JPH02133333A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH02133333A
JPH02133333A JP63285748A JP28574888A JPH02133333A JP H02133333 A JPH02133333 A JP H02133333A JP 63285748 A JP63285748 A JP 63285748A JP 28574888 A JP28574888 A JP 28574888A JP H02133333 A JPH02133333 A JP H02133333A
Authority
JP
Japan
Prior art keywords
glass
core
clad
thermal expansion
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285748A
Other languages
Japanese (ja)
Other versions
JP2767439B2 (en
Inventor
Ryozo Yamauchi
良三 山内
Shin Saito
伸 斉藤
Akira Wada
朗 和田
Taiichiro Tanaka
大一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63285748A priority Critical patent/JP2767439B2/en
Publication of JPH02133333A publication Critical patent/JPH02133333A/en
Application granted granted Critical
Publication of JP2767439B2 publication Critical patent/JP2767439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/224Mismatching coefficients of thermal expansion [CTE] of glass layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To offset the thermal expansion of a core by the tensile stress at the time of drawing of a clad and to obtain a product having an extremely low loss by specifying linear tensile force at the time of drawing the base material for a quartz optical fiber contg. a relatively large amt. of Ge and P, etc., in the core. CONSTITUTION:The core member consisting of the quartz glass which is controlled in the refractive index distribution by adding a large amt. of the additives, such as Ge and P, to increase the coefft. of thermal expansion of the quartz glass. The base material for the optical fiber provided with the clad member consisting of the quartz glass contg. the additives at about the ratio at which the refractive index of the quartz glass is changed just by about 0.2% around the above-mentioned core member is drawn. The drawing is executed under the liner tensile force (t) expressed by the equation or above. In the equation, betacore is the coefft. of thermal expansion of the core glass from an ordinary temp. down to a slow cooling temp.; betaclad is the coefft. of thermal expansion of the clad glass from ordinary temp. down to the slow cooling temp. of the clad; E is the Young's modulus of the clad glass; S is likewise the sectional area.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コアに比較的多量のゲルマニウムやリン等
の添加物を含む石英系光ファイバ母材を。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention uses a quartz-based optical fiber base material containing a relatively large amount of additives such as germanium and phosphorus in the core.

低損失で線引きする方法に関するものである。It concerns a method of drawing lines with low loss.

(従来の技術) コアに比較的多量の添加物を含む1.55μm伝送用分
散シフトファイバのような光ファイバを母材から線引し
て得るとき、従来は比較的高い線引張力で綿引きする方
が伝送損失の低減を図ることができるとされていた。
(Prior Art) When obtaining an optical fiber such as a 1.55 μm transmission dispersion shifted fiber containing a relatively large amount of additives in the core by drawing it from a base material, conventionally, the drawing process was performed using a relatively high drawing tension. It was believed that transmission loss could be reduced by doing so.

(発明が解決しようとする課題) しかしながら、その線引張力の大きさについては具体的
にはどの程度の線引張力で線引きすればいいのかはっき
りした目安がな(、むやみに高い線引張力で線引きする
と線引き後の光ファイバの機械的強度が低下し、僅かな
引張り応力をかけただけで破断に至るということがあっ
たにのような線引張力と機械的強度との関係は、線引き
するときの母材の加熱条件や周囲の雰囲気に影響され必
ずしも一義的に決定されるものではないが、線引き条件
を固定して得られた結果を図に示すと第1図に示すとお
りである。外径125um、長さ20mの石英系分散シ
フトファイバ100本の引張試験の結果である。また、
損失に関しては様々な1.55  μm分散シフトファ
イバ母材を線引きした結果、第2図および第3図のよう
なヒストグラムが得られた。第2図は、線引張力を一定
の35gに固定してファイバ化したときの損失度数分布
を示し、第3図は、線引張力を60〜150gに変化さ
せてファイバ化したときの損失度数分布を示している。
(Problem to be solved by the invention) However, there is no clear guideline as to how much drawing tension should be used to draw the line (it is important to avoid using unnecessarily high drawing tension). When drawing, the mechanical strength of the optical fiber after drawing decreases, and even a slight tensile stress can lead to breakage.The relationship between drawing tension and mechanical strength is Although it is not necessarily uniquely determined as it is influenced by the heating conditions of the base material and the surrounding atmosphere, the results obtained when the drawing conditions are fixed are shown in FIG. 1. These are the results of a tensile test of 100 quartz-based dispersion-shifted fibers with an outer diameter of 125 um and a length of 20 m.
Regarding loss, as a result of drawing various 1.55 μm dispersion shifted fiber base materials, histograms as shown in FIGS. 2 and 3 were obtained. Figure 2 shows the loss power distribution when the drawing tension is fixed at a constant 35 g and the fiber is made, and Figure 3 shows the loss power distribution when the drawing tension is changed from 60 to 150 g and the fiber is made. It shows the distribution.

