JPH02134867A - Miss type semiconductor storage device and manufacture thereof - Google Patents

Miss type semiconductor storage device and manufacture thereof

Info

Publication number
JPH02134867A
JPH02134867A JP63289463A JP28946388A JPH02134867A JP H02134867 A JPH02134867 A JP H02134867A JP 63289463 A JP63289463 A JP 63289463A JP 28946388 A JP28946388 A JP 28946388A JP H02134867 A JPH02134867 A JP H02134867A
Authority
JP
Japan
Prior art keywords
type semiconductor
insulating film
film
type
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63289463A
Other languages
Japanese (ja)
Inventor
Hiroshi Kotaki
浩 小瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63289463A priority Critical patent/JPH02134867A/en
Publication of JPH02134867A publication Critical patent/JPH02134867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/377DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor

Abstract

PURPOSE:To easily improve the degree of integration and increase capacitance by effectively making use of a space above a source area of an LDD transistor by providing a groove-shaped capacitive electrode on the upper portion of a gate electrode of the LDD type MIS transistor through an insulating film. CONSTITUTION:In a MIS type semiconductor memory device having a memory cell including an LDD type MIS transistor provided on one principal surface of a first conductivity type semiconductor substrate 1 and a groove-shaped capacitor provided on a groove section formed on said one principal surface, a capacitive electrode 17 with said groove-shaped capacitor is provided extending above a gate electrode 6-1 of the LDD type MIS transistor through insulating films 13, 15. Hereby, the degree of integration of a memory cell can be raised by a fraction corresponding to a reduce occupation area of a source area 11-1 of the LDD type MOS transistor. Otherwise, the capacitance of the groove-shaped capacitor can be increased by providing a capacitive electrode 17 extending onto the gate electrode 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体記憶装置及びその製造方法に関
し、時にLDD型MO3)ランジスタ及び溝型容量を有
する半導体記憶装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MIS type semiconductor memory device and a method for manufacturing the same, and more particularly to a semiconductor memory device having an LDD type MO3) transistor and a trench type capacitor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第4図は従来例を説明するためのMO3型半導体記憶装
置のメモリ・セルのパターン・レイアウト図、第5図及
び第6図はそれぞれ第4図のA−A′線及びB−B’線
相当部で切断した半導体チップの断面図である。このM
O3型半導体記憶装置は、LDD型MOSトランジスタ
のソース領域が単にソース領域として利用されているに
すぎず、その上方のスペースが有効利用されていない 又、その製造にあたり、p型半導体基板1に溝型容量を
形成するなめ、容量蓄積電荷領域16、容量電極(第1
の多結晶シリコン膜17)を形成したのち、ゲート環&
6を形成し、更に低濃度ソース・ドレイン領域7、高濃
度ソース・ドレイン領域11を形成して、LDD構造の
MOSトランジスタを形成する。
FIG. 4 is a pattern layout diagram of a memory cell of an MO3 type semiconductor memory device for explaining a conventional example, and FIGS. 5 and 6 are lines A-A' and B-B' in FIG. 4, respectively. FIG. 3 is a cross-sectional view of the semiconductor chip cut at a corresponding portion. This M
In the O3 type semiconductor memory device, the source region of the LDD type MOS transistor is simply used as a source region, and the space above it is not used effectively. To form a type capacitance, a capacitance storage charge region 16, a capacitance electrode (first
After forming the polycrystalline silicon film 17), the gate ring &
6 is formed, and further a low concentration source/drain region 7 and a high concentration source/drain region 11 are formed to form an LDD structure MOS transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMIS型半導体記憶装置は、モメリセル
のLDD型MO3トランジスタのソース領域上方のスペ
ースが有効利用されていないため集積度の向上又は容量
値の増大が困難であるという欠点がある。
The above-described conventional MIS type semiconductor memory device has the disadvantage that it is difficult to improve the degree of integration or increase the capacitance value because the space above the source region of the LDD type MO3 transistor of the Momeri cell is not effectively utilized.

