JPS6161373A - Manufacture of separator for molten carbonate fuel cell - Google Patents

Manufacture of separator for molten carbonate fuel cell

Info

Publication number
JPS6161373A
JPS6161373A JP59180451A JP18045184A JPS6161373A JP S6161373 A JPS6161373 A JP S6161373A JP 59180451 A JP59180451 A JP 59180451A JP 18045184 A JP18045184 A JP 18045184A JP S6161373 A JPS6161373 A JP S6161373A
Authority
JP
Japan
Prior art keywords
separator
intermediate plate
fuel cell
carbonate fuel
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59180451A
Other languages
Japanese (ja)
Other versions
JPH0318314B2 (en
Inventor
Takatoshi Yoshioka
吉岡 孝利
Seishin Kirihara
桐原 誠信
Takehiko Yoshida
武彦 吉田
Kiyoshi Hiyama
清志 桧山
Masao Shiga
志賀 正男
Kenichi Usami
宇佐美 賢一
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59180451A priority Critical patent/JPS6161373A/en
Publication of JPS6161373A publication Critical patent/JPS6161373A/en
Publication of JPH0318314B2 publication Critical patent/JPH0318314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a compact, light cell having good corrosion resistant property by forming a protection film having good oxidizing corrosion resistant and reducing corrosion resistant properties on the surfaces of rib and outer frame. CONSTITUTION:Carbon steel, low alloy steel, stainless steel, chromium steel, or nickel base alloy steel is used as separator material. To make diffusion bonding, an intermediate material 8 is placed between an intermediate plate 6 and a rib 7, and they are heated at a temperature below the melting point of the intermediate plate 6, then pressed. A foil of the intermediate material is inserted between the intermediate plate 6 and rib 7, then they are processed for diffusion bonding. Thereby, a protection film having good oxidizing corrosion resistant and reducing corrosion resistant properties is formed on the surfaces of the rib and an outer frame. Therefore, a compact thin fuel cell having good corrosion resistant property can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は溶融炭酸塩型燃料電池のセパレータ特に、軽量
かつ耐食性の優れた長寿命の溶融炭酸塩型燃料電池用セ
パレータの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a separator for a molten carbonate fuel cell, and particularly to a method for producing a separator for a molten carbonate fuel cell that is lightweight, has excellent corrosion resistance, and has a long life.

〔発明の背景〕[Background of the invention]

近年、石油資源の枯渇及び価格の高騰に対拠して、省エ
ネルギー機器の開発・研究が重要になっている。その一
つとして、LNG及び石炭ガスを利用する溶融塩型燃料
電池は省エネルギー、石油代替エネルギーをめざすもの
でちシ、新エネルギー開発の一環をなす火力発電技術で
ある。
In recent years, the development and research of energy-saving equipment has become important in response to the depletion of oil resources and soaring prices. One of these is a molten salt fuel cell that uses LNG and coal gas, which aims to save energy and replace oil, and is a thermal power generation technology that is part of new energy development.

第4図は溶融炭酸塩型燃料電池の基本構成を示し、電解
質1、電極であるアノード2及びカソード3、セパレー
タ4、外枠9、ガス供給管10からなっている。溶融燃
料電池は炭酸リチューム(L iz (03)や炭酸カ
リウム(Kz COs )等のアルカリ金属炭酸塩を電
解質として、その融点以上の600〜750Cの温度域
で作動させる燃料電池であり、アノードに燃料である水
素あるいは水素含有ガスを供給し、カソードには酸化剤
でおる空気+炭酸ガスを供給することにより、次式に示
す電気化学的反応が進行して発電が行なわれるものであ
る。
FIG. 4 shows the basic structure of a molten carbonate fuel cell, which includes an electrolyte 1, an anode 2 and a cathode 3 as electrodes, a separator 4, an outer frame 9, and a gas supply pipe 10. A molten fuel cell is a fuel cell that uses an alkali metal carbonate such as lithium carbonate (Liz (03) or potassium carbonate (KzCOs) as an electrolyte and operates in a temperature range of 600 to 750C, which is above its melting point. By supplying hydrogen or a hydrogen-containing gas and supplying air as an oxidizing agent and carbon dioxide gas to the cathode, the electrochemical reaction shown in the following equation proceeds to generate electricity.

アノード(水素極): 2 H2+ 2 C0va−→2C○2+2H20+4
e−・・・・・・・・・(1) カソード(空気極): 02+2C02+4e−→2CO32−・・・・・・・
・・(2)(1)+(2) : 2Hz+Oz −2H
20・−・・・・・−・(8)セパレータ4は水素燃焼
ガス及び酸化剤ガスの分離及び集電、更には電池の保持
の役割を兼ねている。
Anode (hydrogen electrode): 2 H2+ 2 C0va-→2C○2+2H20+4
e-・・・・・・・・・(1) Cathode (air electrode): 02+2C02+4e-→2CO32-・・・・・・
...(2)(1)+(2): 2Hz+Oz -2H
20... (8) The separator 4 serves to separate hydrogen combustion gas and oxidant gas, collect current, and also serve to hold the battery.