しかして1.55  μm伝送はもともと石英系ガラス
ファイバの理論損失が低い損失波長を示すものであり、
高い伝送損失ではその価値は半減する。第2.3図の結
果はこの点を考えると決して満足するものではない。
Therefore, 1.55 μm transmission originally indicates a loss wavelength at which the theoretical loss of silica-based glass fiber is low.
At high transmission losses, its value is halved. Considering this point, the results shown in Figure 2.3 are by no means satisfactory.

(課題を解決するための手段) この発明は、以上の観点からゲルマニウム、リン等の石
英ガラスの熱膨脹係数を増加させる添加物を多量に添加
することにより、その屈折率分布が制御された石英系ガ
ラスからなるコア部材の回りに、添加物を含んでも石英
ガラスの屈折率を高々0,2%程度変化させる程度含ん
でなる石英ガラスからなるクラッド部材が設けられた光
ファイバ母材を次式(1)で示される線引張力以上で線
引きすることを特徴とする光ファイバの製造方法にある
(Means for Solving the Problems) From the above points of view, the present invention provides a quartz glass whose refractive index distribution is controlled by adding a large amount of additives such as germanium and phosphorus that increase the coefficient of thermal expansion of quartz glass. An optical fiber base material in which a cladding member made of quartz glass is provided around a core member made of glass and contains additives to an extent that changes the refractive index of the silica glass by about 0.2% at the most is expressed by the following formula ( The present invention provides a method for manufacturing an optical fiber, characterized in that it is drawn at a drawing tension equal to or higher than the drawing tension shown in 1).

t≧(β −Ol XEXS  式+1)コア    
クラフト 、t:線引張力 β:コアガラスの常温から除冷温度までの熱膨コア 張係数 ラドガラスの熱膨脹係数 E:クラッドガラスのヤング率 S:クラッドガラスの断面積 なお、この発明におけるコア部材に添加される多量のド
ーパント量とは石英ガラスの屈折率な少くとも0.5%
程度増加させたものをいい、例えばGeO□のみを添加
する場合では?、5 wt%以上をいう。
t≧(β −Ol XEXS formula +1) core
Kraft, t: wire drawing tension β: thermal expansion of core glass from room temperature to slow cooling temperature core tensile coefficient coefficient of thermal expansion of rad glass E: Young's modulus of clad glass S: cross-sectional area of clad glass The large amount of dopant added is at least 0.5% of the refractive index of quartz glass.
For example, when only GeO□ is added. , 5 wt% or more.

またクラッド部材は純粋石英ガラスかもしくはGeO□
 、 Pies、 F、 ct等のドーパントを添加し
たとしてもその屈折率を石英ガラスのそれよりも0.2
%程度変化させる程度であり、コア中心部材とクラッド
部材との熱膨脹係数の差が少くとも2x  to−’程
度に大きく異なるものを対象としている。
Also, the cladding member is pure silica glass or GeO□
Even if dopants such as , Pieces, F, and ct are added, the refractive index is 0.2 lower than that of silica glass.
%, and is intended for those in which the difference in thermal expansion coefficient between the core center member and the cladding member is at least 2x to-'.

(作用) 以上の構成とすることにより、コアとクラッドとの熱膨
脹の差を、クラッドガラスに線引き中に生じる引張り歪
でもって相殺することができるため得られる光ファイバ
の極低損失化を図ることができる。
(Function) With the above configuration, the difference in thermal expansion between the core and the cladding can be offset by the tensile strain generated in the cladding glass during drawing, thereby achieving extremely low loss in the resulting optical fiber. Can be done.

