JPH02135143A - Production of catalyst for purification of exhaust gas - Google Patents

Production of catalyst for purification of exhaust gas

Info

Publication number
JPH02135143A
JPH02135143A JP63286996A JP28699688A JPH02135143A JP H02135143 A JPH02135143 A JP H02135143A JP 63286996 A JP63286996 A JP 63286996A JP 28699688 A JP28699688 A JP 28699688A JP H02135143 A JPH02135143 A JP H02135143A
Authority
JP
Japan
Prior art keywords
zeolite
carrier
catalyst
metal
metal carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63286996A
Other languages
Japanese (ja)
Inventor
Masataka Kawabata
昌隆 川端
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63286996A priority Critical patent/JPH02135143A/en
Publication of JPH02135143A publication Critical patent/JPH02135143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a catalyst having high NOx removing performance by adhering a gel soln. prepd. by mixing starting materials for synthesizing zeolite to a metal carrier, carrying out heating under pressure and calcining to form a zeolite layer and supporting a catalytically active metal on the zeolite layer. CONSTITUTION:A gel soln. prepd. by mixing starting materials for synthesizing zeolite such as alkali, alumina and silica is adhered to a metal carrier 1. This carrier 1 is put in a hermetically sealed vessel and heated with steam at about 80-350 deg.C under about 0.1-20kg/cm<2> pressure for about 10-100hr to crystallize zeolite. The carrier 1 is then cooled, washed, dried and calcined at about 400-700 deg.C to form a zeolite layer 3 on the carrier 1 and a catalytically active metal such as Cu is supported on the zeolite layer 3. The resulting catalyst removes NOx at a high rate even in an air contg. oxygen in excess in a lean air-fuel ratio.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は自動車の排気ガス浄化用触媒、特には空燃比か
リーン側の酸素過剰雰囲気においてもNOxを高率に浄
化できる触媒の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a catalyst for purifying automobile exhaust gas, and particularly to a method for producing a catalyst that can purify NOx at a high rate even in an oxygen-rich atmosphere with a lean air-fuel ratio. It is something.

〈従来の技術〉 自動車の排気ガス中の有害成分であるCo(−酸化炭素
)、HC(炭化水素)及び NO,(窒素酸化物)を浄
化するための触媒として次のようなものか使用され或は
知られている: ■コージェライト質ハニカム担体上に活性アルミナコー
ト層を形成し、貴金属、希土類酸化物などを担持させた
触媒(特公昭59−41775、特開昭59−9069
5号公報等参照)、 ■金属製ハニカム担体いわゆるメタル担体上に、活性ア
ルミナコート層を形成し、貴金属、希土類酸化物などを
担持させた触媒(特開昭56−96726、同57−6
814:l、同57−7898号公報等参照)、■コー
ジェライト質ハニカム担体上にゼオライトコート層を形
成し、 Cuをイオン交換担持させた触媒(特開昭59
−2:16642、同60−125250号公報等参照
)。
<Prior art> The following catalysts are used to purify Co (carbon oxide), HC (hydrocarbon), and NO (nitrogen oxide), which are harmful components in automobile exhaust gas. Or known: ■ A catalyst in which an activated alumina coat layer is formed on a cordierite honeycomb carrier to support noble metals, rare earth oxides, etc.
(Refer to Publication No. 5, etc.), ■Metallic honeycomb carrier A catalyst in which an activated alumina coating layer is formed on a so-called metal carrier to support precious metals, rare earth oxides, etc. (JP-A-56-96726, JP-A-57-6)
814:l, see Publication No. 57-7898, etc.), ■Catalyst in which a zeolite coat layer is formed on a cordierite honeycomb carrier and Cu is supported by ion exchange (JP-A-59
-2:16642, Publication No. 60-125250, etc.).