又、従来のMIS型半導体記憶装置の製造方法は、高濃
度ソース・ドレイン領域をイオン注入で形成するための
マスクとしてゲート電極側面に酸化膜側壁を形成するた
め、CVD酸化酸化膜成長フェッチバック方性エツチン
グ)を行う工程を有しているが、この時、現在のCVD
酸化膜の膜厚均一性が悪いため一部薄い膜厚の箇所は半
導体基板表面(低濃度ソース・ドレイン領域)にダメー
ジを与える。特に容量蓄積電荷領域につながるソース領
域については、微小なダメージでも特性を悪化させる。
In addition, in the conventional manufacturing method of MIS type semiconductor memory devices, in order to form an oxide film sidewall on the side surface of the gate electrode as a mask for forming high concentration source/drain regions by ion implantation, a CVD oxide film growth fetch-back method is used. At this time, current CVD
Because the uniformity of the oxide film is poor, some areas where the film is thin may damage the semiconductor substrate surface (low concentration source/drain regions). In particular, even minute damage to the source region connected to the capacitance storage charge region deteriorates the characteristics.

また、容量電極形成後に、例えば多結晶シリコン膜を被
着してバターニングすることによりゲート電極を形成す
るので、図示のように、絶縁膜11の容量電極側面で逆
テーバ状になっていると、その下部の多結晶シリコン膜
がエツチングで除去され難くなるので、容量電極側面に
テーパーを付は隣接するゲート電極間が短絡しないよう
に工夫するか、もしくは隣接するゲート電極間の短絡箇
所を、改めて切断する工程を追加する必要があるという
欠点がある。
Furthermore, after forming the capacitor electrode, the gate electrode is formed by depositing and buttering a polycrystalline silicon film, for example, so that the insulating film 11 has an inverted tapered shape on the side surface of the capacitor electrode, as shown in the figure. Since the polycrystalline silicon film underneath is difficult to remove by etching, it is necessary to taper the sides of the capacitor electrode to prevent short-circuits between adjacent gate electrodes, or to remove short-circuit points between adjacent gate electrodes. There is a drawback that it is necessary to add a step of cutting again.

C問題点を解決するための手段〕 本発明MIS型半導体記憶装置は、第1導電型半導体基
板の一生表面に設けられたLDD型MISトランジスタ
と、前記一主表面から掘られた溝部に設けられた溝型容
量とを含むメモリ・セルを有してなるMIS型半導体記
憶装置において、前記溝型容量の容量電極は前記LDD
型M工Sトランジスタのゲート電極上方に絶縁膜を介し
て延在して設けられているというものである。
Means for Solving Problem C] The MIS type semiconductor memory device of the present invention includes an LDD type MIS transistor provided on the entire surface of a first conductivity type semiconductor substrate, and an LDD type MIS transistor provided in a groove portion dug from the first main surface. In a MIS type semiconductor memory device having a memory cell including a trench-type capacitor, a capacitor electrode of the trench-type capacitor is connected to the LDD.
It is provided extending above the gate electrode of the M type S transistor with an insulating film interposed therebetween.