なお、必要とする線引張力は、様々な分散シフトファイ
バで検討した結果、最も熱膨脹が高い部分のゲルマニウ
ムの添加量で決定されることがわかった。さらにゲルマ
ニウムを主たるドーパントとしてなるこの種のファイバ
においては式(1)で示される値以上では損失が全く変
化しないことがわかった。このような線引張力と伝送損
失の関係については、必ずしも十分な物理的、化学的な
説明ができるわけではないが現在のところ次のように推
定される。すなわち、ゲルマニウムのようなドーパント
を添加されたガラスでは、その構造の中にもともと屈折
率の揺らぎを内在しており、その揺らぎの大きさと光の
波長との関係によってはこれがいわゆるレーり散乱とな
る。しかしこのようなガラスに引張り応力を与えると局
所的に光弾性定数が異なるため屈折率の揺らぎはさらに
増大する。しかし圧縮方向でこの揺らぎはむしろ抑制さ
れる方向に働(ためこのときは損失増加はもたらさない
、よって式+1)以上の線引張力ではファイバの伝送損
失は安定を保つことができる。
As a result of examining various dispersion-shifted fibers, it was found that the required drawing tension is determined by the amount of germanium added in the portion with the highest thermal expansion. Furthermore, it has been found that in this type of fiber containing germanium as the main dopant, the loss does not change at all above the value shown by equation (1). Although it is not always possible to provide a sufficient physical or chemical explanation for the relationship between wire drawing tension and transmission loss, it is currently estimated as follows. In other words, glass doped with dopants such as germanium inherently has fluctuations in its refractive index within its structure, and depending on the relationship between the magnitude of the fluctuation and the wavelength of light, this can result in so-called Leh scattering. . However, when tensile stress is applied to such glass, the fluctuations in the refractive index further increase because the photoelastic constants differ locally. However, in the compression direction, this fluctuation acts in a direction that is rather suppressed (therefore, in this case, no increase in loss occurs; therefore, the transmission loss of the fiber can remain stable at a drawing tension equal to or higher than equation +1).

このように式(1)にもとすいて母材を線引きする場合
には、残る問題は高張力線引きに伴うファイバガラスの
機械的強度の低下であるが、これを防ぐには線引き雰囲
気を清浄にしてガラス表面付近のダストのレベルを下げ
ることや、同雰囲気の湿度を下げてガラス表面に発生す
る傷の伸長を防止するなどの通常の配慮をすれば事は足
りる。
When drawing the base material according to formula (1), the remaining problem is a decrease in the mechanical strength of the fiberglass due to high-tension drawing, but to prevent this, it is necessary to keep the drawing atmosphere clean. It is sufficient to take normal precautions such as reducing the level of dust near the glass surface and reducing the humidity of the atmosphere to prevent the extension of scratches that occur on the glass surface.

さらに上記式(1)は線引速度に依存しないので800
 m7分といった最近の高速化においても同等問題なく
対応できる。
Furthermore, since the above formula (1) does not depend on the drawing speed, 800
Even with the recent increase in speeds such as m7 minutes, it can be handled without any problem.

