JPH04362603A - Low-loss optical fiber - Google Patents

Low-loss optical fiber

Info

Publication number
JPH04362603A
JPH04362603A JP3137948A JP13794891A JPH04362603A JP H04362603 A JPH04362603 A JP H04362603A JP 3137948 A JP3137948 A JP 3137948A JP 13794891 A JP13794891 A JP 13794891A JP H04362603 A JPH04362603 A JP H04362603A
Authority
JP
Japan
Prior art keywords
core
softening point
optical fiber
clad
point temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3137948A
Other languages
Japanese (ja)
Inventor
Katsusuke Tajima
克介 田嶋
Masaharu Ohashi
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3137948A priority Critical patent/JPH04362603A/en
Publication of JPH04362603A publication Critical patent/JPH04362603A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Abstract

PURPOSE:To reduce the tension which remains in an optical fiber core at the time of drawing and to obtain the low-loss optical fiber by providing a core part and a clad part which surrounds the core part and equalizing the softening points of the core part and clad part to each other. CONSTITUTION:Residual stress is generated by drawing the core 1 and clad 2 which differ in softening point temperature with a large tensile force. For the reduction of the residual stress, the core 1 and clad 2 are drawn with a small tensile force or equalized in softening point temperature. It is, however, difficult to draw the core 1 and clad 2 with the small tensile force since transmission loss varies in the length direction of the optical fiber owing to variation in the tension. For the purpose, the core part 1 and clad part 2 are equalized in softening point temperature to eliminate the remaining stress in the core clad which causes an increase in loss after the drawing and also make structure irregularity loss small. Here, GeO2, P2O5, etc., which can reduce only the softening point temperature without exerting any adverse influence upon transmission characteristics are suitable as a dopant.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は低損失石英系光ファイバ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss silica-based optical fiber.

【0002】0002

【従来の技術】将来の超長距離大容量光伝送システムに
向けて、石英系光ファイバの低損失化が検討されている
。これまでに実用化されたものとしてコア部にGeO2
 を添加したSiO2 クラッド単一モード光ファイバ
,コア部にSiO2 を用いたF・SiO2 クラッド
単一モード光ファイバ等がある。
2. Description of the Related Art For future ultra-long-distance, high-capacity optical transmission systems, efforts are being made to reduce the loss of silica-based optical fibers. GeO2 in the core has been put into practical use so far.
There are SiO2-clad single-mode optical fibers doped with SiO2, and F.SiO2-clad single-mode optical fibers using SiO2 in the core.

【0003】GeO2 をコアにドープした光ファイバ
は製造法が確立され、波長1.55μm帯で0.2dB
/km以下の伝送損失のものができている。一方、Si
O2 をコアとして用いた光ファイバはレイリー散乱係
数が小さいため、石英系光ファイバの中では最も低損失
のものが得られるものと期待されている。これまでに波
長1.55μmで0.154dB/kmと理論限界に近
いものが得られている。図3(a)に従来例のコア部に
SiO2 を用いたF・SiO2 クラッド単一モード
光ファイバの軟化点温度の分布を、図3(b)にその屈
折率分布を示す。コアの軟化点温度は1580度、クラ
ッドの軟化点温度は1400度程度である。しかし、こ
の光ファイバにおいては線引き工程において溶融状態か
ら固化する際に軟化点温度の高いSiO2 ガラスコア
から先に固化し、細径のコア部に線引き張力が負担され
、残留応力が凍結される。その結果線引き張力の増加と
ともに伝送損失が増加する。また、線引きにより発生す
るコアクラッド界面の構造不整による損失も張力を加え
ると大きくなる。図4に線引き張力と伝送損失の関係を
示す。ここでは残留応力と構造不整による影響を加えて
ある。このように線引き張力を増加させると伝送損失は
増加する。張力95gで線引きを行うと伝送損失が1.
39dB/kmとなる。現在、作製されている光ファイ
バの伝送損失の平均値は約0.18dB/kmであるが
理論限界よりかなり大きい。
[0003] The manufacturing method for optical fiber doped with GeO2 in the core has been established, and it has a 0.2 dB performance in the 1.55 μm wavelength band.
A transmission loss of less than /km is available. On the other hand, Si
Optical fibers using O2 as a core have a small Rayleigh scattering coefficient, and are therefore expected to have the lowest loss among silica-based optical fibers. So far, a value close to the theoretical limit of 0.154 dB/km has been obtained at a wavelength of 1.55 μm. FIG. 3(a) shows the softening point temperature distribution of a conventional F.SiO2 clad single mode optical fiber using SiO2 in the core, and FIG. 3(b) shows its refractive index distribution. The core has a softening point temperature of 1580 degrees, and the cladding has a softening point temperature of about 1400 degrees. However, when this optical fiber is solidified from a molten state in the drawing process, the SiO2 glass core, which has a high softening point temperature, solidifies first, and the drawing tension is borne by the small diameter core portion, and the residual stress is frozen. As a result, transmission loss increases as the drawing tension increases. Furthermore, when tension is applied, losses due to structural irregularities at the core-clad interface caused by wire drawing become larger. Figure 4 shows the relationship between wire drawing tension and transmission loss. Here, the effects of residual stress and structural irregularities are added. Increasing the drawing tension in this way increases the transmission loss. When drawing with a tension of 95g, the transmission loss is 1.
It becomes 39dB/km. The average transmission loss of currently manufactured optical fibers is about 0.18 dB/km, which is considerably larger than the theoretical limit.