これらの各種触媒は従来より次のようにして製造されて
いる。即ち、アルミナもしくはゼオライト粉末、バイン
ター、水などを混合攪拌して得スラリーをコージェライ
ト質ハニカム担体もしくはメタル担体にウォッシュコー
トし、焼成してコート担体を得た後、それを触媒活性成
分であるPL、Pd、 Rh’:pの貴金属もしくはC
u等の遷移金属の水溶液に浸漬し乾燥することにより触
媒活性金属を上記コート担体上に担持させて製造されて
いる。
These various catalysts have conventionally been manufactured as follows. That is, a slurry obtained by mixing and stirring alumina or zeolite powder, binder, water, etc. is wash-coated on a cordierite honeycomb carrier or metal carrier, and after firing to obtain a coated carrier, it is coated with PL, which is a catalytically active component. , Pd, Rh': p noble metal or C
It is produced by supporting a catalytically active metal on the coated carrier by immersing it in an aqueous solution of a transition metal such as u and drying it.

上記■■の触媒はストイキ(理論空燃比A/F=14.
6付近)においてnc、 co及びNO,を最も効率よ
く浄化するか、リーン側の酸化雰囲気ではNOxを遺児
除去できにくいという欠点を有している。このリーン側
のNOxを浄化するという点では上記■のCu/ゼオラ
イト触媒の方か優れている。
The catalyst in the above ■■ is stoichiometric (stoichiometric air-fuel ratio A/F = 14.
However, it has the disadvantage that it is difficult to remove NOx in an oxidizing atmosphere on the lean side. In terms of purifying NOx on the lean side, the Cu/zeolite catalyst mentioned above is superior.

〈発明か解決しようとする課題〉 しかしながら、リーン側のNO,を浄化する触媒として
充分に満足できるものは無いのか現状である。とくに最
近では自動車の低燃費化を図る上で通常走行時なるべく
希薄混合気゛を燃焼させる努力かなされていることから
還元浄化されずに排出されるNO,の量か増加する傾向
にあり、このNOx汚染は緊急かつ社会的な問題となっ
ている。このためリーン側のNOxをより高率に浄化て
きる触媒か要請されている。
<Problem to be solved by the invention> However, at present, there is no catalyst that is fully satisfactory for purifying NO on the lean side. In particular, in recent years, efforts have been made to burn as lean a mixture as possible during normal driving in order to improve the fuel efficiency of automobiles, so the amount of NO emitted without being reduced and purified has tended to increase. NOx pollution has become an urgent and social problem. For this reason, there is a need for a catalyst that can purify NOx on the lean side at a higher rate.

一方、排気ガス浄化用触媒の製造方法においては、大幅
な触媒の改質化又は低コスト化を可能にする新規な触媒
製造方法か求められている。
On the other hand, in a method for manufacturing an exhaust gas purifying catalyst, there is a need for a new method for manufacturing a catalyst that enables significant catalyst reformation or cost reduction.

本発明はこれらの問題を解決する目的で為されたもので
あって、その解決しようとする課題は、高いNOx浄化
性能を有する触媒を低コストて生産することを可能にす
る新規な触媒製造方法を提供することである。
The present invention was made for the purpose of solving these problems, and the problem to be solved is a novel catalyst manufacturing method that makes it possible to produce a catalyst with high NOx purification performance at low cost. The goal is to provide the following.

〈課題を解決するための手段〉 上記課題を解決てきる本発明の排気ガス浄化用触媒の製
造方法は、アルカリ、アルミナ、シリカ、水その他のゼ
オライト合成用原料を混合したゲル溶液をメタル担体に
付着させた後、密閉容器中で気相による加熱加圧を行な
い、焼成してメタル担体上にゼオライト層を形成せしめ
、次いでそれに触媒活性金属を担持させることを特徴と
する。
<Means for Solving the Problems> The method for producing an exhaust gas purification catalyst of the present invention which solves the above problems is to apply a gel solution containing a mixture of alkali, alumina, silica, water and other raw materials for zeolite synthesis to a metal carrier. After being deposited, the zeolite layer is heated and pressurized in a gas phase in a closed container and fired to form a zeolite layer on the metal carrier, and then the catalytically active metal is supported on the zeolite layer.