(実施例) 第4図に示す屈折率分布をもった低損失の分散シフトフ
ァイバを得るために、式+1)にもとすいて線引張力を
求めた。第4図において、1は半径方向に急峻に変化す
る屈折率分布を有する第1のコアでその径は約4μm、
2は、第1のコアの回りに位置する外在的14μmの第
2のコアで、第1のコアの最外周部の屈折率と等しい一
定の屈折率を持っている。3は、第2のコアの回りに位
置する外径125μmのクラッドで、第2のコアよりや
や低い屈折率を持っている。具体的には第1のコア1と
クラッド3との屈折率差△は1.0%、第2のコア2と
クラッド3との屈折率差は0.13%で、この屈折率の
変化はGeを添加することで与えられている。今、β 
について見ると、上記のようにココア アは第1と第2とからなっていて屈折率に分布を持って
いるがおおよそ△=1.0%と見ると、これに対応する
5i02−GeOa系ガラスのGe02a度は第5図よ
り15wt%である。よって、このガラスの除冷点は第
6図より約980℃で与えられる。一方このガラスの1
000℃における対SiO□熱膨脹熱膨服なわち(β 
−β  )は第7図より約5.OX io−’コア  
  クラフト で与えられる。そこで980℃における値に換算すると
(β、アーβりLP比例で求めて(5,OXl0−’)
x ((980−201/(1000−20))=4.
9 x 10−’となる。またSはクラッドの断面積が
コアのそれに比較して十分に大きいと見て約0. OL
 2 mm 、  E 1isio、で約7000 k
 g/I1mである6以上を式(1)に代入すると、t
≧41gとなる。すなわち41g以上の線引張力で線引
きすればいいことを示している。以上の計算にのっとっ
て上記母材を線引き張力50gで線引きしたところ0.
205 dB/kraの低損失ファイバが得られた。
(Example) In order to obtain a low-loss dispersion-shifted fiber having the refractive index distribution shown in FIG. 4, the drawing tension was determined using equation +1). In FIG. 4, 1 is a first core having a refractive index distribution that changes sharply in the radial direction, and its diameter is approximately 4 μm.
2 is an extrinsic 14 μm second core located around the first core and has a constant refractive index equal to the refractive index of the outermost portion of the first core. 3 is a cladding with an outer diameter of 125 μm located around the second core, and has a refractive index slightly lower than that of the second core. Specifically, the refractive index difference Δ between the first core 1 and the cladding 3 is 1.0%, the refractive index difference between the second core 2 and the cladding 3 is 0.13%, and this change in refractive index is It is given by adding Ge. Now, β
As mentioned above, Cocoa consists of the first and second parts and has a distribution of refractive index, but if we look at △=1.0%, the corresponding 5i02-GeOa glass The degree of Ge02a is 15 wt% from FIG. Therefore, the annealing point of this glass is given at about 980° C. from FIG. On the other hand, this glass one
Thermal expansion vs. SiO□ at 000°C, that is, (β
-β) is approximately 5. OX io-'core
Given by craft. Therefore, converting it to the value at 980℃ (β, A β = LP proportionality, (5, OXl0-')
x ((980-201/(1000-20))=4.
9 x 10-'. Also, S is approximately 0, assuming that the cross-sectional area of the cladding is sufficiently large compared to that of the core. OL
2 mm, E 1 isio, about 7000 k
Substituting g/I1m, which is 6 or more, into equation (1), t
≧41g. In other words, it shows that it is sufficient to draw the wire with a drawing tension of 41 g or more. Based on the above calculations, the base material was drawn with a drawing tension of 50g and the result was 0.
A low loss fiber of 205 dB/kra was obtained.

(発明の効果) この発明は、以上のようにコアとクラッドとの熱膨脹の
差が大きな母材を、所定の線引張力で線引きするもので
あるので、コアの熱膨脹をクラッドの線引き時の引張り
歪で相殺することができ、以って極低損失のファイバを
得ることができるという利点を有する。
(Effects of the Invention) As described above, this invention draws a base material with a large difference in thermal expansion between the core and the cladding with a predetermined drawing tension. This has the advantage that it can be canceled out by distortion, thereby making it possible to obtain a fiber with extremely low loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分散シフトファイバの線引張力と平均破断張力
との関係を示すグラフ、第2図は線引張カ一定の下での
分散シフトファイバの伝送損失頻度数を示すヒストグラ
ム、第3図は線引張力を変化させたときの分散シフトフ
ァイバの伝送損失頻度数を示すヒストグラム、第4図は
分散シフトファイバの屈折率分布の一例を示す説明図、
第5図はSiO□へのGeO□のドープ量と純粋SiO
□に対する相対屈折率差を示すグラフ、第6図はSin
gへのGoO□のドープ量と同ガラスの除冷点を示すグ
ラフ、第7図は5iOzへのGeOaのドープ量とSi
O□に対する相対熱膨脹を示すグラフ。 図において、■=第1のコアの屈折率、2:第2のコア
の屈折率、3:クラッドの屈折率。 特許出願人  藤倉電線株式会社 代理人 弁理士 竹 内   守 算 I 図 嫂り1張オ (お) 4! 失(if、57μWL) (d鱈−) 筈 1圓 第 1コ
Figure 1 is a graph showing the relationship between the drawing tension and average breaking tension of a dispersion-shifted fiber, Figure 2 is a histogram showing the frequency of transmission loss in a dispersion-shifted fiber under a constant drawing tension, and Figure 3 is a graph showing the relationship between the drawing tension and the average breaking tension of a dispersion-shifted fiber. A histogram showing the frequency of transmission loss of a dispersion-shifted fiber when the drawing tension is changed; FIG. 4 is an explanatory diagram showing an example of the refractive index distribution of the dispersion-shifted fiber;
Figure 5 shows the doping amount of GeO□ to SiO□ and pure SiO
A graph showing the relative refractive index difference with respect to □, Figure 6 is Sin
Figure 7 is a graph showing the doping amount of GoO□ to 5iOz and the annealing point of the same glass.
Graph showing relative thermal expansion versus O□. In the figure, ■ = refractive index of the first core, 2: refractive index of the second core, 3: refractive index of the cladding. Patent applicant Fujikura Electric Cable Co., Ltd. Agent Patent attorney Takeuchi Shusan I Zukori 1 Zhang O (o) 4! Loss (if, 57μWL) (d cod-) Should be 1 circle 1st place

