JPH02132763A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPH02132763A
JPH02132763A JP63285668A JP28566888A JPH02132763A JP H02132763 A JPH02132763 A JP H02132763A JP 63285668 A JP63285668 A JP 63285668A JP 28566888 A JP28566888 A JP 28566888A JP H02132763 A JPH02132763 A JP H02132763A
Authority
JP
Japan
Prior art keywords
less
separator
fuel cell
cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285668A
Other languages
Japanese (ja)
Inventor
Takatoshi Yoshioka
吉岡 孝利
Shigenobu Mori
誉延 森
Hiroshi Fukui
寛 福井
Kiyoshi Hiyama
清志 桧山
Takehiko Yoshida
武彦 吉田
Tsutomu Takahashi
務 高橋
Toshihiro Saito
斉藤 利弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63285668A priority Critical patent/JPH02132763A/en
Publication of JPH02132763A publication Critical patent/JPH02132763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To extend the life of a cell and enhance the performance of the cell, by using an alloy containing Ni, Mn, Fe, Si, S, C, and Cu in a specific ratio by weight to form at least one kind of components i.e., an electrode reinforcing member, a current collecting plate and a separator. CONSTITUTION:At least one kind of components i.e., a separator 5, a current collecting plate 4, and an electrode reinforcing member 8 is made of a material the main component of which is NiCu containing 63.0 to 70.0% of Ni, less than 2.5% of Mn, less than 2.5% of Fe, less than 0.5% of Si, less than 0.024% of S, less than 0.3% of C and Cu for the rest. This material is not only as excellent in its molten-salt resisting performance under anode gas corrosion conditions as pure Ni, pure copper, but also is high in its high-temperature strength and besides its electric resistance is as high as half the electric strength of austenite type stainless steel; it has therefore excellent characteristics of a cell member. Problems such as consumption of carbonate due to generation of scale oxide, and increase of electric resistance, are hence restrained. The life of the cell can thus be extended and also the performance of the cell enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な溶融炭酸塩型燃料電池に係り、特に高
性能,長寿命電池を得るのに好適な溶融炭酸塩型燃料電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel molten carbonate fuel cell, and particularly to a molten carbonate fuel cell suitable for obtaining a high performance, long-life battery.

〔従来の技術〕[Conventional technology]

近年、石油資源の問題に対して、省エネルギー機器の開
発研究が重要な問題となっている。これに対して、LN
G及び石炭ガスを利用する溶融塩型燃料電池は、省エネ
ルギー及び石油代替エネルギーをめざすものであり、新
エネルギー開発の一環をなす火力発電技術である。
In recent years, research and development of energy-saving equipment has become an important issue in response to oil resource issues. On the other hand, LN
Molten salt fuel cells that use G and coal gas aim to save energy and replace oil, and are a thermal power generation technology that is part of new energy development.

第1図は溶融炭酸塩型燃料電池の基本構成を示し、該電
池は、電解質体1と該電解質体1の両側に配設されたカ
ソード2及びアノード3電極と、該カソード2及びアノ
ード3電極の両側に集電板4が配設され、隼電板4の両
側にセパレータ5が配設されている。
FIG. 1 shows the basic configuration of a molten carbonate fuel cell. A current collecting plate 4 is disposed on both sides, and a separator 5 is disposed on both sides of the Hayabusa current plate 4.

集電板4は多孔板が用いられる。また、セパレータ5に
は溝状の複数のガス流路が形成されている。
A perforated plate is used as the current collector plate 4. Moreover, a plurality of groove-shaped gas flow paths are formed in the separator 5.

溶融塩型燃料電池は,炭酸リチウム(L izc O 
a)と炭酸カリウム( K xc O 3)等のアルカ
リ金属塩を電解質として.その融点以上の600〜75
0℃の温度域で作動させる燃料電池である。その電池は
,アノード側に燃料である水素又は水素含有ガスを供給
し、カソード側に酸化剤である空気十炭酸ガスを供給す
ることにより下記式の電気化学的反応が進行して発電が
行われる。
Molten salt fuel cells are made using lithium carbonate (LizcO).
a) and an alkali metal salt such as potassium carbonate (KxcO3) as an electrolyte. 600-75 above its melting point
This is a fuel cell that operates in a temperature range of 0°C. The battery generates electricity by supplying hydrogen or hydrogen-containing gas as a fuel to the anode side and supplying air and decacarbonate gas as an oxidizing agent to the cathode side, and the following electrochemical reaction proceeds: .