又、本発明tIS型半導体記憶装置の製造方法は、フィ
ールド絶縁膜で区画された素子形成領域の表面にゲート
絶縁膜を形成した第1導電型半導体基板上に第1の導電
膜及び第1の絶縁膜からなる2層膜を被着したのち所定
形状にパターニングしてゲート電極を形成する工程と、
前記2層膜をマスクとしてイオン注入を行ない低濃度ソ
ース・ドレイン領域を形成する工程と、第2の絶縁膜を
被着したのち異方性エツチングにより前記第2の絶縁膜
を前記2層膜の側面部を除いて除去する工程と、前記フ
ィールド絶縁膜、前記2層膜及び前記第2の絶縁膜をマ
スクとしてイオン注入を行ない高濃度ソース・ドレイン
領域を形成する工程と、前記フィールド絶縁膜、前記2
層膜及び前記第2の絶縁膜を含むエツチング用マスクを
利用して溝を設けて溝型容量を形成する工程とを含むと
いうものである。
Further, the method for manufacturing a tIS type semiconductor memory device of the present invention includes forming a first conductive film and a first conductive film on a first conductive type semiconductor substrate in which a gate insulating film is formed on the surface of an element formation region partitioned by a field insulating film. A step of depositing a two-layer film made of an insulating film and then patterning it into a predetermined shape to form a gate electrode;
A process of performing ion implantation using the two-layer film as a mask to form low concentration source/drain regions, and after depositing a second insulating film, the second insulating film is removed from the two-layer film by anisotropic etching. a step of removing the field insulating film except for side portions; a step of performing ion implantation using the field insulating film, the two-layer film, and the second insulating film as a mask to form high concentration source/drain regions; the field insulating film; Said 2
The method includes a step of forming a groove-type capacitor by forming a groove using an etching mask including a layered film and the second insulating film.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明MIS型半導体記憶装置の一実施例を示
す半導体チップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the MIS type semiconductor memory device of the present invention.

この実施例は、シリコンかなるp型半導体基板1の一生
表面に設けられたLDD型MO3)ランジスタと、前述
の一生表面から掘られた溝部に設けられた溝型容量とを
含むメモリ・セルを有してなるMIS型半導体記憶装置
において、前述の溝型容量の容量電極である多結晶シリ
コン膜17は前述のLDD型MISトランジスタのゲー
ト電極6−1上方に絶縁膜(13,14)を介して延在
して設けられているというものである。
This embodiment includes a memory cell including an LDD type MO3) transistor provided on the surface of a p-type semiconductor substrate 1 made of silicon, and a trench type capacitor provided in a trench dug from the surface. In the MIS type semiconductor memory device, the polycrystalline silicon film 17, which is the capacitor electrode of the trench type capacitance described above, is placed above the gate electrode 6-1 of the LDD type MIS transistor with an insulating film (13, 14) interposed therebetween. It is said that it is located in an extended manner.

第5図と比較すると、L D D型MOS)ランジスタ
のソース領域(11−1)の占有面積が小さくできる分
だけ、メモリ・セルの集積度を上げることができる。あ
るいは第5図において、容量電極く17)をゲート電極
6上まで延長させて設けるようにすれば、溝型容量の容
量値を大きくすることができる。
Compared to FIG. 5, the degree of integration of the memory cell can be increased by reducing the area occupied by the source region (11-1) of the LDD type MOS transistor. Alternatively, in FIG. 5, by extending the capacitor electrode 17) above the gate electrode 6, the capacitance value of the trench type capacitor can be increased.

第2図(a)〜(g)は本発明MIS型半導体記憶装置
の製造方法の一実施例を説明するための工程順に配列し
た半導体チップの断面図、第3図は容量蓄積電荷領域を
形成するための溝を形成する工程を経た後の平面レイア
ウト図である。
2(a) to 2(g) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining one embodiment of the method for manufacturing an MIS type semiconductor memory device of the present invention, and FIG. 3 is a diagram showing the formation of a capacitive storage charge region. FIG. 3 is a plan layout diagram after a process of forming grooves for the purpose of forming the grooves.

まず、第2図(a)に示すように、フィールド酸化膜2
で区画された素子形成領域の表面にゲート酸化膜3を形
成したp型半導体(Si)基板1上に多結晶シリコン膜
4として示した第1の導電膜及び第1の酸化シリコン膜
5を順次CVD法で被着して2層膜を形成する。
First, as shown in FIG. 2(a), a field oxide film 2
A first conductive film shown as a polycrystalline silicon film 4 and a first silicon oxide film 5 are sequentially deposited on a p-type semiconductor (Si) substrate 1 on which a gate oxide film 3 is formed on the surface of an element formation region divided by . A two-layer film is formed by depositing using the CVD method.

