JP2767439B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JP2767439B2
JP2767439B2 JP63285748A JP28574888A JP2767439B2 JP 2767439 B2 JP2767439 B2 JP 2767439B2 JP 63285748 A JP63285748 A JP 63285748A JP 28574888 A JP28574888 A JP 28574888A JP 2767439 B2 JP2767439 B2 JP 2767439B2
Authority
JP
Japan
Prior art keywords
glass
core
clad
refractive index
drawing tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63285748A
Other languages
Japanese (ja)
Other versions
JPH02133333A (en
Inventor
良三 山内
伸 斉藤
朗 和田
大一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63285748A priority Critical patent/JP2767439B2/en
Publication of JPH02133333A publication Critical patent/JPH02133333A/en
Application granted granted Critical
Publication of JP2767439B2 publication Critical patent/JP2767439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/224Mismatching coefficients of thermal expansion [CTE] of glass layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コアに比較的多量のゲルマニウムやリン
等の添加物を含む石英系光ファイバ母材を低損失で線引
する方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of drawing a quartz optical fiber preform containing a relatively large amount of an additive such as germanium or phosphorus in a core with low loss. is there.

(従来の技術) コアに比較的多量の添加物を含む1.55μm伝送用分散
シフトファイバのような光ファイバを母材から線引して
得るとき、従来は比較的高い線引張力で線引きする方が
伝送損失の低減を図ることができるとされていた。
(Prior art) When an optical fiber such as a dispersion-shifted fiber for 1.55 μm transmission containing a relatively large amount of additives in a core is obtained by drawing from a base material, conventionally, a method of drawing with a relatively high drawing tension is used. It was described that transmission loss could be reduced.

(発明が解決しようとする課題) しかしながら、その線引張力の大きさについては具体
的にはどの程度の線引張力で線引きすればいいのかはっ
きりした目安がなく、むやみに高い線引張力で線引きす
ると線引き後の光ファイバの機械的強度が低下し、僅か
な引張り応力をかけただけで破断に至るということがあ
った。このような線引張力と機械的強度との関係は、線
引きするときの母材の加熱条件や周囲の雰囲気に影響さ
れ必ずしも一義的に決定されるものではないが、線引き
条件を固定して得られた結果を図に示すと第1図に示す
とおりである。外径125μm、長さ20mの石英系分散シフ
トファイバ100本の引張試験の結果である。また、損失
に関しては様々な1.55μm分散シフトファイバ母材を線
引きした結果、第2図および第3図のようなヒストグラ
ムが得られた。第2図は、線引張力を一定の35gに固定
してファイバ化したときの損失度数分布を示し、第3図
は、線引張力を60〜150gに変化させてファイバ化したと
きの損失度数分布を示している。しかして1.55μm伝送
はもともと石英系ガラスファイバの理論損失が低い損失
波長を示すものであり、高い伝送損失ではその価値は半
減する。第2、3図の結果はこの点を考えると決して満
足するものではない。
(Problems to be Solved by the Invention) However, regarding the magnitude of the drawing tension, there is no clear guide as to how much drawing tension should be drawn. As a result, the mechanical strength of the optical fiber after drawing is reduced, and the optical fiber may be broken by applying a slight tensile stress. Such a relationship between the drawing tension and the mechanical strength is influenced by the heating conditions of the base material at the time of drawing and the surrounding atmosphere and is not necessarily determined uniquely, but is obtained by fixing the drawing conditions. The results obtained are shown in FIG. 1 as shown in FIG. It is a result of a tensile test of 100 quartz-based dispersion-shifted fibers having an outer diameter of 125 μm and a length of 20 m. Regarding the loss, as a result of drawing various 1.55 μm dispersion-shifted fiber preforms, histograms as shown in FIGS. 2 and 3 were obtained. FIG. 2 shows a loss frequency distribution when a fiber is formed by fixing the drawing tension to a constant 35 g, and FIG. 3 shows a loss frequency when the fiber is formed by changing the drawing tension to 60 to 150 g. The distribution is shown. Thus, 1.55 μm transmission originally indicates a wavelength at which the theoretical loss of a silica-based glass fiber is low, and its value is reduced by half at a high transmission loss. The results in FIGS. 2 and 3 are far from satisfactory given this point.