アノード(水素極): 2Hz+2Co8→C.022
−+2HzO+4e″″ ・(1) カソード(空気極): Oz+2COz+4 e→2C
Oa2−    ・・・(2) すなわち,アノードの水素と炭酸イオンが反応して水と
炭酸ガスを生成すると共に、電子を外部回路に放出する
。一方、カソードでは酸素と炭酸ガスが外部回路からの
電子イオンが反応して炭酸イオンを生成する。
Anode (hydrogen electrode): 2Hz+2Co8→C. 022
-+2HzO+4e″″ ・(1) Cathode (air electrode): Oz+2COz+4 e→2C
Oa2- (2) That is, hydrogen and carbonate ions at the anode react to generate water and carbon dioxide gas, and release electrons to the external circuit. On the other hand, at the cathode, oxygen and carbon dioxide gas react with electron ions from an external circuit to generate carbonate ions.

ここで、集電板4は、発電した電気を集める役目を有し
、セパレータ5は,前記集電板4で集電した電気を外部
へ取り出す役目を有している。
Here, the current collector plate 4 has the role of collecting the generated electricity, and the separator 5 has the role of taking out the electricity collected by the current collector plate 4 to the outside.

第2図は、電極の断面構造を示す。電極はNi焼結体で
形成されているが、その内部には電極を補強するための
金網状の電極補強材8が入っている。
FIG. 2 shows the cross-sectional structure of the electrode. The electrode is formed of a Ni sintered body, and a wire mesh-like electrode reinforcing material 8 is contained inside the electrode to reinforce the electrode.

第3図は、溶融炭酸塩型燃料電池の基本構造を示す。セ
パレータ5は、薄板を波形に加工され、ガス流路9が確
保されている。このような電池構造においては、シール
部10からのアノードガス及びカソードガスの洩れを防
止するため外部から圧縮力11が負荷される。
FIG. 3 shows the basic structure of a molten carbonate fuel cell. The separator 5 is a thin plate processed into a corrugated shape, and a gas flow path 9 is secured therein. In such a battery structure, a compressive force 11 is applied from the outside in order to prevent leakage of anode gas and cathode gas from the seal portion 10.

(発明が解決しようとする課題〕 第3図における集電板4及びセバレータ並びに第2図の
電極補強材8は、運転中には表面に溶融塩が付着し、し
かも650℃に加熱されるため、極めて厳しい腐食環境
に曝される。それに対しては、一般に耐食性の点からス
テンレス鋼例えばSOS3161Qが適用されている。
(Problems to be Solved by the Invention) Molten salt adheres to the surfaces of the current collector plate 4 and the separator in FIG. 3 and the electrode reinforcing material 8 in FIG. 2 during operation, and they are heated to 650°C. , are exposed to extremely severe corrosive environments.For this purpose, stainless steel such as SOS3161Q is generally used from the viewpoint of corrosion resistance.

しかしながらステンレス鋼といえども上記のような環境
では腐食が著しい。特に、水素,2酸化炭素及び水蒸気
の環境であるアノード側では腐食が著しい。
However, even stainless steel is subject to significant corrosion in the above environment. In particular, corrosion is significant on the anode side, which is in an environment of hydrogen, carbon dioxide, and water vapor.

しかるに、上記集電板4,セバレータ5及び電極補強材
4が腐食すると、腐食生成物に電解質が吸収され電解質
の損耗をきたす。そのため、電池の寿命を短くする問題
が生じている。
However, when the current collector plate 4, the separator 5, and the electrode reinforcing material 4 corrode, the electrolyte is absorbed by the corrosion products, resulting in loss of the electrolyte. Therefore, there is a problem of shortening the battery life.

更に、腐食生成物は電気抵抗が高いため,例えばセパレ
ータの腐食が著しい場合は集電板4との間で電気的な接
触ロスを起すため、出力低下の原因となる。
Further, since the corrosion products have high electrical resistance, for example, if the separator is severely corroded, electrical contact loss occurs between the separator and the current collector plate 4, which causes a decrease in output.

本発明の目的は,セパレータ5,集電板4及び電極補強
材8の高温耐食性を向上させた溶融炭酸塩型燃料電池を
提供するにある。
An object of the present invention is to provide a molten carbonate fuel cell in which the separator 5, current collector plate 4, and electrode reinforcing material 8 have improved high-temperature corrosion resistance.