【0004】0004

【発明が解決しようとする課題】コア部にSiO2 を
用いたF・SiO2 クラッド単一モード光ファイバは
、上述したように伝送損失が線引き条件によって変わる
ことが報告されている。
It has been reported that the transmission loss of an F.SiO2 clad single mode optical fiber using SiO2 in the core varies depending on the drawing conditions as described above.

【0005】本発明の目的は光ファイバコア中に残留す
る線引き時の張力を低減させ、低損失光ファイバを提供
することにある。
An object of the present invention is to reduce the tension remaining in the optical fiber core during drawing, and to provide a low-loss optical fiber.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、コア部と該コア部を囲むクラッド部と
を有し、前記コア部とクラッド部のそれぞれの軟化点温
度が等しいことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a core portion and a cladding portion surrounding the core portion, and the softening point temperature of each of the core portion and the cladding portion is Characterized by equality.

【0007】ここで、前記コア部またはクラッド部の少
なくとも一方が屈折率および軟化点温度を調整するため
のドーパントとして、GeO2 ,P2 O5 ,Fお
よびAl2O3 の少なくとも一種を含有している。
[0007] Here, at least one of the core portion or the cladding portion contains at least one of GeO2, P2O5, F, and Al2O3 as a dopant for adjusting the refractive index and softening point temperature.

【0008】[0008]

【作用】残留応力はコアとクラッドの軟化点温度が異な
ったものを高張力で線引きすることにより生じる。残留
応力を小さくするために低張力で線引きするか、コアク
ラッドの軟化点温度を一致させる必要がある。低張力で
線引きする場合には張力の変化によって伝送損失が光フ
ァイバ長手方向に変わるために線引きが難しい。
[Operation] Residual stress is generated by drawing a core and cladding with different softening point temperatures under high tension. In order to reduce residual stress, it is necessary to draw the wire at low tension or to match the softening point temperature of the core cladding. When drawing with low tension, it is difficult to draw the optical fiber because the transmission loss changes in the longitudinal direction of the optical fiber as the tension changes.

【0009】本発明では、コア部とクラッド部の軟化点
温度を一致させて、線引き後の損失増加の原因となるコ
アクラッド中の応力が残留せず、構造不整損失も小さく
なるようにしたものである。このためのドーパントとし
て伝送特性に悪影響を与えずに、軟化点温度のみを小さ
くできるGeO2 ,P2O5 ,F,Al2 O3 
等が適している。
[0009] In the present invention, the softening point temperatures of the core part and the cladding part are made to be the same, so that stress in the core cladding, which causes increased loss after drawing, does not remain and structural irregularity loss is also reduced. It is. As dopants for this purpose, GeO2, P2O5, F, Al2 O3 can reduce only the softening point temperature without adversely affecting the transmission characteristics.
etc. are suitable.

