JPH02113205A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPH02113205A
JPH02113205A JP63266110A JP26611088A JPH02113205A JP H02113205 A JPH02113205 A JP H02113205A JP 63266110 A JP63266110 A JP 63266110A JP 26611088 A JP26611088 A JP 26611088A JP H02113205 A JPH02113205 A JP H02113205A
Authority
JP
Japan
Prior art keywords
core
refractive index
silica glass
fiber
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63266110A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Akira Wada
朗 和田
Masahiro Horikoshi
雅博 堀越
Toshiyuki Tsuji
敏之 辻
Ryoji Suzuki
亮二 鈴木
Taiichiro Tanaka
大一郎 田中
Suehiro Miyamoto
宮本 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63266110A priority Critical patent/JPH02113205A/en
Publication of JPH02113205A publication Critical patent/JPH02113205A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the low-loss fiber by forming a core part which constitutes a rod for the optical fiber to the viscosity lower by at least one than the viscosity of the other part. CONSTITUTION:This optical fiber has the quartz glass core contg. the halogen ions to increase the refractive of the quartz glass and the 1st quartz glass clad formed of fluorine to the refractive index lower than the refractive index of the core. Further, the fiber consists of the 2nd quartz glass clad which is equal in the refractive index to or slightly larger than the 1st quartz glass clad and the quartz glass jacket formed by doping the halogen ions to increase the refractive index of the quartz glass at the ratio higher than the ratio at which the halogen ions are incorporated in the core. The core when the fiber is formed is then eventually solidified after at least the part of the high viscosity and the remaining of stresses in the core is obviated. The low-loss fiber is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、石英ガラス系光ファイバか参#キ七賢量寡
=に関するもので、低損失なものを提供する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silica glass-based optical fiber, and provides a low-loss fiber.

(従来の技術) 石英ガラス系光ファイバの一般的製法として、VADや
外付は法によってコアークラッド型の母材を製造し、こ
れを線引きしてファイバ化するという方法がある。
(Prior Art) As a general method for manufacturing silica glass optical fibers, there is a method of manufacturing a core clad type base material using a VAD or external attachment method, and then drawing the base material to form a fiber.

(発明が解決しようとする課題) 光ファイバの伝送損失の極限値は、石英ガラスを主成分
とするものにおいては、波長1.55μ鴫付近にあり、
理論的には0.14dB/km程度といわれている。し
かしながら現実の光ファイバの伝送損失は、種々の損失
の影響を受は工業生産的には平均値0.18 dB/k
m程度が実のところである。このように損失が安定しな
い一つの原因として種々の残留応力が存在することがわ
かってきた0本発明者の検討によると、特に純粋SiO
□ガラスコアーFドープSingガラスクラッドからな
る光ファイバの場合、この残留応力の観点から非常に不
利であることが判明した。その理由は次のように考えら
れる。光フアイバ母材を溶融して光ファイバに細く線引
きする状態を考えると一旦溶融したガラスが固化すると
き、先ず粘度が高いコアガラスが固化する。一般にコア
の断面積は非常に小さいので線引張力の大部分がコアに
かかることになる。このときクラッドガラスは未だ溶融
状態にあるため張力がかからない0次いでファイバが下
方に引かれて行くと温度が低下してきてクラッドガラス
も固化する。しかしクラッドガラスは単に固化するだけ
で線引張力を分担することはほとんどない、なぜなら既
に線引張力の大部分をコアが分担しているからである。
(Problems to be Solved by the Invention) The ultimate value of the transmission loss of an optical fiber is around a wavelength of 1.55μ for optical fibers whose main component is silica glass.
Theoretically, it is said to be about 0.14 dB/km. However, the transmission loss of actual optical fibers is affected by various losses, and in industrial production, the average value is 0.18 dB/k.
In reality, it is about m. It has been found that various residual stresses exist as one of the reasons why the loss is not stabilized.According to the study of the present inventors, it has been found that
□In the case of an optical fiber consisting of a glass core F-doped Sing glass cladding, it was found that it is very disadvantageous from the viewpoint of this residual stress. The reason may be as follows. Considering the state in which an optical fiber base material is melted and drawn into a thin optical fiber, when the molten glass solidifies, the core glass, which has a high viscosity, solidifies first. Generally, the cross-sectional area of the core is very small, so most of the drawing tension is applied to the core. At this time, since the clad glass is still in a molten state, no tension is applied to it, and as the fiber is pulled downward, the temperature decreases and the clad glass also solidifies. However, the clad glass merely solidifies and hardly shares the drawing tension, because the core already shares most of the drawing tension.