本発明て使用するメタル担体は、極〈薄い金属波板を屯
ね合せて巻き上げたロールタイプあるいは金属波板と金
属平板を層状に植み」二げた積層タイプのセル体に外筒
をほめ熱処理により一体化した一般的形状のものであっ
てよい。しかし表面にアルミナ皮膜を生じたものを用い
るのか重要である。従ってメタル担体金属材料として、
上記一体化のための熱処理時にアルミナ皮膜を生成する
金属、例えばFe−(:r−AI系合金を用いるのか好
ましい。この場合の熱処理条件としては、炉内温度二8
50〜1200℃、真空度+ 1O−2−10−6To
rr、加熱時間:0,5〜8hrが適当である。これに
よりメタル担体上にアルミナか針状に生成する。
The metal carrier used in the present invention is a roll type made by rolling up thin corrugated metal sheets, or a laminated type cell body in which corrugated metal sheets and flat metal plates are planted in layers. It may be of a general shape integrated with. However, it is important to use a material with an alumina film on its surface. Therefore, as a metal carrier metal material,
It is preferable to use a metal that forms an alumina film during the heat treatment for the above-mentioned integration, such as a Fe-(:r-AI alloy).In this case, the heat treatment conditions are as follows:
50-1200℃, degree of vacuum + 1O-2-10-6To
rr, heating time: 0.5 to 8 hr is appropriate. As a result, alumina is formed in the form of needles on the metal carrier.

メタル担体に付着させる上記ゲル溶液は、アルカリ、ア
ルミナ、シリカ、水、有a塩基等を混合攪拌して得られ
るNa20−A12C1+  5if2H20系のゲル
溶液であればよい。ゲル溶液のための一般的無機原料と
して(メタ)ケイ酸ナトリウム(Na2Sign)シリ
カゲル(SiO□・口1120 > 、コロイタル状シ
リカゲル、水ガラス、アルミン酸ナトリウム(NaAI
Oz) 、水酸化アルミニウム(Al2O,−nl+2
0)、水酸化ナトリウム(Mail()等を、有機塩基
としてテトラメチルアンモニウム(TMA)、テトラエ
チルアンモニウム(TEA)、テトラプロピルアンモニ
ウム(TPA)、テトラエチルアンモニウム(TBA)
”9を挙げることかできる。
The gel solution to be applied to the metal carrier may be a Na20-A12C1+ 5if2H20 gel solution obtained by mixing and stirring alkali, alumina, silica, water, alkali, etc. Common inorganic raw materials for gel solutions include sodium (meth)silicate (Na2Sign) silica gel (SiO
Oz), aluminum hydroxide (Al2O, -nl+2
0), sodium hydroxide (Mail(), etc.) as an organic base such as tetramethylammonium (TMA), tetraethylammonium (TEA), tetrapropylammonium (TPA), tetraethylammonium (TBA).
``I can name nine.

メタル担体−hヘゲル溶液を付着させるには、例えばゲ
ル溶液中に洗浄したメタル担体を浸漬して担体セル内に
ゲル溶液を含浸せしめ、引きLげた後、余分なゲル溶液
を吹き払うようにして都合よく行なうことかてきる。
To attach the gel solution to the metal carrier-h, for example, immerse the cleaned metal carrier in the gel solution to impregnate the gel solution into the carrier cells, pull it out, and then blow off the excess gel solution. You can do whatever is convenient for you.