(課題を解決するための手段) この発明は、以上の観点からゲルマニウム、リン等の
石英ガラスの熱膨脹係数を増加させる添加物を多量に添
加することにより、その屈折率分布が制御された石英系
ガラスからなるコア部材の周りに、添加物を含んでも石
英ガラスの屈折律を高々0.2%程度変化させる程度含ん
でなる石英ガラスからなるクラッド部材が設けられた光
ファイバ母材を次式(1)で示される線引張力以上で線
引きすることを特徴とする光ファイバの製造方法にあ
る。
(Means for Solving the Problems) In view of the above, the present invention provides a quartz-based glass whose refractive index distribution is controlled by adding a large amount of an additive such as germanium or phosphorus which increases the thermal expansion coefficient of quartz glass. An optical fiber preform having a cladding member made of quartz glass provided around a core member made of glass so as to change the refractive index of quartz glass by about 0.2% at most even with an additive is represented by the following formula (1). A method for producing an optical fiber, characterized in that the optical fiber is drawn with a drawing tension or higher.

t≧(βコア−βクラッド)×E×S 式(1) t:線引張力 βコア:コアガラスの常温から徐冷温度までの熱膨脹 βクラッド:常温からコアガラスの徐冷温度までのクラ
ッドガラスの熱膨脹 E:クラッドガラスのヤング率 S:クラッドガラスの断面積 なお、この発明におけるコア部材に添加される多量のド
ーパント量とは石英ガラスの屈折率を少なくとも0.5%
程度増加させたものをいい、例えばGeO2のみを添加する
場合では7.5wt%以上をいう。
t ≧ (β core−β clad) × E × S Formula (1) t: Drawing tension β core: Thermal expansion of core glass from normal temperature to slow cooling temperature β cladding: Cladding from normal temperature to slow cooling temperature of core glass Thermal expansion of glass E: Young's modulus of clad glass S: Cross-sectional area of clad glass The large amount of dopant added to the core member in the present invention means that the refractive index of quartz glass is at least 0.5%.
It means that the amount is increased to an extent, for example, 7.5 wt% or more when only GeO 2 is added.

またクラッド部材は純粋石英ガラスかもしくがGeO2
P2O5、F、CI等のドーパントを添加したとしてもその屈
折率を石英ガラスのそれよりも0.2%程度変化させる程
度であり、コア中心部材とクラッド部材との熱膨脹係数
の差が少くとも2×10-4程度に大きく異なるものを対象
としている。
The clad member may be pure quartz glass or GeO 2 ,
Even if dopants such as P 2 O 5 , F, and CI are added, the refractive index is changed by about 0.2% from that of quartz glass, and the difference in thermal expansion coefficient between the core center member and the clad member is at least small. It is intended for objects that differ greatly by about 2 × 10 -4 .

(作用) 以上の構成とすることにより、コアとクラッドとの熱
膨脹の差を、クラッドガラスに線引き中に生じる引張り
歪でもって相殺することができるため得られる光ファイ
バの極低損失化を図ることができる。
(Operation) With the above configuration, the difference in thermal expansion between the core and the clad can be offset by the tensile strain generated during the drawing of the clad glass, thereby achieving an extremely low loss of the obtained optical fiber. Can be.