【0010】よく知られているようにSiO2 の屈折
率はGeO2 ,P2 O5 およびAl2O3 の添
加によって増加し、Fの添加によって減少する。そして
これらの添加によってSiO2 の軟化点温度は低下す
る。従ってコアまたはクラッドの少なくとも一方にこれ
らのドーパントの少なくとも一種を添加することによっ
て、コアとクラッドに所望の比屈折率差を与え、しかも
両者の軟化点温度を等しくすることができる。
As is well known, the refractive index of SiO2 increases by adding GeO2, P2 O5 and Al2O3, and decreases by adding F. These additions lower the softening point temperature of SiO2. Therefore, by adding at least one of these dopants to at least one of the core and the cladding, a desired relative refractive index difference can be given to the core and the cladding, and the softening point temperatures of both can be made equal.

【0011】コア部とクラッド部の軟化点温度を一致さ
せることによりSiO2 コアに集中していた線引き時
の張力がクラッド中にも分散される。このため、線引き
後にコアに残留する張力は小さくなり線引き後の光ファ
イバ伝送損失は線引き張力によらず一定となる。また、
光ファイバ線引き時に生じるコアクラッド界面の構造不
整損失もコアクラッドの軟化点温度を合わせることによ
り小さくすることができる。
[0011] By matching the softening point temperatures of the core and cladding parts, the tension during drawing that was concentrated in the SiO2 core is also dispersed in the cladding. Therefore, the tension remaining in the core after drawing is small, and the optical fiber transmission loss after drawing is constant regardless of the drawing tension. Also,
Structural irregularity loss at the core-clad interface that occurs during optical fiber drawing can also be reduced by adjusting the softening point temperature of the core-clad.

【0012】0012

【実施例】以下、本発明を実施例により説明するが、本
発明はこの実施例によって何ら制限されるものではない
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

【0013】実施例1 図1(a)に本発明の光ファイバの一実施例の軟化点温
度を、図1(b)にその屈折率分布を示す。本実施例で
は、VAD法で光ファイバプリフォームを作製した。コ
ア部にはP2 O5 が添加され、そのSiO2に対す
る比屈折率差Δ(Δ=(n−n2 )/n2 )×10
0,nはコアまたはクラッドの屈折率,n2 はSiO
2 の屈折率)は0.1%、クラッド部にはFが添加さ
れ、そのSiO2 に対する比屈折率差Δは−0.2%
であった。軟化点温度はコア部,クラッド部ともに約1
420度であった。
Example 1 FIG. 1(a) shows the softening point temperature of an example of the optical fiber of the present invention, and FIG. 1(b) shows its refractive index distribution. In this example, an optical fiber preform was manufactured using the VAD method. P2O5 is added to the core part, and the relative refractive index difference Δ(Δ=(n-n2)/n2)×10 with respect to SiO2
0, n is the refractive index of the core or cladding, n2 is SiO
2) is 0.1%, the cladding part is doped with F, and the relative refractive index difference Δ with respect to SiO2 is -0.2%.
Met. The softening point temperature is approximately 1 for both the core and cladding parts.
It was 420 degrees.

【0014】この光ファイバの波長1.55μmにおけ
る伝送損失を線引き張力を変化させて測定した結果を図
2に示す。コアとクラッドの軟化点温度を一致させると
コアに応力が残留しない。このため、図2に示すように
、光ファイバの伝送損失は線引き時の張力に依存しない
。また、レイリー散乱係数を損失波長特性から求めたと
ころ、0.65dB/km・μm4 であり、SiO2
 のみをコアに使った光ファイバのレイリー散乱係数0
.75dB/km・μm4 に比べて小さかった。コア
クラッド間の構造不整損失を損失波長特性から求めたと
ころ0.01dB/kmとなり、この値は線引き時の張
力に依存しない一定値であった。
FIG. 2 shows the results of measuring the transmission loss of this optical fiber at a wavelength of 1.55 μm by varying the drawing tension. If the softening point temperatures of the core and cladding are matched, no stress will remain in the core. Therefore, as shown in FIG. 2, the transmission loss of the optical fiber does not depend on the tension during drawing. In addition, when the Rayleigh scattering coefficient was determined from the loss wavelength characteristics, it was 0.65 dB/km・μm4, and SiO2
Rayleigh scattering coefficient of optical fiber using only
.. It was smaller than 75dB/km・μm4. The structural irregularity loss between the core and cladding was determined from the loss wavelength characteristics and was found to be 0.01 dB/km, which was a constant value that did not depend on the tension during drawing.