このようにコアガラスに異常な応力が発生すると様々な
不具合が予想される。一つには引張り応力により、コア
ガラスの屈折率が低下して光ファイバとして正常に動作
するように予め設定したコアークラッド間の比屈折率差
が維持できないことである。特に単一モード光ファイバ
ではファークラッド間の屈折率差が十分でないと、僅か
な曲がりが光ファイバに生じただけで、伝播している光
が外部に洩れてしまうことがあるからである。さらに、
このような残留応力により、コアガラスのミクロな屈折
率の揺らぎが増大して伝播光の散乱が増すおそれがある
When abnormal stress is generated in the core glass in this way, various problems are expected. One problem is that the refractive index of the core glass decreases due to tensile stress, making it impossible to maintain the relative refractive index difference between the core and cladding, which is set in advance so that the fiber can operate normally as an optical fiber. In particular, in a single mode optical fiber, if the difference in refractive index between the far claddings is not sufficient, even a slight bend in the optical fiber may cause propagating light to leak to the outside. moreover,
Such residual stress may increase microscopic fluctuations in the refractive index of the core glass and increase scattering of propagating light.

(課題を解決するための手段) この発明は、以上の観点から先ず第1に光ファイバのコ
アガラスに集中しがちな線引き時の残留応力を他の部分
に分担させようとするもので、そのために光フアイバ母
材の組成を粘度の点から考慮する。
(Means for Solving the Problems) From the above points of view, the present invention first aims to distribute the residual stress during drawing, which tends to concentrate on the core glass of an optical fiber, to other parts. The composition of the optical fiber base material is considered in terms of viscosity.

すなわち、石英ガラスの屈折率を上昇させるハロゲンイ
オンを含む石英ガラス系コアと、フッ素によりその屈折
率が低くされてなる石英ガラス系クラッドと、石英ガラ
スの屈折率を上昇させるハロゲンイオンの量が前記コア
に含まれる量よりも少くドープされてなる石英ガラス系
ジャケットとから光ファイバを構成した。
That is, a quartz glass core containing halogen ions that increase the refractive index of silica glass, a silica glass cladding whose refractive index is lowered by fluorine, and the amount of halogen ions that increase the refractive index of silica glass are as described above. The optical fiber is composed of a silica glass-based jacket doped with a smaller amount than that contained in the core.

また、光ファイバを構成するクラッドの熱膨張係数をコ
アのそれよりも大きくして、仮に線引き時にコアが他の
部分よりも先に固化してコアに残留応力が生じた場合に
おいても、その後にクラッドが固化する時に収縮してコ
アに生じた残留応力を相殺するようにする。
In addition, by making the thermal expansion coefficient of the cladding that makes up the optical fiber larger than that of the core, even if the core solidifies earlier than other parts during drawing and residual stress occurs in the core, it is possible to When the cladding solidifies, it contracts to offset the residual stress generated in the core.

すなわち、石英ガラスの屈折率を上昇させるハロゲンイ
オンを含む石英ガラス系コアと、フッ素によりその屈折
率が低くされてなる第1の石英ガラス系クラッドと、フ
ッ素とリンを含み、その屈折率が第1の石英ガラス系ク
ラッドと等しいか。
That is, a silica glass core containing halogen ions that increases the refractive index of silica glass, a first silica glass cladding whose refractive index is lowered by fluorine, and a first silica glass cladding containing fluorine and phosphorus whose refractive index is Is it equivalent to the silica glass cladding in No. 1?

やや大きくされてなる第2の石英ガラス系クラッドと、
石英ガラスの屈折率を上昇させるハロゲンイオンの量が
前記コアに含まれる量よりも多くドープされてなる石英
ガラス系ジャケットとから光ファイバを構成した。
a second quartz glass cladding made slightly larger;
An optical fiber was constructed from a silica glass jacket doped with a larger amount of halogen ions, which increase the refractive index of silica glass, than the amount contained in the core.