なお、必要とする線引張力は、様々な分散シフトファ
イバで検討した結果、最も熱膨脹が高い部分のゲルマニ
ウムの添加量で決定されることがわかった。さらにゲル
マニウムを主たるドーパントとしてなるこの種のファイ
バにおいては式(1)で示される値以上では損失が全く
変化しないことがわかった。このような線引張力と伝送
損失の関係については、必ずしも十分な物理的、科学的
な説明ができるわけではないが現在のところ次のように
推定される。すなわち、ゲルマニウムのようなドーパン
トを添加されたガラスでは、その構造の中にもともと屈
折率の揺らぎを内在しており、その揺らぎの大きさと光
の波長との関係によってはこれがいわゆるレーリ散乱と
なる。しかしこのようなガラスに引張り応力を与えると
局所的に光弾性定数が異なるため屈折率の揺らぎはさら
に増大する。しかし圧縮方向でこの揺らぎはむしろ抑制
される方向に働くためこのときは損失増加はもたらさな
い。よって式(1)以上の線引張力ではファイバの伝送
損失は安定を保つことができる。
In addition, as a result of investigating various dispersion shift fibers, it was found that the required drawing tension was determined by the addition amount of germanium in the portion having the highest thermal expansion. Further, it has been found that in this kind of fiber using germanium as a main dopant, the loss does not change at all beyond the value represented by the equation (1). The relationship between the drawing tension and the transmission loss can not always be explained sufficiently physically and scientifically, but is currently estimated as follows. That is, in a glass to which a dopant such as germanium is added, fluctuation of the refractive index is inherent in the structure, and this is what is called Rayleigh scattering depending on the relationship between the magnitude of the fluctuation and the wavelength of light. However, when a tensile stress is applied to such a glass, the fluctuation of the refractive index further increases because the photoelastic constant is locally different. However, in the compression direction, this fluctuation acts rather in a suppressed direction, so that no loss increases at this time. Therefore, the transmission loss of the fiber can be kept stable with the drawing tension of the equation (1) or more.

このような式(1)にもとずいて母材を線引きする場
合には、残る問題は高張力線引きに伴うファイバガラス
の機械的強度の低下であるが、これを防ぐには線引き雰
囲気を清浄にしてガラス表面付近のダストのレベルを下
げることや、同雰囲気の湿度を下げてガラス表面に発生
する傷の伸長を防止するなどの通常の配慮をすれば事は
足りる。
When the base material is drawn based on the formula (1), the remaining problem is a decrease in the mechanical strength of the fiber glass due to the high tension drawing, but in order to prevent this, the drawing atmosphere must be cleaned. It is sufficient to take ordinary measures such as reducing the dust level in the vicinity of the glass surface, and reducing the humidity of the atmosphere to prevent the growth of scratches generated on the glass surface.

さらに上記式(1)は線引速度に依存しないので800m
/分といった最近の高速化においても何等問題なく対応
できる。
Furthermore, since the above equation (1) does not depend on the drawing speed, it is 800 m
Even recent speedups such as / minute can be handled without any problems.

(実施例) 第4図に示す屈折率分布をもった低損失の分散シフト
ファイバを得るために、式(1)にもとずいて線引張力
を求めた。第4図において、1は半径方向に急峻に変化
する屈折率分布を有する第1のコアでその径は約4μ
m、2は、第1のコアの回りに位置する外径約14μmの
第2のコアで、第1のコアの最外周部の屈折率と等しい
