JPH02133388A - Production device of silicon single crystal - Google Patents

Production device of silicon single crystal

Info

Publication number
JPH02133388A
JPH02133388A JP28401688A JP28401688A JPH02133388A JP H02133388 A JPH02133388 A JP H02133388A JP 28401688 A JP28401688 A JP 28401688A JP 28401688 A JP28401688 A JP 28401688A JP H02133388 A JPH02133388 A JP H02133388A
Authority
JP
Japan
Prior art keywords
partition member
single crystal
raw material
silica glass
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28401688A
Other languages
Japanese (ja)
Inventor
Yoshinobu Shima
島 芳延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP28401688A priority Critical patent/JPH02133388A/en
Publication of JPH02133388A publication Critical patent/JPH02133388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the molten raw material from generating solidification in the contact part of partition member when the inside of the crucible receiving molten silicon raw material is divided with the partition member having small openings and a single crystal is pulled up from the inside by constituting the partition member of foamed silica glass. CONSTITUTION:The partition member 11 consisting of foamed silica glass is provided in the crucible 2 receiving molten silicon raw material 4 so as to enclose the silicon single crystal 5 to be pulled up, and the small openings 13 are provided in the partition member 11 so that the molten silicon raw material 4 is allowed to move quietly. The silicon single crystal 5 is pulled up from the inside of the partition member 11 by Czochralski method. Thus, as the partition member 11 consists of foamed silica glass, the heat radiation from the molten liquid 4 near the partition member 11 is restrained, and the molten liquid 4 is prevented from generating solidification in the contact part of the partition member 11.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法によるシリコン単結晶の
製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for producing silicon single crystals using the Czochralski method.

[従来の技術] チョクラルスキー法によるシリコン単結晶の製造方法は
従来から行なわれており、はぼ完成された技術となって
いる。
[Prior Art] The Czochralski method for manufacturing silicon single crystals has been practiced for a long time and has become a nearly perfected technology.

この技術は、周知のように石英製のるつぼに溶融したシ
リコン原料を入れ、種結晶をこの溶融面に接すると同時
に回転させながら徐々に引き上げると、接触面の凝固と
ともに結晶成長が行なわれ、これにより円柱状のシリコ
ン単結晶をflるようにしたものである。
As is well known, this technology involves placing a molten silicon raw material in a quartz crucible, touching the molten surface of the seed crystal, and at the same time rotating it and gradually pulling it up. As the contact surface solidifies, crystal growth occurs. This is a cylindrical single crystal silicon crystal.

このとき、目的に応じてシリコン単結晶をP型またはN
型の半導体にするために、溶融原料に適量のボロン、ア
ンチモン、リン等のドープ剤を混入している。しかしな
がら、これらのドープ剤の単結晶への取り込まれ方は一
定ではなく、下部はど濃度が高くなる。このドープ剤の
偏在により、ウェハーの歩留りが低下していることはよ
く知られている。
At this time, depending on the purpose, the silicon single crystal is P type or N type.
In order to make a type of semiconductor, appropriate amounts of dopants such as boron, antimony, and phosphorus are mixed into the molten raw material. However, the way these dopants are incorporated into the single crystal is not constant, and the concentration becomes higher in the lower part. It is well known that the uneven distribution of the dopant reduces the yield of wafers.

このような問題を解決し、シリコン単結晶内の添加元素
濃度を均一化する目的で二重るつぼ法が提案されている
(W、F、l、cverton、 J、Appl、Ph
ys、。
A double crucible method has been proposed to solve these problems and to equalize the concentration of added elements in a silicon single crystal (W, F, L, Cverton, J, Appl, Ph
ys,.

29.1241(1958)、   K、E、Ben5
on、W、I、In、   Iシ、P、Martln。
29.1241 (1958), K.E.Ben5
on, W, I, In, Ishi, P, Martln.

Semjconduetor 5ilicon、33.
(1981)、およびW、LInK、E、Ben5on
、  Ann、Rev、Mater、Sci、17.2
73.(1987))。
Semjconduator 5ilicon, 33.
(1981), and W, LInK, E, Ben5on.
, Ann, Rev. Mater, Sci., 17.2
73. (1987)).

第6図はこの方法に使用される二重るつぼの構造を模式
的に示したものである。
FIG. 6 schematically shows the structure of a double crucible used in this method.