【0015】実施例2 VAD法を用いて光ファイバプリフォームを作製した。 コア部にはGeO2 を添加し、そのSiO2 に対す
る比屈折率差Δは0.1%とした。一方、クラッド部に
はFを添加し、そのSiO2 に対する比屈折率差Δは
−0.2%とした。コア部,クラッド部ともに軟化点温
度が1420度であった。この母材をカーボン炉で約2
000度の温度で線引きして伝送損失を測定したところ
、波長1.55μmにおいて0.165dB/kmと良
好な値を示した。線引き中に光ファイバに加わる張力を
変えても伝送損失は変化しなかった。
Example 2 An optical fiber preform was produced using the VAD method. GeO2 was added to the core part, and the relative refractive index difference Δ with respect to SiO2 was set to 0.1%. On the other hand, F was added to the cladding part, and the relative refractive index difference Δ with respect to SiO2 was set to -0.2%. The softening point temperature of both the core part and the clad part was 1420 degrees. This base material is heated in a carbon furnace for approximately 2
When the wire was drawn at a temperature of 1,000 degrees Celsius and the transmission loss was measured, it showed a good value of 0.165 dB/km at a wavelength of 1.55 μm. Changing the tension applied to the optical fiber during drawing did not change the transmission loss.

【0016】以上の実施例では、ドーパントとしてP2
 O5 ,F,GeO2 を使った場合について説明し
たが、その他のドーパントとして、Al2 O3 も少
量使えば軟化点温度を下げる効果があり有効である。さ
らに、これらドーパントは単独でなく、同時に複数のド
ーパントを使用することも可能である。また、以上の実
施例ではコアとクラッドの軟化点温度が等しい場合のみ
を説明したが、コアの軟化点温度がクラッドの軟化点温
度より低い場合にも、コアとクラッドの面積比が大きく
なれば線引き時の張力はほとんどクラッド中に残留する
ため、コアの軟化点温度がクラッドの軟化点温度に比べ
て高い場合に比べて伝送特性に与える影響は少ない。
In the above embodiments, P2 was used as the dopant.
The case where O5, F, and GeO2 are used has been described, but if a small amount of Al2O3 is used as another dopant, it is effective because it has the effect of lowering the softening point temperature. Furthermore, it is also possible to use not only a single dopant, but also a plurality of dopants at the same time. In addition, in the above embodiments, only the case where the core and cladding have the same softening point temperature has been explained, but even if the core softening point temperature is lower than the cladding softening point temperature, if the area ratio of the core and cladding increases, Since most of the tension during drawing remains in the cladding, it has less influence on transmission characteristics than when the core's softening point temperature is higher than the cladding's softening point temperature.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
コアクラッドの軟化点温度を一致させることによりコア
部に集中する応力を低減することができる。その結果、
線引き時の張力に依存せずに一定の伝送損失の光ファイ
バを作製することができる。
[Effects of the Invention] As explained above, according to the present invention,
By matching the softening point temperatures of the core cladding, the stress concentrated in the core can be reduced. the result,
Optical fibers with constant transmission loss can be produced without depending on the tension during drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光ファイバの軟化点温度の分布および
屈折率の分布を示す図である。
FIG. 1 is a diagram showing the softening point temperature distribution and refractive index distribution of the optical fiber of the present invention.

【図2】本発明の光ファイバの線引き張力を変化させた
時の伝送損失を示す図である。
FIG. 2 is a diagram showing transmission loss when the drawing tension of the optical fiber of the present invention is changed.

【図3】従来の光ファイバの軟化点温度の分布および屈
折率の分布を示す図である。
FIG. 3 is a diagram showing the softening point temperature distribution and refractive index distribution of a conventional optical fiber.

【図4】従来の光ファイバの線引き張力を変化させた時
の伝送損失を示す図である。
FIG. 4 is a diagram showing transmission loss when the drawing tension of a conventional optical fiber is changed.