一定の屈折率を持っている。3は、第2のコアの回りに
位置する外径125μmのクラッドで、第2のコアよりや
や低い屈折率を持っている。具体的には第1のコア1と
クラッド3との屈折率差△は1.0%、第2のコア2とク
ラッド3との屈折率差は0.13%で、この屈折率の変化は
Geを添加することで与えられている。今、βコアについて
見ると、上記のようにコアは第1と第2とからなってい
て屈折率に分布を持っているがおおよそ△=1.0%と見
ると、これに対応するSiO2−GeO2径ガラスのGeO2濃度は
第5図より15wt%である。よって、このガラスの除冷点
は第6図より約980℃で与えられる。一方このガラスの1
000℃における対SiO2熱膨脹係数すなわち(βコア−β
クラッド)は第7図より約5.0×10-4で与えられる。そ
こで980℃における値に換算すると(βコア−β
クラッド)は比例で求めて(5.0×10-4)×{(980−2
0)/(1000−20)}=4.9×10-4となる。またSはクラ
ッドの断面積がコアのそれに比較して十分に大きいと見
て約0.012mm、EはSiO2で約7000kg/mmである。以上を式
(1)に代入すると、t≧41gとなる。すなわち41g以上
の線引張力で線引きすればいいことを示している。以上
の計算にのっとって上記母材を線引き張力50gで線引き
したところ0.205dB/Kmの低損失ファイバが得られた。
Example In order to obtain a low-loss dispersion-shifted fiber having a refractive index distribution shown in FIG. 4, a drawing tension was obtained based on the equation (1). In FIG. 4, reference numeral 1 denotes a first core having a refractive index distribution which changes sharply in the radial direction, and has a diameter of about 4 μm.
m and 2 are second cores located around the first core and having an outer diameter of about 14 μm, and have a constant refractive index equal to the refractive index of the outermost peripheral portion of the first core. Reference numeral 3 denotes a cladding having an outer diameter of 125 μm which is located around the second core and has a refractive index slightly lower than that of the second core. Specifically, the refractive index difference の between the first core 1 and the clad 3 is 1.0%, and the refractive index difference between the second core 2 and the clad 3 is 0.13%.
It is given by adding Ge. Now, regarding the β core , as described above, the core is composed of the first and the second and has a distribution of the refractive index. However, when it is considered that △ = 1.0%, the corresponding SiO 2 —GeO The GeO 2 concentration of the two- diameter glass is 15 wt% from FIG. Therefore, the cooling point of this glass is given at about 980 ° C. from FIG. Meanwhile one of this glass
Coefficient of thermal expansion with respect to SiO 2 at 000 ° C., ie, (β core− β
The cladding is given by about 5.0 × 10 -4 from FIG. Therefore, when converted to a value at 980 ° C., (β core− β
The cladding is calculated in proportion (5.0 × 10 -4 ) × {(980-2
0) / (1000−20)} = 4.9 × 10 −4 . S is about 0.012 mm when the cross-sectional area of the clad is sufficiently large compared to that of the core, and E is about 7000 kg / mm in SiO 2 . Substituting the above into equation (1) gives t ≧ 41 g. In other words, it indicates that drawing should be performed with a drawing tension of 41 g or more. According to the above calculation, the base material was drawn with a drawing tension of 50 g, and a low-loss fiber of 0.205 dB / Km was obtained.