〔課題を解決するための手段〕[Means to solve the problem]

電池アノード腐食環境を模擬して、市販のオーステナイ
ト及びフエライト系ステンレス鋼,Ni基合金,鉄基合
金,Co基合金,炭素鋼,純銅及び純Niを用いて、電
池のアノード側腐食環境を模擬した環境で耐溶融塩性試
験を行った。その結果、純銅及び純Niはほとんど腐食
が認められず、他の合金材料に比べて耐゛溶融性が著し
く優れていることが判明した。
The battery anode corrosion environment was simulated using commercially available austenitic and ferritic stainless steels, Ni-based alloys, iron-based alloys, Co-based alloys, carbon steel, pure copper, and pure Ni. Molten salt resistance test was conducted in the environment. As a result, it was found that pure copper and pure Ni showed almost no corrosion and had significantly superior melting resistance compared to other alloy materials.

しかし,純Cu,純Niは、高温強度が低いためセパレ
ータ5,集電板4,電極補強材8には適用できない。そ
れは第1図の外部圧縮圧11が電池全体が負荷されると
セパレータ5,集電板4及び電極補強材にも応力が作用
する。例えば、セパレータ5の高温強度が低い場合には
、波形がつぶれてしまい、ガス流路9が確保されないば
かりでなく、それに関連して集電板4,電極2及び電解
質板1も落ち込み、発電不能となる。
However, pure Cu and pure Ni cannot be used for the separator 5, current collector plate 4, and electrode reinforcing material 8 because of their low high-temperature strength. This is because when the external compression pressure 11 shown in FIG. 1 is applied to the entire battery, stress also acts on the separator 5, the current collector plate 4, and the electrode reinforcing material. For example, if the high-temperature strength of the separator 5 is low, the waveform will collapse, and not only will the gas flow path 9 not be secured, but the current collector plate 4, electrode 2, and electrolyte plate 1 will also collapse, making it impossible to generate electricity. becomes.

そこで、上記の基礎実験で得られた知見を基にして、本
発明に至った。
Therefore, the present invention was achieved based on the knowledge obtained from the above basic experiments.

〔作用〕[Effect]

純Ni及び純銅の著しく優れた耐食性を活かし、更に高
温強度を高めるために、Niと銅の合金を適用するもの
である。Niと銅は完全固溶体を作り高温強度が高い。
An alloy of Ni and copper is used to take advantage of the extremely excellent corrosion resistance of pure Ni and pure copper and to further increase high-temperature strength. Ni and copper form a complete solid solution and have high high temperature strength.

本発明はNi−Cu合金をアノード側セパレータ,集電
板,電極補強材に適用した溶融炭酸塩型燃料電池である
。このCuを含むNi基合金は特にJIS規格H366
1,3261が好ましく、重量でCu残り、Ni63.
0〜70.0%,Mn2.5%以下,Fe2.5%以下
,Si0.5  %以下、S0.024%以下,C0.
3%以下の成分で、NiとCuが主成分の材料である。
The present invention is a molten carbonate fuel cell in which a Ni--Cu alloy is applied to an anode side separator, a current collector plate, and an electrode reinforcing material. This Ni-based alloy containing Cu is especially JIS standard H366
1,3261 is preferred, with Cu remaining and Ni63.
0 to 70.0%, Mn 2.5% or less, Fe 2.5% or less, Si 0.5% or less, S 0.024% or less, C0.
It is a material whose main components are Ni and Cu, with a content of 3% or less.

この材料は、アノードガス腐食環境中における耐溶融塩
性が純Nil純銅と同様著しくすぐれているばかりでな
く、高温強度が高く,シかも電気抵抗が従来から適用さ
れてきたオーステナイト系ステンレス鋼の172と低く
、溶融塩型燃料電池用部材として優れた特性を有してい
る。
This material not only has excellent molten salt resistance in an anode gas corrosive environment, similar to that of pure Nil copper, but also has high high temperature strength and has a lower electrical resistance than 172% of the conventionally used austenitic stainless steel. It has excellent properties as a member for molten salt fuel cells.

本発明の電池は、第1図に示したごとく、セパレータ5
と外枠6がロー付によって接合されていることが好まし
い。それは、圧力11による機械的接触ではセパレータ
5と外枠6との間で電気的接触ロスを起すためである。
The battery of the present invention has a separator 5 as shown in FIG.
It is preferable that the outer frame 6 and the outer frame 6 are joined by brazing. This is because mechanical contact caused by the pressure 11 causes electrical contact loss between the separator 5 and the outer frame 6.