次に、第2図(b)に示すように、多結晶シリコン膜4
、第1の酸化シリコンM5からなる2層膜を所定のパタ
ーンにパターンニングし、ゲート電極6を形成する。次
に、n型の不純物イオンを注入し熱処理を行って低濃度
ソース・ドレイン領域7−1.7−2.7−3を形成し
た後、第2の酸化シリコン膜8をCVD法で被着する。
Next, as shown in FIG. 2(b), a polycrystalline silicon film 4
A gate electrode 6 is formed by patterning a two-layer film made of first silicon oxide M5 into a predetermined pattern. Next, after implanting n-type impurity ions and performing heat treatment to form low concentration source/drain regions 7-1.7-2.7-3, a second silicon oxide film 8 is deposited by CVD. do.

次に、第2図(c)に示すように、第2のシリコン酸化
IL18を異方性エツチングにより、低濃度ソースドレ
イン領域の半導体基板表面が露出するまで、エッチバッ
クを行い、ゲート電極側面に第2のシリコン酸化膜から
なる絶縁性側壁を形成する。次に、エッチバックにより
、ダメージを受けた、半導体基板表面を軽く異方性シリ
コンエツチングを行なって20〜50nm程度除去し、
軽く、熱酸化を行い厚さ20〜30nmの薄い酸化シリ
コン膜9を形成する。次に薄い酸化シリコン膜9の上か
らn型の不純物を注入し、自己整合的に高濃度ソース・
ドレイン領域11−1.1.1−2゜11−3を形成す
る。
Next, as shown in FIG. 2(c), the second silicon oxide IL 18 is etched back by anisotropic etching until the surface of the semiconductor substrate in the low concentration source/drain region is exposed, and the side surface of the gate electrode is etched back. An insulating sidewall made of a second silicon oxide film is formed. Next, the surface of the semiconductor substrate damaged by etchback is lightly anisotropically etched to remove about 20 to 50 nm.
A thin silicon oxide film 9 having a thickness of 20 to 30 nm is formed by light thermal oxidation. Next, an n-type impurity is implanted from above the thin silicon oxide film 9, and a high concentration source is implanted in a self-aligned manner.
Drain regions 11-1, 1.1-2 and 11-3 are formed.

次に、第21”J(d)に示すように、溝型容量形成部
以外の半導体基板表面にホトレジスト・マスクを形成し
、半導体基板表面の薄い酸化膜9をエツチング除去した
後、フィールド酸化膜2及びゲーI・電極表面の酸化シ
リコン膜13をマスクとして異方性シリコンエツチング
を行い深さ4〜6μmの渦14を形成する。
Next, as shown in No. 21"J(d), a photoresist mask is formed on the surface of the semiconductor substrate other than the groove-type capacitance formation portion, and after etching and removing the thin oxide film 9 on the surface of the semiconductor substrate, a field oxide film is removed. Anisotropic silicon etching is performed using the silicon oxide film 13 on the surface of the electrode 2 and the gate I electrode as a mask to form a vortex 14 with a depth of 4 to 6 .mu.m.

次に、第2図(e)に示すようにホトレジストマスク1
2を除去した後、容量絶縁膜15を形成し、次に溝内壁
に容量蓄積電荷領域16としてn型不純物領域を形成す
る。次に容量電極となる導電膜、例えば、n型不純物を
ドーピングした第1の多結晶シリコン膜17を被着する
。次に第1の多結晶シリコン膜17表面を酸化し、酸化
シリコン膜183形成した上に、第2多結晶シリコン膜
1つを被着し、溝を埋める。必要なら更に第3の多結晶
シリコン膜20を形成する。2回に分けるのは溝の充填
を確実に行うためである。
Next, as shown in FIG. 2(e), a photoresist mask 1 is
2, a capacitive insulating film 15 is formed, and then an n-type impurity region is formed as a capacitive storage charge region 16 on the inner wall of the trench. Next, a conductive film that will become a capacitor electrode, for example, a first polycrystalline silicon film 17 doped with n-type impurities, is deposited. Next, the surface of the first polycrystalline silicon film 17 is oxidized to form a silicon oxide film 183, and then one second polycrystalline silicon film is deposited to fill the trench. If necessary, a third polycrystalline silicon film 20 is further formed. The purpose of dividing the process into two is to ensure that the grooves are filled.