これらの方法は、第1のるつぼ1内に溶融原料4a、4
bが移動可能な孔22を有する仕切り2L又は孔22を
有する第2のるつぼ23を設け、仕切り21又は第2の
るつぼ23(以下単に仕切り21という)の内側の溶融
原料4a中の添加元素濃度と、仕切り21の外側の溶融
原料4b中の添加元素濃度を異なる値にすることで、引
き上げられた単結晶5中の添加元素濃度をほぼ一定にす
るようにしたものである。
In these methods, molten raw materials 4a, 4 are placed in the first crucible 1.
A partition 2L having a movable hole 22 or a second crucible 23 having a hole 22 is provided, and the added element concentration in the molten raw material 4a inside the partition 21 or the second crucible 23 (hereinafter simply referred to as partition 21) is By setting the concentration of the added element in the molten raw material 4b outside the partition 21 to different values, the concentration of the added element in the pulled single crystal 5 is made almost constant.

[発明が解決しようとする課題] 上述のような仕切り21を用いたシリコン単結晶の製造
方法においては、仕切り21の内側からの放熱により溶
融原料が仕切り21と接する部分の温度が低下しやすい
。これは、仕切り21の材質が透明シリカガラスのため
輻射率が溶融原料よりかなり大きく、さらにるつぼ1の
上方は水冷された炉蓋でコわれでおり、これとの輻射に
より仕切り21は溶融原料より多く熱を付われでいるた
めと考えられる。またるつぼ1が二重構造であるため溶
融原料の対流が抑えられ、仕切り21の内側の温度はさ
らに上がりにくくなっている。
[Problems to be Solved by the Invention] In the silicon single crystal manufacturing method using the partitions 21 as described above, the temperature of the portion where the molten raw material contacts the partitions 21 tends to drop due to heat radiation from the inside of the partitions 21. This is because the material of the partition 21 is transparent silica glass, so its emissivity is considerably higher than that of the molten raw material.Furthermore, the upper part of the crucible 1 is broken by a water-cooled furnace lid, and due to the radiation from this, the partition 21 is higher than the molten raw material. It is thought that this is because they are overheated a lot. Further, since the crucible 1 has a double structure, convection of the molten raw material is suppressed, and the temperature inside the partition 21 is further inhibited from rising.

また、単結晶を成長させるためには、仕切り21の内側
(結晶成長部)の溶融原料の液温をその融点直上にする
必要があるが、上に述べた現象のため仕切り21の内側
の溶融液表面との接触部がら凝固が発生するという問題
が生じる。
In addition, in order to grow a single crystal, it is necessary to raise the liquid temperature of the molten raw material inside the partition 21 (crystal growth area) to just above its melting point, but due to the phenomenon described above, the temperature of the molten raw material inside the partition 21 A problem arises in that coagulation occurs at the contact portion with the liquid surface.

しかしながら、上述の従来方法にはこのような凝固の発
生を防止するための手段は講じられていなかった。
However, the above-mentioned conventional method does not take any measures to prevent the occurrence of such coagulation.

[発明の目的〕 本発明は、上記の課題を解決し目的を達成するためにな
されたもので、るつぼ内に浸漬した仕切りと、溶融原料
の融液表面との接触部からの凝固の発生を防止すること
のできるシリコン単結晶の製造装置を得ることを目的と
したものである。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems and achieve the objects. The purpose of this invention is to obtain a silicon single crystal manufacturing apparatus that can prevent the above-mentioned problems.

[課題を解決するための手段] 本発明は、上述の課題を解決し目的を達成するためにな
されたもので、シリコン溶融原料が入れられたるつぼ内
を、引き上げられるシリコン単結晶を囲みかつ前記シリ
コン溶融原料が静かに移動しうるように小孔が貫通され
た仕切り部材で仕切り、該仕切り部材の内側からシリコ
ン単結晶を引き上げてシリコン単結晶を製造する装置に
おいて、前記仕切り部材の全部又は一部を気泡入すシリ
カガラスで構成したシリコン単結晶の製造装置。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems and achieve the objects. In an apparatus for manufacturing a silicon single crystal by pulling a silicon single crystal from inside the partition member, the device is partitioned by a partition member having small holes penetrated therein so that the molten silicon raw material can move quietly, and all or part of the partition member is A device for producing silicon single crystals made of silica glass with bubbles inserted into the parts.