(発明の効果) この発明は、以上のようにコアとクラッドとの熱膨脹
の差が大きな母材を、所定の線引張力で線引きするもの
であるので、コアの熱膨脹をクラッドの線引き時の引張
り歪で相殺することができ、以って極低損失のファイバ
を得ることができるという利点を有する。
(Effects of the Invention) The present invention draws a base material having a large difference in thermal expansion between a core and a clad with a predetermined drawing tension as described above. There is an advantage that the fiber can be canceled out by the strain and an extremely low loss fiber can be obtained.

【図面の簡単な説明】 第1図は分散シフトファイバの線引張力と平均破断張力
との関係を示すグラフ、第2図は線引張力一定の下での
分散シフトファイバの伝送損失頻度類を示すヒストグラ
ム、第3図は線引張力を変化させたときの分散シフトフ
ァイバの伝送損失頻度数を示すヒストグラム、第4図は
分散シフトファイバの屈折率分布の一例を示す説明図、
第5図はSiO2へのGeO2のドープ量と純粋SiO2に対する相
対屈折率差を示すグラフ、第6図はSiO2へのGoO2のドー
プ量と同ガラスの徐冷点を示すグラフ、第7図はSiO2
のGeO2のドープ量とSiO2に対する相対熱膨脹を示すグラ
フ。 図において、1:第1のコアの屈折率、2:第2のコアの屈
折率、3:クラッドの屈折率。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the drawing tension and the average breaking tension of a dispersion-shifted fiber, and FIG. 2 shows the transmission loss frequency of the dispersion-shifted fiber under a constant drawing tension. FIG. 3 is a histogram showing the transmission loss frequency of the dispersion shifted fiber when the drawing tension is changed, FIG. 4 is an explanatory diagram showing an example of the refractive index distribution of the dispersion shifted fiber,
Figure 5 is a graph illustrating the relative refractive index difference with respect to the doping amount and purity of SiO 2 GeO 2 to SiO 2, FIG. 6 is a graph showing the anneal point of the doping amount of the same glass Goo 2 to SiO 2, graph Figure 7 is showing the relative thermal expansion with respect to the doping amount and SiO 2 of GeO 2 to SiO 2. In the figure, 1: the refractive index of the first core, 2: the refractive index of the second core, and 3: the refractive index of the cladding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 大一郎 千葉県佐倉市六崎1440番地 藤倉電線株 式会社佐倉工場内 (56)参考文献 特開 昭57−145043(JP,A) 特開 昭61−31328(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 37/00 - 37/16────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Daiichiro Tanaka 1440 Mutsuzaki, Sakura-shi, Chiba Pref. Fujikura Electric Cable Co., Ltd. Sakura Plant (56) References −31328 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03B 37/00-37/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ゲルマニウム、リン等の石英ガラスの膨張
係数を増加させる添加物を多量に添加することにより、
その屈折率分布が制御された石英ガラスからなるコア部
材の周りに、石英ガラスの屈折律を高々0.2%程度変化
させる程度の添加物を含む石英ガラスからなるクラッド
部材が設けられた光ファイバ母材を次式(1)で示され
る線引き張力以上で線引きすることを特徴とする光ファ
イバの製造方法。 t≧(βコア−βクラッド)×E×S 式(1) t:線引張力 βコア:常温から徐冷温度までのコアガラスの熱膨張 βクラッド:常温からコアガラスの徐冷温度までのクラ
ッドガラスの熱膨張 E:クラッドガラスのヤング率 S:クラッドガラスの断面積
(1) By adding a large amount of an additive such as germanium or phosphorus which increases the expansion coefficient of quartz glass,
An optical fiber preform having a quartz glass clad member containing an additive that changes the refractive index of quartz glass by at most about 0.2% around a core member made of quartz glass whose refractive index distribution is controlled. Is drawn with a drawing tension not less than the drawing tension represented by the following equation (1). t ≧ (β core−β clad) × E × S Formula (1) t: drawing tension β core: thermal expansion of core glass from normal temperature to slow cooling temperature β cladding: from normal temperature to slow cooling temperature of core glass Thermal expansion of clad glass E: Young's modulus of clad glass S: Cross-sectional area of clad glass
JP63285748A 1988-11-14 1988-11-14 Optical fiber manufacturing method Expired - Lifetime JP2767439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285748A JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285748A JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH02133333A JPH02133333A (en) 1990-05-22
JP2767439B2 true JP2767439B2 (en) 1998-06-18

Family

ID=17695540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285748A Expired - Lifetime JP2767439B2 (en) 1988-11-14 1988-11-14 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2767439B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030264A1 (en) * 2000-06-20 2002-01-03 Deutsche Telekom Ag Optical fiber based on quartz glass and method for its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145043A (en) * 1981-03-05 1982-09-07 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS6131328A (en) * 1984-07-23 1986-02-13 Furukawa Electric Co Ltd:The Optical fiber

Also Published As

Publication number Publication date
JPH02133333A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
EP0381473B1 (en) Polarization-maintaining optical fiber
JP3049697B2 (en) Mode field diameter conversion fiber
EP0294037B1 (en) Optical fibre attenuators
GB2221903A (en) Method of producing elliptic core type polarization-maintaining optical fibre
US5802235A (en) Dispersion compensating fiber and its manufacturing method
EP0540042B1 (en) High power acceptable optical fiber and fabrication method thereof
KR20000060053A (en) Optical Fiber in which residual mechanical stress is maximized and method for fabricating fiber gratings using the same
US4804247A (en) Quartz glass optical fiber
CN111505762B (en) High-precision polarization maintaining optical fiber and preparation method thereof
EP0763213A1 (en) Optical waveguide
US4838916A (en) Method for making single-polorization, single mode optical fibers
JP2767439B2 (en) Optical fiber manufacturing method
GB2096788A (en) Single polarization single-mode optical fibers
JPH10218635A (en) Production of optical fiber
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JP2582062B2 (en) Optical fiber drawing method
JP3434428B2 (en) Optical fiber for communication and method of manufacturing the same
JP2985627B2 (en) Dispersion compensating fiber and manufacturing method thereof
JPH04362603A (en) Low-loss optical fiber
Prideaux Optical Fiber Reliability: A Review
JPS61251539A (en) Optical fiber
JP2764210B2 (en) Spinning method of single mode optical fiber
JPH02113205A (en) Optical fiber
JPH04254431A (en) Quartz optical fiber preform and method for drawing this material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11