なお、石英ガラスの屈折率を上昇させるハロゲンイオン
としては、塩素、臭素があげられる。そしてコアに含ま
れるハロゲンイオンの量と、石英ガラス系ジャケットに
含まれるハロゲンイオンの量の相対的差は0.1重量%
程度あればよく、かつ絶対量としては前者に0.3重量
%以上、後者に0.2重量%以下含まれるように調整す
ればよい。
Note that halogen ions that increase the refractive index of quartz glass include chlorine and bromine. The relative difference between the amount of halogen ions contained in the core and the amount of halogen ions contained in the silica glass jacket is 0.1% by weight.
The absolute amount may be adjusted so that the former contains 0.3% by weight or more and the latter contains 0.2% by weight or less.

(実施例) まず、第1図に示すVAD法により、垂直に支持された
出発部材lの下端にバーナ2を対向させ、このバーナ2
内に5iC14をl OOsccm 、Otを5SLM
 、 Haをl OSLM供給し、得られるSiO□ガ
ラス微粒子を出発部材lの下端に堆積させて直径4cm
 、長さ25 craの5iOiガラス微粒子焼結体3
とした6次いでこの焼結体3を1200℃に維持された
炉内に導いて脱水処理した。なお、この時炉内にSOC
lm を100 cc 7分、Heを 5.000 c
c 7分供給した。引続いて炉温度を昇温しで最高温度
が1.550℃になし、この脱水処理された焼結体3を
炉内に導入して直径20 a+a+ 、長さ130 a
rmのコア用透明ガラスロッドとした。この時炉内に5
OC1*を200 cc 7分、Heを5.000αし
′分供給した。かくして、塩素が0.5重量%含まれた
コアロッドが得られた6次にこのコアロッドを4o+膳
直径。
(Example) First, by the VAD method shown in FIG.
5iC14 in lOOsccm, Ot in 5SLM
, Ha is supplied by l OSLM, and the obtained SiO□ glass fine particles are deposited on the lower end of the starting member l to a diameter of 4 cm.
, 5iOi glass particle sintered body 3 with length 25 cra
Then, this sintered body 3 was introduced into a furnace maintained at 1200° C. and subjected to dehydration treatment. At this time, there is SOC in the furnace.
100 cc of lm for 7 minutes, 5.000 c of He
c Supplied for 7 minutes. Subsequently, the furnace temperature was raised to a maximum temperature of 1.550°C, and this dehydrated sintered body 3 was introduced into the furnace to a diameter of 20 a+a+ and a length of 130 a.
It was made into a transparent glass rod for the core of rm. At this time, there are 5
200 cc of OC1* was supplied for 7 minutes, and He was supplied for 5.000 α' minutes. In this way, a core rod containing 0.5% by weight of chlorine was obtained. 6 Next, this core rod was made to have a diameter of 4o + diameter.

に延伸したのちその周りに外付は法によりSiO□から
なるガラス微粒子を60 mm厚に堆積させ、1500
℃に維持されたフッ素含有ガス炉内に導入して20 f
f1m厚さの透明ガラスクランド層を形成した。
After stretching it to a thickness of 60 mm, fine glass particles made of SiO□ were deposited around it by an external method to a thickness of 150 mm.
It was introduced into a fluorine-containing gas furnace maintained at 20 f.
A transparent glass gland layer with a thickness of f1 m was formed.

次にこのコアークラッド型ロッドの周りに再度外付は法
により5iOiからなるガラス微粒子を5i1m厚に堆
積させ、しかるのち透明ガラス化してジャケット層とし
た。この時、炉内最高温度は1520℃、炉内へはSO
Clgを50cc/分、 Heを5.000cc 7分
供給した。かくしてジャケット層には0.2重量%の塩
素が含まれていた。こうして得られたコアークラッド−
ジャケット型母材をファイバ化した。第2図は得られた
ファイバの屈折率分布を示す、また、第3図は同ファイ
バおよび従来ファイバの損失波長特性を示す。図から明
らかなように、この発明によるファイバは、従来ファイ
バと比較して20%以上低損失であり、優れた特性を示
していることがわかる。
Next, glass fine particles of 5iOi were deposited again around this core clad rod to a thickness of 5i1m by the external method, and then made into transparent glass to form a jacket layer. At this time, the maximum temperature inside the furnace is 1520℃, and the SO
Clg was supplied at 50 cc/min and He was supplied at 5.000 cc/min for 7 minutes. The jacket layer thus contained 0.2% by weight chlorine. The core clad thus obtained
The jacket type base material was made into fiber. FIG. 2 shows the refractive index distribution of the obtained fiber, and FIG. 3 shows the loss wavelength characteristics of the fiber and the conventional fiber. As is clear from the figure, it can be seen that the fiber according to the present invention has a lower loss of 20% or more compared to the conventional fiber, and exhibits excellent characteristics.