前記仕切り部材のシリコン溶融原料と接する部分を気泡
入りシリカガラス、他の部分を透明シリカガラスで構成
したシリコン単結晶の製造装置。
A silicon single crystal manufacturing apparatus, wherein a portion of the partition member in contact with the molten silicon raw material is made of bubble-filled silica glass, and the other portion is made of transparent silica glass.

前記仕切り部材の気泡入りシリカガラス部を、気泡含有
率(体積率)が0 、0196以上の気泡入すシリカガ
ラスで構成したシリコン単結晶の製造装置。
A device for producing a silicon single crystal, wherein the bubble-filled silica glass portion of the partition member is made of bubble-filled silica glass having a bubble content (volume ratio) of 0.0196 or more.

前記仕切り部材の気泡入りシリカガラス部を、気泡含有
率(体積率)が0.01%未満のものであって、るつぼ
に投入されたシリコン原料を溶解するための熱により気
泡含有率(体積率)が0.01%以上に増加する気泡入
すシリカガラスで構成したシリコン単結晶の製造装置。
The bubble-containing silica glass portion of the partition member has a bubble content (volume rate) of less than 0.01%, and the bubble content rate (volume rate) is reduced by heat for melting the silicon raw material put into the crucible. ) is increased to 0.01% or more.

[作用] 本発明においては、仕切り部材の全部又は一部を気泡入
りシリカガラスで構成したので、仕切り部材とシリコン
溶融原料が接する部分からの放熱を低減し、仕切り部材
近傍からの溶融原料の凝固を防止する。
[Function] In the present invention, since all or a part of the partition member is made of bubble-filled silica glass, heat radiation from the part where the partition member and the silicon molten raw material are in contact is reduced, and the molten raw material from the vicinity of the partition member is prevented from solidifying. prevent.

r発明の実施例コ 先ず、最初に本発明の主要部をなす仕切り部材の原理的
構成について説明する。第5図は溶融したシリコン原料
中に透明シリカガラス21aおよび気泡入りシリカガラ
スLlaを浸漬した状態を示す模式図である。(a)図
に示す透明シリカガラス21aの場合は、溶融原料4が
ガラスと接する部分が透明なため、融液面より上の方向
への放熱が大きいことがわかる。さらに透明シリカガラ
ス21aは熱の吸収が少く加熱されにくいため、溶融原
料4がガラスと接する部分の温度が低くなり、この部分
から凝固が発生しやすくなる。
Embodiments of the Invention First, the fundamental structure of the partition member, which constitutes the main part of the present invention, will be explained. FIG. 5 is a schematic diagram showing a state in which transparent silica glass 21a and bubbled silica glass Lla are immersed in a molten silicon raw material. (a) In the case of the transparent silica glass 21a shown in the figure, since the portion where the molten raw material 4 contacts the glass is transparent, it can be seen that the heat dissipation in the direction above the melt surface is large. Furthermore, since the transparent silica glass 21a absorbs little heat and is difficult to be heated, the temperature of the portion where the molten raw material 4 comes into contact with the glass becomes low, and solidification is likely to occur from this portion.

一方、気泡入りシリカガラスllaの場合は、ガラス中
に存在する気泡12によって溶融原料4がガラスと接す
る部分からの熱の放射が散乱されることにより、融液面
より上の方向への放熱が透明シリカガラス21aに比較
して小さい。その結果、溶融原料4がガラスと接する部
分の温度の低下がほとんどなく、このため溶融原料4の
凝固を防止することかできる。また、気泡入りシリカガ
ラス11aの副次効果として、熱の放射が少ないため溶
融原料4がガラスと接する部分での温度変動や、濡れ性
の変動が減少する。
On the other hand, in the case of bubble-filled silica glass lla, the heat radiation from the part where the molten raw material 4 contacts the glass is scattered by the air bubbles 12 existing in the glass, so that the heat radiation in the direction above the melt surface is reduced. It is smaller than the transparent silica glass 21a. As a result, the temperature of the portion where the molten raw material 4 comes into contact with the glass hardly decreases, and therefore the molten raw material 4 can be prevented from solidifying. Further, as a side effect of the bubble-containing silica glass 11a, since less heat is radiated, temperature fluctuations and wettability fluctuations at the portion where the molten raw material 4 contacts the glass are reduced.