ゼオライト層を形成させるためには上記のゲル溶液付着
担体をまず密閉容器に入れ、水蒸気により、温度280
〜350°C1圧カニ0,1〜20Kg/am2の条件
を保ち、10〜l 00 h r加熱を行ないゼオライ
トを結晶化させた後、冷却したものを充分に水洗してか
ら80〜150℃で乾燥し、次いて400〜700°C
で焼成すればよい。
In order to form a zeolite layer, the above gel solution-attached carrier is first placed in a closed container and heated to a temperature of 280°C using water vapor.
After crystallizing the zeolite by heating for 10 to 100 hours while maintaining the conditions of 0.1 to 20 Kg/am2 at ~350°C, the cooled material was thoroughly washed with water, and then heated at 80 to 150°C. Dry, then 400-700°C
You can bake it with

メタル担体上に直接合成させたゼオライl〜への触媒活
性金属の担持は、常法に従いPL、 Pd、Rh等を担
持させてもよいか、空燃比かリーン側においても高NO
x浄化性能を示す触媒とするにはCuをイオン交換担持
させるのか良い。このイオン交換は、ゼオライト中に補
正電荷として含まれているNa” (ほか若干の11+
等)をCu“に首換させることてあり、硫酸銅、硝酸銅
などの鉱酸塩または酢酸銅などの有機酸塩を溶解した水
溶液中にゼオライトを浸漬するなどの通常の方法によっ
て行なうことかてきる。
When supporting catalytically active metals on zeolite synthesized directly on a metal carrier, is it possible to support PL, Pd, Rh, etc. in accordance with a conventional method?
In order to obtain a catalyst that exhibits x purification performance, it is better to support Cu by ion exchange. This ion exchange is caused by Na” (and some 11+
etc.) to Cu, and this can be done by a conventional method such as immersing zeolite in an aqueous solution containing a mineral acid salt such as copper sulfate or copper nitrate or an organic acid salt such as copper acetate. I'll come.

〈作用〉 」二足ゲル溶液をメタル担体に付着させた後、密閉容器
中て気相による加熱加圧を行なうとゲル溶液からゼオラ
イトか合成される。それを焼成すると強固なゼオライト
層となる。
〈Function〉 After adhering the bipedal gel solution to a metal carrier, heating and pressurizing it in a gas phase in a closed container synthesizes zeolite from the gel solution. When it is fired, it becomes a strong zeolite layer.

前記アルミナ皮膜は、針状アルミナでてきているため、
メタル担体へのゼオライト層の形成を容易にする。
Since the alumina film is made of acicular alumina,
Facilitates formation of zeolite layer on metal carrier.

メタル担体りへ直接ゼオライトを合成する製造方法は、
担体への七オライトウオツシュコート工程を不要にし触
媒5A造工程の短縮化をもたらす。
The production method of directly synthesizing zeolite onto a metal carrier is
This eliminates the need for a heptaolite wash coating process on the carrier, resulting in a shortening of the catalyst 5A production process.

メタル担体上へ直接合成したゼオライトにCuを担持さ
せた触媒は、後述するように従来のCu/ゼオライト触
媒に比べ高いN0xfi+化率を示す傾向かあるか、そ
の理由は不明である。
It is unclear whether or not a catalyst in which Cu is supported on zeolite synthesized directly on a metal carrier tends to exhibit a higher NOxfi+ conversion rate than a conventional Cu/zeolite catalyst, as will be described later.

〈実施例〉 以下、実施例によって本発明を更に詳しく説明するか、
この実施例は本発明を同等限定するものではない。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples.
This example is not intended to equally limit the invention.

実施例:新No、浄化用触媒の製造 15cr −5Al −残Feからなる板厚50川鳳の
金属油を波板に加工し、これと平板を重ね合せてロール
状に巻き、セル数400/ in2.容量1fL(φ1
00XLI:10)のセル体を製作し、外筒に圧入する
Example: Manufacture of a new No. 1 purification catalyst A metal oil with a thickness of 50 cm consisting of 15 cr -5 Al - residual Fe was processed into a corrugated plate, and the corrugated plate was overlapped with a flat plate and wound into a roll shape, with a cell count of 400/ in2. Capacity 1fL (φ1
00XLI:10) is manufactured and press-fitted into the outer cylinder.