第4図は,本発明の変形例を示すものである。FIG. 4 shows a modification of the present invention.

すなわち、本発明では中央に本発明のNi−Cu合金よ
りも高温強度の高い合金の基材12を挟んで第4図(a
)のごとく両面又は第4図(b)のごとく片面にNi−
Cu合金13を張り合せたクラッド材をセパレータ又は
集電板へ適用してもよい。この材料は、表面のNi−C
u合金13で耐溶融塩性を上げ、基板13で高温強度を
更に高める。
That is, in the present invention, a base material 12 of an alloy having higher high temperature strength than the Ni-Cu alloy of the present invention is sandwiched in the center as shown in FIG.
) or on one side as shown in Figure 4(b).
A cladding material laminated with Cu alloy 13 may be applied to the separator or current collector plate. This material has a surface Ni-C
The u alloy 13 increases molten salt resistance, and the substrate 13 further increases high temperature strength.

本発明の電池に適用されるNi−Cu合金は、高温での
耐酸化性が弱いので、第4図のロー付工程の際の雰囲気
は、真空又は不活性ガス雰囲気で実施することが望まし
い。
Since the Ni--Cu alloy applied to the battery of the present invention has weak oxidation resistance at high temperatures, it is desirable that the atmosphere during the brazing step in FIG. 4 be a vacuum or an inert gas atmosphere.

〔実施例〕〔Example〕

第1表は実施例で用いた供試材の化学組成(重量%)を
示す.Nα1は比較材の純Niであり、Nα2は本発明
のJIS規格H3261材である。
Table 1 shows the chemical composition (wt%) of the test materials used in the examples. Nα1 is a comparison material of pure Ni, and Nα2 is a JIS standard H3261 material of the present invention.

第  1  表 第3表は650℃の引張試験結果を示す。引張第2表 腐食試験は、ガス雰囲気を電池のアノード側と同様H2
: COz= 8 0 : 2 0 (水蒸気3 cc
 / h添加)とし、アルミナルツボ内の混合炭酸塩に
試験片を浸漬し,650’C,300時間の条件で実施
した。
Tables 1 and 3 show the results of the tensile test at 650°C. In the tensile Table 2 corrosion test, the gas atmosphere was set to H2, the same as the anode side of the battery.
: COz = 8 0 : 2 0 (water vapor 3 cc
/h addition), the test piece was immersed in a mixed carbonate in an alumina crucible, and the test was carried out at 650'C for 300 hours.

第2表は腐食試験結果を示す.比較材の純Ni及び本発
明材は,上記のような過酷な腐食試験条件においてもほ
とんど腐食せず優れた耐食性を示す。なお,上記と同一
腐食試験条件で実施した従来から適用されてきたSUS
 3 1 614の減肉厚さは13.25μmであり、
前記2者に比べて著しく劣る。
Table 2 shows the corrosion test results. The comparative pure Ni material and the material of the present invention exhibit excellent corrosion resistance with almost no corrosion even under the severe corrosion test conditions described above. In addition, SUS, which has been applied in the past, was conducted under the same corrosion test conditions as above.
The thinning thickness of 3 1 614 is 13.25 μm,
It is significantly inferior to the above two.

第3表 試験温度=650″C 強さは、比較材の純Niが1 0 . 5 kg/ n
mn2−であるのに対して発明材は2 1 . 0 k
g/ mm2であり、本発明材が著しく高いことが明ら
かである。
Table 3 Test temperature = 650″C The strength of the comparison material pure Ni is 10.5 kg/n
mn2-, whereas the invention material has 21. 0k
g/mm2, and it is clear that the material of the present invention is significantly higher.

実証試験として、アノード側金属部材に第1表に示した
成分の波板セパレータ(0.3t),集電板(0,3t
),電極補強材(0.13φ)を適用し、第3図に示す
ような電池(電極面M:100m角)を作成して発電試
験を実施した。その結果、電池性能は従来よりも約10
%向上した。また、発電試験後上記アノード側に適用し
た金属部材の腐食及び変形を調査したが、前記実験結果
と同様極めて軽微であった。
As a demonstration test, a corrugated plate separator (0.3t) with the components shown in Table 1 and a current collector plate (0.3t) were installed on the anode side metal member.
), an electrode reinforcing material (0.13φ) was applied, a battery as shown in FIG. 3 (electrode surface M: 100 m square) was prepared, and a power generation test was conducted. As a result, battery performance is approximately 10% higher than before.
% improved. Further, after the power generation test, corrosion and deformation of the metal member applied to the anode side were investigated, but as with the experimental results described above, the corrosion and deformation were extremely slight.