次に、第2図(f)に示すように、第1の多結晶シリコ
ン膜表面の酸化シリコン膜18が露出するまで第2.第
3の多結晶シリコン膜を異方性ドライエツチングにより
、エッチバックする。
Next, as shown in FIG. 2(f), the second polycrystalline silicon film 18 is exposed until the silicon oxide film 18 on the surface of the first polycrystalline silicon film is exposed. The third polycrystalline silicon film is etched back by anisotropic dry etching.

次に、第2図(g)に示すように第1の多結晶シリコン
膜17及びその上の酸化シリコン膜18を所定のパター
ンにパターンニングし、溝型容量21−1.21−2の
形成を終る。
Next, as shown in FIG. 2(g), the first polycrystalline silicon film 17 and the silicon oxide film 18 thereon are patterned into a predetermined pattern to form trench-type capacitors 21-1 and 21-2. end.

後は、第1図に示すように公知の方法で層間絶縁膜22
及び上部配線23、ガバー膜24を形成し、MO3型半
導体記憶装置を形成する。
After that, as shown in FIG. 1, the interlayer insulating film 22 is formed by a known method.
Then, an upper wiring 23 and a cover film 24 are formed to form an MO3 type semiconductor memory device.

ゲート電極形成後に容量電極を設けるので、従来のよう
に隣接するゲート電極間の短絡を防止する特別の工程を
必要とせず、しがも集積度又は容量値を大きくすること
ができる。
Since the capacitor electrode is provided after the gate electrode is formed, there is no need for a special process for preventing short circuits between adjacent gate electrodes as in the conventional method, and the degree of integration or capacitance value can be increased.

更に、ゲート電極側面の絶縁性側壁形成のためのエッチ
バック工程後に半導体基板表面のダメージ層をエツチン
グで除去するので、L D D型MO3)ランジスタの
特性が改善される。
Furthermore, since the damaged layer on the surface of the semiconductor substrate is removed by etching after the etch-back process for forming the insulating sidewalls on the side surfaces of the gate electrode, the characteristics of the LDD type MO3) transistor are improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明MTS型半導体記憶装置は、
容量電極をグー1〜電極上方に絶縁膜を介して延在して
設けであるので、LDD)ランジスタのソース領域上方
のスペースの有効活用もしくは占有面積の縮小化が可能
となり、容量値の増大もしくは集積度の構造が実現でき
る効果がある。
As explained above, the MTS type semiconductor memory device of the present invention has the following features:
Since the capacitor electrode is provided extending above the electrode through an insulating film, it is possible to effectively utilize the space above the source region of the LDD transistor or to reduce the occupied area, thereby increasing the capacitance value or This has the effect of realizing a highly integrated structure.