(実施例2) 実施例1のクラッドとジャケットとの間に、ジャケット
形成の前に第2のクラッドを形成する以外、実施例1と
同様にして母材を作りファイバ化した。第2のクラッド
の形成方法は、外付は法であり先に形成されたコアーク
ラッド型ロッドの周りにSiO□(90重量%) −P
ies (t 0重量%)とからなるガラス微粒子を2
01101厚に堆積させ、1400℃に維持されたフッ
素含有ガス炉内に導入して10m+a厚の第2のSin
g Pa5s −F組成の透明ガラスクラットとした。
(Example 2) A base material was made and fiberized in the same manner as in Example 1, except that a second cladding was formed between the cladding and the jacket in Example 1 before forming the jacket. The second method of forming the cladding is the external method, and SiO□ (90% by weight) -P is formed around the previously formed core cladding rod.
ies (t 0% by weight)
01101 thickness and introduced into a fluorine-containing gas furnace maintained at 1400°C to form a second 10m+a thick film.
g A transparent glass crat having a Pa5s-F composition was used.

この第2のクラッドの屈折率はSiO□のそれよりやや
小さ(しである、第4図は得られたファイバの屈折率分
布を示す、また、このファイバは最低損失0.16 d
B / ka+ (波長1.55μm)であり、優れた
特性を示している。
The refractive index of this second cladding is slightly smaller than that of SiO
B/ka+ (wavelength: 1.55 μm), showing excellent characteristics.

(発明の効果) この発明は、以上のように光フアイバ用のロッドを構成
するコア部の粘度が他の部分の少な(とも一つより小さ
くされているので、ファイバ化したときにコアは少なく
ともこの粘度が高い部分よりも後に固化することになり
、コア内部に応力が残留することがなく、以って低損失
のファイバを得ることができる。またクラッドを2層に
して、その一つをコアよりも熱膨張係数を大にするよう
にすれば、仮にコアが先に固化してその内部に応力を残
留させたとしても、この熱膨張係数の大なるクラッド部
が固化するときに収縮してコアを相対的に圧縮し、結果
としてコアの残留応力を相殺するため低損失のファイバ
が得られる。
(Effects of the Invention) As described above, the viscosity of the core portion constituting the rod for an optical fiber is made smaller than that of the other portions, so that when it is made into a fiber, the core portion has at least one viscosity. This solidification occurs later than the high viscosity part, and no stress remains inside the core, making it possible to obtain a fiber with low loss.Furthermore, the cladding is made of two layers, one of which is If the coefficient of thermal expansion is made larger than that of the core, even if the core solidifies first and stress remains inside, the cladding, which has a larger coefficient of thermal expansion, will shrink when solidified. This relatively compresses the core, resulting in a low-loss fiber because the residual stress in the core is offset.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例における一工程を示す説明図
、第2図はこの発明の第1実施例によるファイバの屈折
率分布を示すグラフ、第3図は同ファイバと従来のファ
イバの損失波長特性を示すグラフ、第4図はこの発明の
第2実施例によるファイバの屈折率分布を示すグラフで
ある。 図において、l:出発部材、2:バーナ、3:SiO□
ガラス微粒子焼結体。 づ 7i、1  図
Fig. 1 is an explanatory diagram showing one step in the embodiment of the present invention, Fig. 2 is a graph showing the refractive index distribution of the fiber according to the first embodiment of the invention, and Fig. 3 is the loss of the same fiber and a conventional fiber. FIG. 4 is a graph showing wavelength characteristics, and FIG. 4 is a graph showing a refractive index distribution of a fiber according to a second embodiment of the present invention. In the figure, l: starting member, 2: burner, 3: SiO□
Glass fine particle sintered body. zu7i, 1 figure

Claims (2)