以上のごとく、本発明材は、耐溶融塩性及び高温強度が
高いので、溶融炭酸塩型燃料電池用セパレータ5,集電
板4及び電極補強材8として好適であることが明らかで
ある。
As described above, it is clear that the material of the present invention has high molten salt resistance and high temperature strength, and is therefore suitable for the separator 5, current collector plate 4, and electrode reinforcing material 8 for molten carbonate fuel cells.

〔発明の効果〕〔Effect of the invention〕

本発明材は耐溶融塩性が著しく優れているので、酸化ス
ケール生成に伴う炭酸塩の消耗及び電気抵抗の増加など
の欠点が抑制されるため、電池の長寿命化及び高性能化
に対して効果がある。
Since the material of the present invention has extremely excellent molten salt resistance, drawbacks such as consumption of carbonate and increase in electrical resistance due to oxide scale formation are suppressed, so it is useful for extending battery life and improving performance. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融炭酸塩型燃料電池の組立斜視図,第2図は
アノード,カソード電極の断面図.第3図は同じく溶融
炭酸塩型燃料電池の構造を示す断面図、第4図は本発明
Ni−Cu合金クラッド材の断面図である。 1・・・電解質板、2・・・アノード電極,3・・・カ
ソード電極、4・・・集電板、5・・・セパレータ、6
・・・外枠、7・・・ガス供給管、S・・・電極補強材
、9・・・ガス流路、10・・・電池シール部、11・
・・外圧,12・・・基材、13−Ni−Cu合金。 書(自発) 訂正明細書
Figure 1 is an assembled perspective view of a molten carbonate fuel cell, and Figure 2 is a sectional view of the anode and cathode electrodes. FIG. 3 is a sectional view showing the structure of a molten carbonate fuel cell, and FIG. 4 is a sectional view of the Ni--Cu alloy cladding material of the present invention. DESCRIPTION OF SYMBOLS 1... Electrolyte plate, 2... Anode electrode, 3... Cathode electrode, 4... Current collector plate, 5... Separator, 6
...Outer frame, 7...Gas supply pipe, S...Electrode reinforcing material, 9...Gas flow path, 10...Battery seal portion, 11.
...External pressure, 12...Base material, 13-Ni-Cu alloy. (voluntary) Amended statement

Claims (1)

【特許請求の範囲】 1、溶融炭酸塩が含浸されている電解質板の上下に電極
補強材が含まれているアノード電極及びカソード電極が
配置され、該アノード及びカソード電極の上、下に集電
板が配置され、該集電板の上、下にセパレータが配置さ
れる構造を有する溶融炭酸塩型燃料電池において、金網
形状を有する電極補強材、打抜多孔形状を有する集電板
及び波板形状を有するセパレータの少なくとも一種が重
量で、Ni63.0〜70.0%、Mn1.25%以下
、Fe2.5%以下、Si0.5%以下、S0.024
%以下、C0.3%以下及び残部Cuを含む合金よりな
ることを特徴とする溶融炭酸塩型燃料電池。 2、特許請求範囲第1項において、前記合金によって構
成される波板セパレータが電池外枠にロー付によって接
合されている溶融炭酸、塩型燃料電池。 3、特許請求の範囲第2項において、波板セパレータと
ロー付接合される外枠が、ステンレス鋼、Ni基合金又
は鉄基合金である溶融炭酸塩型燃料電池。 4、特許請求の範囲第1項〜第3項のいずれかににおい
て、セパレータ及び集電板が表面にNi−Cu合金、内
面にステンレス鋼、Ni基合金、鉄基合金又はCo基合
金との張り合わされた構造のクラッド材である溶融炭酸
塩型燃料電池。
[Claims] 1. An anode electrode and a cathode electrode containing an electrode reinforcing material are arranged above and below an electrolyte plate impregnated with molten carbonate, and current is collected above and below the anode and cathode electrode. In a molten carbonate fuel cell having a structure in which a plate is arranged and a separator is arranged above and below the current collector plate, an electrode reinforcing material having a wire mesh shape, a current collector plate having a punched porous shape, and a corrugated plate At least one type of separator having a shape is, by weight, Ni 63.0 to 70.0%, Mn 1.25% or less, Fe 2.5% or less, Si 0.5% or less, S0.024
% or less, C0.3% or less, and the balance Cu. 2. The molten carbonate/salt fuel cell according to claim 1, wherein the corrugated plate separator made of the alloy is joined to the battery outer frame by brazing. 3. The molten carbonate fuel cell according to claim 2, wherein the outer frame to be brazed to the corrugated plate separator is made of stainless steel, a Ni-based alloy, or an iron-based alloy. 4. In any one of claims 1 to 3, the separator and the current collector plate have a Ni-Cu alloy on the surface and a stainless steel, Ni-based alloy, iron-based alloy, or Co-based alloy on the inner surface. Molten carbonate fuel cell is a cladding material with a laminated structure.
JP63285668A 1988-11-14 1988-11-14 Fused carbonate type fuel cell Pending JPH02132763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285668A JPH02132763A (en) 1988-11-14 1988-11-14 Fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285668A JPH02132763A (en) 1988-11-14 1988-11-14 Fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH02132763A true JPH02132763A (en) 1990-05-22