第1図は本発明の実施例を模式的に示した断面図、第2
図はそのI−1断面図である。図において、1は石英る
つぼで、黒鉛るつぼ2のなかにセットされており、黒鉛
るつぼ2はペデスタル3上に上下動および回転可能に支
持されている。4はるつぼ1内に入れられたシリコン溶
融原料で、これから柱状に育成されたシリコン単結晶5
が引き上げられる。6は黒鉛るつぼ2をとり囲むヒータ
、7はこのヒータ6をとり囲むホットゾーン断熱材で、
これらは通常のチョクラルスキー法による単結晶引き上
げ装置と基本的には同じである。
Figure 1 is a sectional view schematically showing an embodiment of the present invention, Figure 2 is a sectional view schematically showing an embodiment of the present invention.
The figure is a sectional view taken along line I-1. In the figure, a quartz crucible 1 is set in a graphite crucible 2, and the graphite crucible 2 is supported on a pedestal 3 so as to be movable up and down and rotatable. 4 is a silicon molten raw material placed in a crucible 1, and a silicon single crystal 5 is grown into a columnar shape.
is raised. 6 is a heater surrounding the graphite crucible 2; 7 is a hot zone insulation material surrounding this heater 6;
These are basically the same as a single crystal pulling apparatus using the normal Czochralski method.

11は気泡入高純度のシリカガラスからなり、るつぼ1
と同心的に構成された仕切り部材で、第3図に一例を示
すように高さ方向のほぼ中央部から下の領域には、少な
くとも1個の小孔I3が貫通されている。この仕切り部
材11は、原料のチャージ時に一緒にるつぼ1のなかに
セットされ、原料の溶融後は単結晶5を取り囲むように
溶融原料4内に浸されており、上縁部は溶融液面かられ
ずかに露出している。また、下縁部はるつぼ1と殆んど
融着した状態となり浮き上がることはない。しへがって
、仕切り部材IIの外側の溶融原料4は小孔13を介し
てのみ静かに内側に移動できるだけのため、仕切り部材
11の外側と内側(単結晶引−き上げ部)とを十分に仕
切ることができる。なお、仕切り部材11をるつぼ1に
あらかじめ融着させてもよい。
11 is made of high-purity silica glass with bubbles, and crucible 1
As shown in an example in FIG. 3, at least one small hole I3 is formed in a region below the substantially central part in the height direction. This partition member 11 is set in the crucible 1 together with the raw material when it is charged, and after the raw material is melted, it is immersed in the molten raw material 4 so as to surround the single crystal 5, and the upper edge is kept away from the melt surface. It's barely exposed. Further, the lower edge is almost fused to the crucible 1 and does not float up. Therefore, since the molten raw material 4 on the outside of the partition member II can quietly move inward only through the small holes 13, the outside and inside of the partition member 11 (single crystal pulling part) are separated. I can separate it enough. Note that the partition member 11 may be fused to the crucible 1 in advance.

14は保温カバーで、上述のように気泡入すシリカガラ
ス製の仕切り部材II自体に凝固防止する機能があるが
、本実施例ではさらに仕切り部材11及びその外側の溶
融の保温効果を高めるために配置したものである。
Reference numeral 14 denotes a heat insulating cover, and as mentioned above, the partition member II itself made of silica glass with air bubbles has a function of preventing solidification, but in this embodiment, a heat insulating cover is used to further enhance the heat insulating effect of the molten part of the partition member 11 and its outside. This is what was placed.

本発明においては、仕切り部材11を気泡入りシリカガ
ラスで構成することにより、仕切り部材11とシリコン
溶融原料4が接する部分からの放熱を低減し、仕切り部
材11よりの溶融原料の凝固を防止することができる。
In the present invention, by constructing the partition member 11 with aerated silica glass, heat radiation from the portion where the partition member 11 and the silicon molten raw material 4 are in contact is reduced, and solidification of the molten raw material from the partition member 11 is prevented. Can be done.