【特許請求の範囲】[Claims] (1)石英ガラスの屈折率を上昇させるハロゲンイオン
を含む石英ガラス系コアと、フッ素によりその屈折率が
低くされてなる石英ガラス系クラッドと、石英ガラスの
屈折率を上昇させるハロゲンイオンの量が前記コアに含
まれる量よりも少くドープされてなる石英ガラス系ジャ
ケットとからなることを特徴とする光ファイバ。
(1) A silica glass core containing halogen ions that increase the refractive index of silica glass, a silica glass cladding whose refractive index is lowered by fluorine, and an amount of halogen ions that increase the refractive index of silica glass. An optical fiber comprising a silica glass-based jacket doped in a smaller amount than the amount contained in the core.
(2)石英ガラスの屈折率を上昇させるハロゲンイオン
を含む石英ガラス系コアと、フッ素によりその屈折率が
低くされてなる第1の石英ガラス系クラッドと、フッ素
とリンを含み、その屈折率が第1の石英ガラス系クラッ
ドと等しいか、やや大きくされてなる第2の石英ガラス
系クラッドと、石英ガラスの屈折率を上昇させるハロゲ
ンイオンの量が前記コアに含まれる量よりも少くドープ
されてなる石英ガラス系ジャケットとからなることを特
徴とする光ファイバ。
(2) a silica glass core containing halogen ions that increase the refractive index of silica glass; a first silica glass cladding whose refractive index is lowered by fluorine; A second silica glass cladding is equal to or slightly larger than the first silica glass cladding, and is doped with a smaller amount of halogen ions that increase the refractive index of the silica glass than the amount contained in the core. An optical fiber comprising a quartz glass jacket.
JP63266110A 1988-10-24 1988-10-24 Optical fiber Pending JPH02113205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266110A JPH02113205A (en) 1988-10-24 1988-10-24 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266110A JPH02113205A (en) 1988-10-24 1988-10-24 Optical fiber

Publications (1)

Publication Number Publication Date
JPH02113205A true JPH02113205A (en) 1990-04-25

Family

ID=17426457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266110A Pending JPH02113205A (en) 1988-10-24 1988-10-24 Optical fiber

Country Status (1)

Country Link
JP (1) JPH02113205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148465A (en) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd Optical fiber, method for manufacturing optical fiber preform and method for manufacturing optical fiber
US6681072B2 (en) 2000-08-28 2004-01-20 Sumitomo Electric Industries Co., Ltd. Optical fiber, method of making optical fiber preform, and method of making optical fiber
JP2019505837A (en) * 2015-12-22 2019-02-28 コーニング インコーポレイテッド Bromine-doped optical fiber and method for producing the bromine-doped optical fiber
WO2023238619A1 (en) * 2022-06-10 2023-12-14 住友電気工業株式会社 Glass material and optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148465A (en) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd Optical fiber, method for manufacturing optical fiber preform and method for manufacturing optical fiber
US6681072B2 (en) 2000-08-28 2004-01-20 Sumitomo Electric Industries Co., Ltd. Optical fiber, method of making optical fiber preform, and method of making optical fiber
US6892019B2 (en) 2000-08-28 2005-05-10 Sumitomo Electric Industries, Ltd. Optical fiber, method of making optical fiber preform, and method of making optical fiber
JP2019505837A (en) * 2015-12-22 2019-02-28 コーニング インコーポレイテッド Bromine-doped optical fiber and method for producing the bromine-doped optical fiber
WO2023238619A1 (en) * 2022-06-10 2023-12-14 住友電気工業株式会社 Glass material and optical fiber

Similar Documents

Publication Publication Date Title
EP0125828A1 (en) Optical fiber and process for producing the same
US5956448A (en) Optical fiber waveguide
JPH0449082B2 (en)
WO2019172197A1 (en) Optical fiber
JPH08254601A (en) Optical constitutional element to transmit light beam
JPS59174541A (en) Optical fiber maintaining plane of polarization
GB2292468A (en) Manufacturing method for an optical waveguide
JPH02113205A (en) Optical fiber
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS61191543A (en) Quartz base optical fiber
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JPS63189809A (en) Single mode optical fiber
JP2835957B2 (en) Optical fiber, method of manufacturing the same, and optical fiber tap using the optical fiber
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JP2800960B2 (en) Viscous matching method of optical fiber and viscous matching optical fiber
JPS62116902A (en) Wide-band low dispersion optical fiber
JPS63185839A (en) Wire drawing of optical fiber
JP2855531B2 (en) Quartz glass-based high-strength optical fiber and method of manufacturing the same
JP2002214467A (en) Method for fusion splicing optical fiber
JPH1045421A (en) Production of optical fiber
JPH04362603A (en) Low-loss optical fiber
JPS61132531A (en) Production of optical fiber
JPS63313103A (en) Image fiber
JPH03248103A (en) Optical fiber for image fiber
JPH0378707A (en) High-strength optical fiber