Family

ID=17694508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285668A Pending JPH02132763A (en) 1988-11-14 1988-11-14 Fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH02132763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752560A1 (en) * 2005-08-10 2007-02-14 Wärtsilä Schweiz AG Article protected against high temperature corrosion and reciprocating piston internal combustion engine or turbine or combustion unit containing the article.
EP2039412A2 (en) 2007-09-21 2009-03-25 Wärtsilä Schweiz AG Exhaust gas particle filter and method for manufacturing an exhaust gas particle filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173850A (en) * 1984-09-14 1986-04-16 Nippon Stainless Steel Co Ltd Ni-cu alloy having high weld crack resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173850A (en) * 1984-09-14 1986-04-16 Nippon Stainless Steel Co Ltd Ni-cu alloy having high weld crack resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752560A1 (en) * 2005-08-10 2007-02-14 Wärtsilä Schweiz AG Article protected against high temperature corrosion and reciprocating piston internal combustion engine or turbine or combustion unit containing the article.
JP2007051372A (en) * 2005-08-10 2007-03-01 Waertsilae Schweiz Ag Product including means for protecting high-temperature corrosion, reciprocal piston combustion engine having the product, turbine or combustion unit, and use of the means
EP2039412A2 (en) 2007-09-21 2009-03-25 Wärtsilä Schweiz AG Exhaust gas particle filter and method for manufacturing an exhaust gas particle filter

Similar Documents

Publication Publication Date Title
US6114058A (en) Iron aluminide alloy container for solid oxide fuel cells
US4160067A (en) Molten carbonate fuel cell corrosion inhibition
JPH0626126B2 (en) Fuel cell
JPWO2009060900A1 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JPS61216257A (en) Separator for fuel cell
CN107740143A (en) A kind of iron-based inert anode with ferrous acid lithium diaphragm and preparation method thereof, application
US20110079966A1 (en) Assembly comprising a seal inserted between two components of different mean thermal expansion coefficient, associated seal, application to sealing of hte electrolyzers and sofc fuel cells
JPH02132763A (en) Fused carbonate type fuel cell
JPS6124158A (en) Electrode of fused carbonate type fuel cell
Fisher et al. Corrosion and wetting behaviour of metals and steels with molten alkali carbonates
JPH04358044A (en) High corrosion resistant steel sheet for molten carbonate type fuel cell separator
JPH10321245A (en) Molten carbonate type fuel cell
JPH0992307A (en) Molten carbonate type fuel cell
JP3238812B2 (en) Metal materials for solid oxide fuel cells
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
US3496021A (en) Fuel cell comprising a foraminous electrode consisting essentially of nickel manganese alloy
CA2450703C (en) Separator for fuel cell
Baizeng et al. Surface modification of a MCFC anode by electrodeposition of niobium
JPH07183038A (en) Current collector for molten carbonate fuel cell
JPH01204365A (en) Anode of molten carbonate fuel cell
JPS6161373A (en) Manufacture of separator for molten carbonate fuel cell
JPH0544780B2 (en)
JP2513638B2 (en) Method for producing molten carbonate corrosion resistant material
JPH02119057A (en) Molten carbonate fuel cell
JPH06105614B2 (en) Separator material for molten carbonate fuel cell