この気泡入りシリカガラスによる溶融原料4の凝固防止
効果は、通常気泡含有率(体積率) 0.01%以上で
生じるが、気泡含有率(体積率)が0.015未満の気
泡入りシリカガラスのものも、シリコン原料を溶解する
ための熱により新たな気泡が生成し、あるいは既に存在
する気泡の膨張により気泡含有率(体積率)が0.01
%以上になった場合は、同様に溶融液の凝固防止効果が
得られる。
The effect of preventing the solidification of the molten raw material 4 by this aerated silica glass usually occurs when the air bubble content (volume ratio) is 0.01% or more; In some cases, new bubbles are generated due to the heat used to melt the silicon raw material, or the bubble content (volume rate) is reduced to 0.01 due to the expansion of existing bubbles.
% or more, the same effect of preventing solidification of the melt can be obtained.

上述の気泡入りシリカガラスによる仕切り部(オitの
溶融液凝固防止効果は、溶融原料4が仕切り部材11と
接する部分にこの気泡入りシリカガラスが位置していれ
ばよく、例えば第4図(a)の実施例に示すように底部
から融液面上約1c+nまでが気泡入りシリカガラスの
ものや、(b)図に示すように融液面の上下それぞれ約
1cI11のみが気泡入りシリカガラスで他の部分は透
明シリカガラスのものも凝固防止効果がある。
The molten liquid solidification prevention effect of the above-mentioned partition part (oit) using the aerated silica glass can be achieved by simply positioning the aerated silica glass in the area where the molten raw material 4 contacts the partition member 11. For example, as shown in FIG. ), the area from the bottom to about 1c+n above the melt surface is made of bubble-filled silica glass, and as shown in Figure (b), only about 1 cI11 above and below the melt surface is made of bubble-filled silica glass. The part made of transparent silica glass also has an anti-coagulation effect.

[発明の効果] 以上の説明から明らかなように、本発明はシリコン溶融
原料が入れられたるつぼ内を、引き上げられるシリコン
単結晶を囲みかつシリコン溶融原料が静かに移動しうる
ように小孔が貫通された仕切り部材で仕切り、その内側
からシリコン単結晶を引き上げてシリコン単結晶を製造
する装置において、仕切り部材の全部又は一部を気泡入
すシリカガラスで構成し、仕切り部材近傍の溶融液から
の放熱を抑制することにより、溶融原料が仕切り部材と
接する部分より凝固することを防止したので、健全なシ
リコン単結晶を引き上げることができる。そのため、引
き上げ方向の品質の均一化による歩留りの向上、生産性
の向上を実現できる等、実施による効果大である。
[Effects of the Invention] As is clear from the above description, the present invention provides a crucible containing a molten silicon raw material with small holes surrounding the silicon single crystal to be pulled and allowing the molten silicon raw material to move quietly. In an apparatus for manufacturing silicon single crystals by partitioning with a partition member having a hole through the partition member and pulling the silicon single crystal from inside the partition member, all or part of the partition member is made of silica glass with bubbles inserted, and the molten liquid near the partition member is By suppressing the heat dissipation, the molten raw material is prevented from solidifying from the part where it contacts the partition member, so that a healthy silicon single crystal can be pulled up. Therefore, the implementation has great effects, such as improving yield and productivity by making the quality uniform in the pulling direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を模式的に示した縦断面図、第2
図はそのI−1断面図、第3図は仕切り部材の実施例の
側面図、第4図は仕切り部材の他の実施例を示す模式図
、第5図(a) 、 (b)は透明シリカガラスと気泡
入りシリカガラスの作用比較図である、第6図(a) 
、(b)は従来の二重るつぼの一例を示す模式図である
。 1:るつぼ、2:黒鉛るつぼ、4:溶融原料、5:シリ
コン単結晶、6:ヒータ、8:チャンバ、11:仕切り
部材、12:気泡、13:小孔、14二保温カバー
Fig. 1 is a vertical sectional view schematically showing an embodiment of the present invention, Fig. 2
The figure is an I-1 sectional view, FIG. 3 is a side view of an embodiment of the partition member, FIG. 4 is a schematic diagram showing another embodiment of the partition member, and FIGS. 5(a) and (b) are transparent. Figure 6(a) is a diagram comparing the effects of silica glass and bubble-filled silica glass.
, (b) is a schematic diagram showing an example of a conventional double crucible. 1: Crucible, 2: Graphite crucible, 4: Molten raw material, 5: Silicon single crystal, 6: Heater, 8: Chamber, 11: Partition member, 12: Air bubble, 13: Small hole, 14 Two heat insulation covers

