 | Res Inst Electric Magnetic Alloys | Wear resistant high permeability alloy, its production and magnetic recording and reproducing head |
JP2001303242A (en) * | 2000-04-27 | 2001-10-31 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JPH0645849B2 (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910002868B1 (en) | Wear-resistant alloy of high permeability and method of producing the same | |
US5547520A (en) | Wear-resistant high permeability magnetic alloy and method of manufacturing the same | |
JPS5929644B2 (en) | Method for modifying magnetic properties of high magnetic permeability amorphous alloy | |
JP6867744B2 (en) | Method for manufacturing Fe-based nanocrystalline alloy | |
Yekta et al. | Magnetic and mechanical properties of cold-rolled permalloy | |
JPS625972B2 (en) | ||
US5725687A (en) | Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head | |
JPS6212296B2 (en) | ||
JPH02138449A (en) | Manufacture of wear resistant high permeability alloy | |
JPH0310700B2 (en) | ||
JPH02194154A (en) | Manufacture of water-resistant high permeability alloy | |
JP3251899B2 (en) | Wear-resistant high permeability alloy and magnetic recording / reproducing head | |
JPH0310699B2 (en) | ||
JPH02138709A (en) | Abrasion-resisting high permeability magnetic record-reproducing head | |
JPH02153036A (en) | Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head | |
JPH0377644B2 (en) | ||
JPH02153052A (en) | Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head | |
KR100710613B1 (en) | Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME | |
JPS6134160A (en) | Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head | |
JPH02146704A (en) | Magnetic recording and reproducing head having wear resistance and high permeability | |
JPH0645846B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
JPH032216B2 (en) |