これを真空電気炉に入れ、真空度1O−5Torr、温
度100℃で2時間加熱保持し、セルとセル、及びセル
と外筒の拡散接合を行なうと同時に、セル及び外筒表面
に10終■のアルミナ皮膜を生成させ、メタル担体を得
る。
This was placed in a vacuum electric furnace and heated and held at a vacuum degree of 10-5 Torr and a temperature of 100°C for 2 hours to perform diffusion bonding between cells and cells and outer cylinder. An alumina film is formed to obtain a metal carrier.

次にシリカゾル(:10wt$ SiO□)、アルミン
酸ナトリウム(1,5Na2O/Al2O,) 、水、
及びTPAOH溶液[lMo1/i水酸化テトラプロピ
ルアンモニウム: (C3H7)4N+・01l−溶液
]を最終的に組成比かA120z’60Si02−3N
a20”2.5TPAOH”400H□Oとなるように
混合して、室温て15分間程度攪拌混合しゲル溶液を調
製する。
Next, silica sol (: 10wt$ SiO□), sodium aluminate (1,5Na2O/Al2O,), water,
and TPAOH solution [lMo1/i tetrapropylammonium hydroxide: (C3H7)4N+・01l− solution] to a final composition ratio of A120z'60Si02-3N
Mix to obtain a20"2.5TPAOH"400H□O, and stir and mix at room temperature for about 15 minutes to prepare a gel solution.

このゲル溶液に上記メタル担体を浸漬し、引き上げた後
、エアで余分な付着液を吹き払う。これを密閉容器に入
れ、その容器中に温度160°Cの飽和水蒸気を導入し
、圧力5Kg/cI12て40時間加熱し、担体上にゼ
オライトを結晶化させる。これを冷却した後、充分に水
洗を行ない、100℃で1時間乾燥し、次いて500°
Cて3時間焼成し、図に示すようにメタル担体1のアル
ミナ皮膜2トに厚さ40μlの強固なゼオライト層3を
形成させる。
After immersing the metal carrier in this gel solution and pulling it up, the excess adhering liquid is blown off with air. This is placed in a closed container, saturated steam at a temperature of 160° C. is introduced into the container, and heated at a pressure of 5 kg/cI for 40 hours to crystallize the zeolite on the carrier. After cooling, it was thoroughly washed with water, dried at 100°C for 1 hour, and then heated at 500°C.
C. for 3 hours to form a strong 40 μl thick zeolite layer 3 on the alumina film 2 of the metal carrier 1 as shown in the figure.

こうして得られた担体を別途調製された0、02M酢酸
銅水溶液に30時間浸漬してCuをイオン交換させるこ
とにより、担体IJI当り3gのCuを担持するCu/
ゼオライト触媒を得る。
The support thus obtained was immersed in a separately prepared 0.02M copper acetate aqueous solution for 30 hours to ion-exchange the Cu, resulting in a Cu/
Obtain a zeolite catalyst.

比較例1.従来の製造方法によるCu/ゼオライト触媒
の製造 上記実施例て用いたゲル溶液を密閉容器中て攪拌しなが
ら水熱合成により、実施例1のそれと同組成のゼオライ
トを得る。それを吸引濾過して固形物を取り出し、水洗
を充分に行なった後、100°Cで2時間乾燥し、次い
で500°Cで3時間焼成する。こうして得られた粉末
55部、シリカゲル(20WL$5iOz ) 7[]
部、水15部、硝酸アルミニウム40Wt2水溶液15
部を混合攪拌し、つオツシュコート用スラリーを調製し
、これを実施例1のと同容量の担体にウォッシュコート
し、120°C″C1時間乾燥し、500°Cて3時間
焼成する。以後、実施例と同様にしてCuをイオン交換
担持させ排気ガス浄化用触媒を得る。
Comparative example 1. Preparation of Cu/zeolite catalyst by conventional production method A zeolite having the same composition as that of Example 1 is obtained by hydrothermal synthesis of the gel solution used in the above example in a closed container while stirring. The solid matter is removed by suction filtration, thoroughly washed with water, dried at 100°C for 2 hours, and then calcined at 500°C for 3 hours. 55 parts of the powder thus obtained, silica gel (20WL$5iOz) 7[]
parts, 15 parts of water, 15 parts of aluminum nitrate 40Wt2 aqueous solution
A slurry for wash coating is prepared, which is wash coated on the same volume of carrier as in Example 1, dried at 120°C for 1 hour, and calcined at 500°C for 3 hours. Cu is supported by ion exchange in the same manner as in the example to obtain an exhaust gas purifying catalyst.