Claims (1)

【特許請求の範囲】[Claims] (1)ゲルマニウム、リン等の石英ガラスの膨脹係数を
増加させる添加物を多量に添加することにより、その屈
折率分布が制御された石英系ガラスからなるコア部材の
回りに、石英ガラスの屈折率を高々0.2%程度変化さ
せる程度の添加物を含む石英ガラスからなるクラッド部
材が設けられた光ファイバ母材を次式(1)で示される
線引張力以上で線引きすることを特徴とする光ファイバ
の製造方法。 t≧(β_コ_ア−β_ク_ラ_ッ_ド)×E×S式(
1) t:線引張力 β_コ_ア:常温から除冷温度までのコアガラスの熱膨
脹係数 β_ク_ラ_ッ_ド:常温からコアガラスの除冷温度ま
でのクラッドガラスの熱膨脹係数E:クラッドガラスの
ヤング率 S:クラッドガラスの断面積
(1) By adding a large amount of additives such as germanium and phosphorus that increase the expansion coefficient of silica glass, the refractive index distribution of silica glass is controlled. The method is characterized in that an optical fiber base material provided with a cladding member made of quartz glass containing an additive that changes by at most 0.2% is drawn with a drawing tension equal to or higher than the drawing tension expressed by the following formula (1). Method of manufacturing optical fiber. t≧(β_core_ar−β_core_rod)×E×S formula (
1) t: Wire drawing tension β Core: Coefficient of thermal expansion of the core glass from room temperature to slow cooling temperature β Clad: Coefficient of thermal expansion of cladding glass from room temperature to slow cooling temperature E: Young's modulus S of clad glass: Cross-sectional area of clad glass
JP63285748A 1988-11-14 1988-11-14 Optical fiber manufacturing method Expired - Lifetime JP2767439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285748A JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285748A JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH02133333A true JPH02133333A (en) 1990-05-22
JP2767439B2 JP2767439B2 (en) 1998-06-18

Family

ID=17695540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285748A Expired - Lifetime JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2767439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098804A1 (en) * 2000-06-20 2001-12-27 Deutsche Telekom Ag Optical waveguide based on quartz glass and method for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145043A (en) * 1981-03-05 1982-09-07 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS6131328A (en) * 1984-07-23 1986-02-13 Furukawa Electric Co Ltd:The Optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145043A (en) * 1981-03-05 1982-09-07 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS6131328A (en) * 1984-07-23 1986-02-13 Furukawa Electric Co Ltd:The Optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098804A1 (en) * 2000-06-20 2001-12-27 Deutsche Telekom Ag Optical waveguide based on quartz glass and method for the production thereof

Also Published As

Publication number Publication date
JP2767439B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US5446820A (en) Mode field diameter conversion optical fiber
EP0540042B1 (en) High power acceptable optical fiber and fabrication method thereof
US4804247A (en) Quartz glass optical fiber
JP4663277B2 (en) Optical fiber and manufacturing method thereof
CN111505762B (en) High-precision polarization maintaining optical fiber and preparation method thereof
WO1996030788A1 (en) Optical waveguide
US4838916A (en) Method for making single-polorization, single mode optical fibers
US7689084B2 (en) Optical fiber and a method of making
JPH02133333A (en) Production of optical fiber
JP2005055795A (en) Polarization holding optical fiber and optical wavelength converter using the same
GB2096788A (en) Single polarization single-mode optical fibers
WO2023240880A1 (en) Multiband attenuation flattened fiber
JP2753426B2 (en) Method for manufacturing high input optical fiber and preform thereof
JP3434428B2 (en) Optical fiber for communication and method of manufacturing the same
GB2123810A (en) Fabrication of single polarization optical fibres
WO2021076309A1 (en) Optical fibers having core regions with reduced alpha profiles
CN100343704C (en) Optical fiber having low splice loss and method for making it
JPH04362603A (en) Low-loss optical fiber
JPH0344604A (en) 1.55mum dispersion shift fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS63185839A (en) Wire drawing of optical fiber
JP2985627B2 (en) Dispersion compensating fiber and manufacturing method thereof
JPS61251539A (en) Optical fiber
JPH02113205A (en) Optical fiber
Prideaux Optical Fiber Reliability: A Review

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11