又、本発明M I S型半導体記憶装置の製造方法は、
ゲート電極形成後に容量電極を設けるので、隣接するゲ
ート電極間の短絡を防止する特別の工程を必要とせず、
工程の簡略化が可能となる効果がある。
Further, the method for manufacturing the MIS type semiconductor memory device of the present invention includes:
Since the capacitor electrode is provided after the gate electrode is formed, there is no need for a special process to prevent short circuits between adjacent gate electrodes.
This has the effect of simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明MIS型半導体記憶装置の一実施例を示
す半導体チップの断面図、第2図(a)〜(g)は本発
明MIS型半導体記憶装置の製造方法の一実施例を説明
するための工程順に配列した半導体チップの断面図、第
3図は溝を形成する工程後の平面レイアウト図、第4図
は従来例を説明するためのMOS型半導体記憶装置のメ
モリ・セルのパターン・レイアウト図、第5図及び第6
図はそれぞれ第4図のA−A’線及びB−B′線相当部
で切断した半導体チップの断面図である。 1・・・p型半導体基板、2・・・フィールド酸化膜、
3・・・ゲート酸化膜、4・・・多結晶シリコン膜、5
・・・第1の酸化シリコン膜、6.6−1.6−2・・
・ゲート電極、7.7−1.7−2.7−3・・・低濃
度ソース・ドレイン領域、8・・・第2の酸化シリコン
膜、9・・・薄い酸化膜、11.11−1,112.1
1−2.11−3・・・高濃度ソース・ドレイン領域1
2・・・ホトレジストマスク、13・・・ 。 14.11−1.14−2・・・溝、15・・・容量絶
縁膜、16・・・容量蓄積電荷領域、17・・・第1の
多結晶シリコン膜、18・・・酸化シリコン膜、19・
・・第2の多結晶シリコン膜、20・・・第3の多結晶
シリコン膜、21−1.21−2・・・溝型容量、22
・・層間絶縁膜、23・・・上部配線、24・・・カバ
ー膜。
FIG. 1 is a cross-sectional view of a semiconductor chip showing an embodiment of the MIS type semiconductor memory device of the present invention, and FIGS. 2(a) to (g) illustrate an embodiment of the method for manufacturing the MIS type semiconductor memory device of the present invention. 3 is a plan layout diagram after the step of forming a groove, and FIG. 4 is a pattern of a memory cell of a MOS type semiconductor memory device to explain a conventional example.・Layout diagram, Figures 5 and 6
The figures are cross-sectional views of the semiconductor chip taken along lines A-A' and B-B' in FIG. 4, respectively. 1...p-type semiconductor substrate, 2...field oxide film,
3... Gate oxide film, 4... Polycrystalline silicon film, 5
...first silicon oxide film, 6.6-1.6-2...
- Gate electrode, 7.7-1.7-2.7-3...Low concentration source/drain region, 8...Second silicon oxide film, 9...Thin oxide film, 11.11- 1,112.1
1-2.11-3...High concentration source/drain region 1
2... Photoresist mask, 13... 14.11-1.14-2... Groove, 15... Capacitive insulating film, 16... Capacitive storage charge region, 17... First polycrystalline silicon film, 18... Silicon oxide film , 19・
...Second polycrystalline silicon film, 20...Third polycrystalline silicon film, 21-1.21-2...Trench type capacitor, 22
...Interlayer insulating film, 23... Upper wiring, 24... Cover film.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板の一主表面に設けられたL
DD型MISトランジスタと、前記一主表面から掘られ
た溝部に設けられた溝型容量とを含むメモリ・セルを有
してなるMIS型半導体記憶装置において、前記溝型容
量の容量電極は前記LDD型MISトランジスタのゲー
ト電極上方に絶縁膜を介して延在して設けられているこ
とを特徴とするMIS型半導体記憶装置。
(1) L provided on one main surface of the first conductivity type semiconductor substrate
In an MIS type semiconductor memory device having a memory cell including a DD type MIS transistor and a trench type capacitor provided in a trench portion dug from the one main surface, a capacitor electrode of the trench type capacitor is connected to the LDD. A MIS type semiconductor memory device, characterized in that the MIS type semiconductor memory device is provided extending above a gate electrode of a type MIS transistor with an insulating film interposed therebetween.
(2)フィールド絶縁膜で区画された素子形成領域の表
面にゲート絶縁膜を形成した第1導電型半導体基板上に
第1の導電膜及び第1の絶縁膜からなる2層膜を被着し
たのち所定形状にパターニングしてゲート電極を形成す
る工程と、前記2層膜をマスクとしてイオン注入を行な
い低濃度ソース・ドレイン領域を形成する工程と、第2
の絶縁膜を被着したのち異方性エッチングにより前記第
2の絶縁膜を前記2層膜の側面部を除いて除去する工程
と、前記フィールド絶縁膜、前記2層膜及び前記第2の
絶縁膜をマスクとしてイオン注入を行ない高濃度ソース
・ドレイン領域を形成する工程と、前記フィールド絶縁
膜、前記2層膜及び前記第2の絶縁膜を含むエッチング
用マスクを利用して溝を設けて溝型容量を形成する工程
とを含むことを特徴とするMIS型半導体記憶装置の製
造方法。
(2) A two-layer film consisting of a first conductive film and a first insulating film was deposited on a first conductive type semiconductor substrate in which a gate insulating film was formed on the surface of an element formation region divided by a field insulating film. Thereafter, a step of patterning into a predetermined shape to form a gate electrode, a step of performing ion implantation using the two-layer film as a mask to form a low concentration source/drain region, and a second step.
a step of removing the second insulating film by anisotropic etching after depositing an insulating film except for side surfaces of the two-layer film; A process of performing ion implantation using the film as a mask to form highly concentrated source/drain regions, and forming a groove using an etching mask including the field insulating film, the two-layer film, and the second insulating film. 1. A method for manufacturing an MIS type semiconductor memory device, comprising the step of forming a type capacitor.
JP63289463A 1988-11-15 1988-11-15 Miss type semiconductor storage device and manufacture thereof Pending JPH02134867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289463A JPH02134867A (en) 1988-11-15 1988-11-15 Miss type semiconductor storage device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289463A JPH02134867A (en) 1988-11-15 1988-11-15 Miss type semiconductor storage device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02134867A true JPH02134867A (en) 1990-05-23