比較例2:汎用三元触媒の製造 活性アルミナ100部、アルミナゾル(1OWt$Al
2O,) 70部、純水50部及び40Wt$硝酸アル
ミニウム水溶液15部を混合攪拌してつオツシュコート
用スラリーを調製する。これを実施例1て用いたのと同
容量の担体にウォッシュコートし、120℃て1時間乾
燥し、700°Cて1時間焼成することにより担体上に
γ−アルミナコート層を形成させる。
Comparative Example 2: Production of general-purpose three-way catalyst 100 parts of activated alumina, alumina sol (1OWt$Al
2O,), 50 parts of pure water, and 15 parts of a 40Wt$ aluminum nitrate aqueous solution are mixed and stirred to prepare a slurry for dry coating. This was wash-coated onto the same amount of support as used in Example 1, dried at 120°C for 1 hour, and fired at 700°C for 1 hour to form a γ-alumina coat layer on the support.

該担体に水油処理を施した後、ジニトロジアミン白金水
溶液、塩化ロジウム水溶液に順次浸漬し、乾燥・焼成後
、ランタン−セリウムの混合溶液に浸漬し、乾燥・焼成
することにより担体1!;L当たりPt/ Rhを1.
570.3 g及びLa/Ceを0.0310.3■o
l担持させた排気ガスb他用触媒を得る。
After the carrier is subjected to a water-oil treatment, it is sequentially immersed in a dinitrodiamine platinum aqueous solution and a rhodium chloride aqueous solution, dried and calcined, and then immersed in a lanthanum-cerium mixed solution, dried and calcined to obtain carrier 1! ;Pt/Rh per L 1.
570.3 g and La/Ce 0.0310.3■o
A supported catalyst for exhaust gas b and others is obtained.

性能試験 上記実施例及び比較例1.2で得られた触媒を2文エン
ジンの排気系に取り付け、それらの排気ガス浄化性能を
調べた。試験条件は、大ガス温度:400 ℃、  S
、V、=60,000h−’、  A/F=22テある
。その結果を次表に示す。
Performance Test The catalysts obtained in the above Examples and Comparative Examples 1.2 were installed in the exhaust system of a Nibun engine, and their exhaust gas purification performance was investigated. The test conditions were: large gas temperature: 400°C, S
, V, = 60,000h-', A/F = 22te. The results are shown in the table below.

表 故人から、メタル担体上にゼオライトを直接合成して得
られた触媒のNO,e比活性は、汎用三元触媒より高く
、従来法で製造されたCu/ゼオライト触媒に比べ優る
とも劣らないことか分かる。
The deceased reported that the NO,e specific activity of the catalyst obtained by directly synthesizing zeolite on a metal carrier was higher than that of a general-purpose three-way catalyst, and was comparable to that of a Cu/zeolite catalyst produced by a conventional method. I understand.

〈発明の効果〉 以上の如く、本発明によればメタル担体上に直接ゼオラ
イトを合成することにより、特に高NOx浄化性能を示
すCu/ゼオライト触媒を生産性良く製造することがで
きる。
<Effects of the Invention> As described above, according to the present invention, by directly synthesizing zeolite on a metal carrier, a Cu/zeolite catalyst exhibiting particularly high NOx purification performance can be manufactured with high productivity.