【符号の説明】[Explanation of symbols]

1  コア 2  クラッド 1 Core 2 Clad

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  コア部と該コア部を囲むクラッド部と
を有し、前記コア部とクラッド部のそれぞれの軟化点温
度が等しいことを特徴とする低損失光ファイバ。
1. A low-loss optical fiber comprising a core portion and a cladding portion surrounding the core portion, the core portion and the cladding portion having the same softening point temperature.
【請求項2】  前記コア部またはクラッド部の少なく
とも一方が屈折率および軟化点温度を調整するためのド
ーパントとして、GeO2 ,P2O5 ,FおよびA
l2 O3 の少なくとも一種を含有していることを特
徴とする請求項1に記載の低損失光ファイバ。
2. At least one of the core portion and the cladding portion contains GeO2, P2O5, F, and A as a dopant for adjusting the refractive index and softening point temperature.
The low-loss optical fiber according to claim 1, characterized in that it contains at least one type of l2O3.
JP3137948A 1991-06-10 1991-06-10 Low-loss optical fiber Pending JPH04362603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137948A JPH04362603A (en) 1991-06-10 1991-06-10 Low-loss optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137948A JPH04362603A (en) 1991-06-10 1991-06-10 Low-loss optical fiber

Publications (1)

Publication Number Publication Date
JPH04362603A true JPH04362603A (en) 1992-12-15

Family

ID=15210456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137948A Pending JPH04362603A (en) 1991-06-10 1991-06-10 Low-loss optical fiber

Country Status (1)

Country Link
JP (1) JPH04362603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148465A (en) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd Optical fiber, method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2003270470A (en) * 2002-03-08 2003-09-25 Fitel Usa Corp Dispersion compensation fiber with reduced connection loss, and method for manufacturing the same
CN106536434A (en) * 2014-06-24 2017-03-22 康宁股份有限公司 Low attenuation fiber with viscosity matched core and inner clad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148465A (en) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd Optical fiber, method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2003270470A (en) * 2002-03-08 2003-09-25 Fitel Usa Corp Dispersion compensation fiber with reduced connection loss, and method for manufacturing the same
CN106536434A (en) * 2014-06-24 2017-03-22 康宁股份有限公司 Low attenuation fiber with viscosity matched core and inner clad
US10228509B2 (en) 2014-06-24 2019-03-12 Corning Incorporated Low attenuation fiber with viscosity matched core and inner clad

Similar Documents

Publication Publication Date Title
JPH0727443Y2 (en) Silica-based single-mode optical fiber waveguide
US6205279B1 (en) Single mode optical fiber having multi-step core structure and method of fabricating the same
JPH0651147A (en) Mode filed diameter conversion fiber
EP0763213A1 (en) Optical waveguide
US6603914B2 (en) Dispersion compensating fiber with reduced splice loss and methods for making same
EP0610973B1 (en) Optical fiber coupler
JP2005055795A (en) Polarization holding optical fiber and optical wavelength converter using the same
JPH04362603A (en) Low-loss optical fiber
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JP2800960B2 (en) Viscous matching method of optical fiber and viscous matching optical fiber
JP2724828B2 (en) Optical fiber
JP3948055B2 (en) Optical fiber manufacturing method and optical fiber
KR20000010597A (en) Elliptical core fiber with axially decreasing aspect ratio and method
JPS63185839A (en) Wire drawing of optical fiber
JP2006512266A (en) Low splice loss optical fiber and method of manufacturing the optical fiber
JP2985627B2 (en) Dispersion compensating fiber and manufacturing method thereof
JPH0344604A (en) 1.55mum dispersion shift fiber
JPH1045421A (en) Production of optical fiber
JP2767439B2 (en) Optical fiber manufacturing method
JP3850235B2 (en) Dispersion compensating optical fiber, optical fiber transmission line using the same, and method for manufacturing the dispersion compensating optical fiber
JP2764210B2 (en) Spinning method of single mode optical fiber
JPH06171978A (en) Quartz optical fiber
JPS62291605A (en) Optical fiber
JPH063548A (en) Optical fiber
JPH04254431A (en) Quartz optical fiber preform and method for drawing this material