Family

ID=17743595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289463A Pending JPH02134867A (en) 1988-11-15 1988-11-15 Miss type semiconductor storage device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02134867A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134058A (en) * 1984-12-04 1986-06-21 Toshiba Corp Manufacture of semiconductor device
JPS627153A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134058A (en) * 1984-12-04 1986-06-21 Toshiba Corp Manufacture of semiconductor device
JPS627153A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Semiconductor memory

Similar Documents

Publication Publication Date Title
KR900000207B1 (en) Semiconductor memory device with trench surrounding each memory cell
JP2633650B2 (en) Semiconductor memory device and method of manufacturing the same
JP3199717B2 (en) Semiconductor device and method of manufacturing the same
KR910010167B1 (en) Stack capacitor dram cell and its manufacturing method
JPH01152660A (en) Semiconductor memory and manufacture thereof
JP3229665B2 (en) Method of manufacturing MOSFET
KR100423765B1 (en) Integrated circuit comprising vertical transistors, and a method for the production thereof
KR940002393B1 (en) Semiconductor memory device
JP2648448B2 (en) Method for manufacturing capacitor of semiconductor memory device
JPH0793372B2 (en) Semiconductor memory device
JPH0364964A (en) Manufacture of semiconductor memory device
JP3241789B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH02134867A (en) Miss type semiconductor storage device and manufacture thereof
KR100343002B1 (en) Memory cell with a vertical transistor and a deep trench capacitor
JPH1174475A (en) Semiconductor integrated circuit device and its manufacture
JP2827377B2 (en) Semiconductor integrated circuit
US20050009269A1 (en) Semiconductor device and method of manufacturing semiconductor device
KR960001952B1 (en) Method of manufacturing a stacked trench capacitor
JPS604595B2 (en) integrated circuit
JPH02237059A (en) Semiconductor memory device and manufacture thereof
JP2913809B2 (en) Method for manufacturing semiconductor device
KR0165304B1 (en) Self align contact structure semiconductor device & its fabrication method
JPH0793367B2 (en) Semiconductor memory device and manufacturing method thereof
JPH04267558A (en) Semiconductor device
JPH04322459A (en) Semiconductor memory device and manufacture thereof