なお本発明は、メタル担体りに直接をゼオライトを合成
てきること、それにはアルミナ皮膜を生しさせたメタル
担体を用いるのか好ましいこと、そうして形成させたゼ
オライト層に触媒金属を担持させると触媒活性か高まる
こと等の興味ある事実を明らかにし、触媒改良に向けて
の新たなアプローチを提供した点て大きな意義かある。
The present invention also provides that zeolite can be directly synthesized on a metal carrier, that it is preferable to use a metal carrier on which an alumina film is formed, and that a catalytic metal can be supported on the zeolite layer thus formed. This study is of great significance in that it revealed interesting facts such as increased catalytic activity and provided a new approach to improving catalysts.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例に係るゼオライト層か形成されたメタル担体
の要部を示す断面図である。 図中: 1・・・メタル担体    2・・・アルミナ皮膜3・
・・ゼオライト層 特許出願人  トヨタ自動車株式会社
The figure is a sectional view showing a main part of a metal carrier on which a zeolite layer is formed according to an example. In the figure: 1...Metal carrier 2...Alumina film 3.
...Zeolite layer patent applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] ゼオライト合成用原料を混合したゲル溶液をメタル担体
に付着させた後、密閉容器中で気相による加熱加圧を行
ない、焼成してメタル担体上にゼオライト層を形成せし
め、次いでそれに触媒活性金属を担持させることを特徴
とする排気ガス浄化用触媒の製造方法。
After a gel solution containing raw materials for zeolite synthesis is attached to a metal carrier, it is heated and pressurized in a gas phase in a closed container to form a zeolite layer on the metal carrier, and then a catalytically active metal is applied to it. A method for producing an exhaust gas purifying catalyst characterized by supporting the catalyst.
JP63286996A 1988-11-14 1988-11-14 Production of catalyst for purification of exhaust gas Pending JPH02135143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286996A JPH02135143A (en) 1988-11-14 1988-11-14 Production of catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286996A JPH02135143A (en) 1988-11-14 1988-11-14 Production of catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH02135143A true JPH02135143A (en) 1990-05-24

Family

ID=17711671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286996A Pending JPH02135143A (en) 1988-11-14 1988-11-14 Production of catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH02135143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238111A (en) * 2002-02-13 2003-08-27 Fuji Seratekku Kk Apparatus for reforming fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238111A (en) * 2002-02-13 2003-08-27 Fuji Seratekku Kk Apparatus for reforming fuels

Similar Documents

Publication Publication Date Title
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
JP3098083B2 (en) Exhaust gas purification catalyst
JP2533371B2 (en) Exhaust gas purification catalyst
JPH0910601A (en) Catalyst for purification of exhaust gas and its production
JP2773428B2 (en) Exhaust gas purification method
JPH07163871A (en) Nitrogen oxide adsorbent and exhaust gas purifying catalyst
JPH02251246A (en) Catalyst for purifying exhaust gas
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0557194A (en) Production of catalyst for purifying exhaust gas
JPH02135143A (en) Production of catalyst for purification of exhaust gas
JP3129346B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH02293050A (en) Catalyst for purification of exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP3287873B2 (en) Exhaust gas purification catalyst
JPH06327978A (en) Catalyst for purifying waste gas
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPH04141218A (en) Exhaust gas purifying apparatus of engine
JP3300721B2 (en) Exhaust gas purification catalyst
JP3300062B2 (en) Method for producing metal-containing silicate
JP3276193B2 (en) Exhaust treatment catalyst
JP3015568B2 (en) Exhaust gas treatment catalyst
JPH0817945B2 (en) Exhaust gas purification catalyst
JP3300053B2 (en) Exhaust gas purification catalyst
JP3310755B2 (en) Exhaust gas treatment catalyst