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン溶融原料が入れられたるつぼ内を、引き
上げられるシリコン単結晶を囲みかつ前記シリコン溶融
原料が静かに移動しうるように小孔が貫通された仕切り
部材で仕切り、該仕切り部材の内側からシリコン単結晶
を引き上げてシリコン単結晶を製造する装置において、 前記仕切り部材の全部又は一部を気泡入りシリカガラス
で構成したことを特徴とするシリコン単結晶の製造装置
(1) The inside of the crucible containing the molten silicon raw material is partitioned by a partition member that surrounds the silicon single crystal to be pulled and has a small hole penetrated so that the molten silicon raw material can move quietly, and the inside of the partition member An apparatus for producing a silicon single crystal by pulling the silicon single crystal from a silicon single crystal, characterized in that all or part of the partition member is made of bubble-filled silica glass.
(2)前記仕切り部材のシリコン溶融原料と接する部分
を気泡入りシリカガラス、他の部分を透明シリカガラス
で構成したことを特徴とする請求項1記載のシリコン単
結晶の製造装置。
(2) The silicon single crystal manufacturing apparatus according to claim 1, wherein a portion of the partition member that comes into contact with the molten silicon raw material is made of bubble-filled silica glass, and the other portion is made of transparent silica glass.
(3)前記仕切り部材の気泡入りシリカガラス部を、気
泡含有率(体積率)が0.01%以上の気泡入りシリカ
ガラスで構成したことを特徴とする請求項1又は2記載
のシリコン単結晶の製造装置。
(3) The silicon single crystal according to claim 1 or 2, wherein the aerated silica glass portion of the partition member is composed of aerated silica glass having a bubble content (volume ratio) of 0.01% or more. manufacturing equipment.
(4)前記仕切り部材の気泡入りシリカガラス部を、気
泡含有率(体積率)が0.01%未満のものであって、
るつぼに投入されたシリコン原料を溶解するための熱に
より気泡含有率(体積率)が0.01%以上に増加する
気泡入りシリカガラスで構成したことを特徴とする請求
項1又は2記載のシリコン単結晶の製造装置。
(4) The cell-filled silica glass portion of the partition member has a cell content (volume percentage) of less than 0.01%,
The silicone according to claim 1 or 2, characterized in that the silicone is made of aerated silica glass whose bubble content (volume ratio) increases to 0.01% or more by heat for melting the silicon raw material put into the crucible. Single crystal production equipment.
JP28401688A 1988-11-11 1988-11-11 Production device of silicon single crystal Pending JPH02133388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28401688A JPH02133388A (en) 1988-11-11 1988-11-11 Production device of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28401688A JPH02133388A (en) 1988-11-11 1988-11-11 Production device of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH02133388A true JPH02133388A (en) 1990-05-22

Family

ID=17673207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28401688A Pending JPH02133388A (en) 1988-11-11 1988-11-11 Production device of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH02133388A (en)

Similar Documents

Publication Publication Date Title
JPH02133389A (en) Production device of silicon single crystal
KR930001895B1 (en) Method and equipment for manufacturing silicon single crystal
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
US5143704A (en) Apparatus for manufacturing silicon single crystals
KR940004639B1 (en) Apparatus for manufacturing silicon single crystals
EP0400266B1 (en) Apparatus for manufacturing single silicon crystal
JP2709310B2 (en) Single crystal pulling device
JPH02133388A (en) Production device of silicon single crystal
KR960006262B1 (en) Apparatus for making silicon single crystal
JPH01317189A (en) Production of single crystal of silicon and device therefor
JPS59203798A (en) Apparatus for preparing belt-shaped silicon crystal
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH07110798B2 (en) Single crystal manufacturing equipment
JP2633057B2 (en) Silicon single crystal manufacturing equipment
JPH0316989A (en) Production device of silicon single crystal
JP2855408B2 (en) Single crystal growth equipment
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH02172885A (en) Production of silicon single crystal
JPH1095688A (en) Production of single crystal
JPH03265593A (en) Crystal growing device
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH01286994A (en) Production of silicon single crystal and apparatus therefor
JPH02255592A (en) Method and device for producing silicon single crystal
JPH04198087A (en) Process for pulling up single crystal