第4図は単セルの電池の構成を示したが、実機では電圧
を高め大容量化にするために、電池を多数積層する。第
5図は積層化に伴って適用されるセパレータ4の基本構
造を示す。そのセパレータ4は一枚の板の表裏面にガス
流通用の構5が施されている。その表裏面においては前
述の(1)、(2)及び(3)式で示したごとく電気化
学的反応及びガス雰囲気がそれぞれ異なる。したがって
セパレータ材料としては600〜750Cでアノード側
における雰囲気(水素含有ガス)及びカソード側におけ
る雰囲気(酸化性ガス)の両者に対して腐食性の優れた
ものが要求される。このような条件において、耐食性の
優れた金属材料としては純Ni1純Crなどが考えられ
るが、それらは高価でしかも希少金属であり、多量に使
用される電池のセパレータ4材料としては不向きである
。一方、耐食性の点からは銅が有望であるが、600〜
750Cの温度における高温強度が低いため、実用化は
難しい。
Although FIG. 4 shows the configuration of a single cell battery, in an actual device, a large number of batteries are stacked to increase the voltage and increase the capacity. FIG. 5 shows the basic structure of the separator 4 used in lamination. The separator 4 is a single plate with structures 5 for gas circulation provided on the front and back surfaces. The electrochemical reactions and gas atmospheres on the front and back surfaces are different, as shown in equations (1), (2), and (3) above. Therefore, the separator material is required to have excellent corrosive properties at 600 to 750 C and to both the atmosphere on the anode side (hydrogen-containing gas) and the atmosphere on the cathode side (oxidizing gas). Under such conditions, pure Ni and pure Cr can be considered as metal materials with excellent corrosion resistance, but these are expensive and rare metals, and are not suitable as materials for the separator 4 of batteries, which are used in large quantities. On the other hand, copper is promising in terms of corrosion resistance, but
Practical use is difficult because the high temperature strength at a temperature of 750C is low.

以上の点から、従来、電池用セパレータ材料としては高
温強度の高いステンレス鋼が用いられる。
From the above points, stainless steel with high high temperature strength is conventionally used as a battery separator material.

しかし、一般のステンレス鋼では耐食性が純Niや純C
rよシも劣シ、4年間の定期点検まで耐用することは田
畑であった。
However, general stainless steel has poor corrosion resistance such as pure Ni or pure C.
It was inferior in terms of quality, and it was unlikely that it would last until four years of periodic inspections.

一方、セパレータ4は、電池を小屋及び軽量化するため
には、必要最小限の厚さが好ましく、できればその厚さ
は4〜5mm程匿が好ましい。しかしながら、4〜5間
程度の厚さのステンレス鋼の表裏面に1+nm程度の深
さのガス流通用の構5を機械加工によって施こすことは
困難であシ、また加工可能であっても加工後にセパレー
タが加工の影響により撓んでしまい、適用困難となる。
On the other hand, in order to reduce the size and weight of the battery, the separator 4 preferably has the minimum necessary thickness, and preferably has a thickness of about 4 to 5 mm. However, it is difficult to machine the gas flow structure 5 with a depth of about 1+ nm on the front and back surfaces of stainless steel with a thickness of about 4 to 5 nm, and even if it is possible, it is difficult to machine. Later, the separator becomes warped due to processing, making it difficult to apply.

したがって、従来は、セパレータ4の厚さは10mma
度にせざるを得す、電池本体の小型化、軽量化が困難で
あった。
Therefore, conventionally, the thickness of the separator 4 is 10 mm.
At the same time, it was difficult to make the battery body smaller and lighter.

〔発明の目的〕[Purpose of the invention]

本発明は、耐食性に優れ、しかも電池の小型。 The present invention has excellent corrosion resistance and a compact battery.

軽量化を可能にした溶融炭酸塩型燃料電池用セパレータ
の製造法を提供するものである。
The present invention provides a method for manufacturing a separator for molten carbonate fuel cells that enables weight reduction.

〔発明の概要〕 本発明は、炭素(ii 、低合金鋼、Cr鋼又はステン
レス鋼よりなる中間板の片面又は両面にガス流通路およ
び保持部を形成するための上記と同材質のリブおよび外
枠を拡散接合により接合し、その後、これら表面に耐酸
化腐性および耐還元耐食性の保護膜を形成することによ
υ、溶融炭酸塩型燃料は他用セパレータを製造すること
を特徴とするものである。
[Summary of the Invention] The present invention provides ribs and outer parts made of the same material as above for forming gas flow passages and holding parts on one or both sides of an intermediate plate made of carbon (II), low alloy steel, Cr steel, or stainless steel. The molten carbonate fuel is characterized in that a separator for other uses is manufactured by joining the frames by diffusion bonding and then forming a protective film resistant to oxidative corrosion and reductive corrosion on these surfaces. It is.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明により作製されたセパレータの基本構造
を例示した図である。セパレータ4は中間板6とその中
間板60表裏面に適当間隔で配列固定されたリブ7から
なシ、これにより表裏にガス流通用の溝が形成されてい
る。中間板6とリブ7は拡散接合によって接合されてい
る。セパレータ材料として炭素鋼、低合金鋼、ステンレ
ス鋼。
FIG. 1 is a diagram illustrating the basic structure of a separator produced according to the present invention. The separator 4 consists of an intermediate plate 6 and ribs 7 arranged and fixed at appropriate intervals on the front and back surfaces of the intermediate plate 60, thereby forming grooves for gas circulation on the front and back sides. The intermediate plate 6 and the rib 7 are joined by diffusion bonding. Carbon steel, low alloy steel, stainless steel as separator materials.

Cr tf4 + N ’基合金鋼などが用いられる。Cr tf4+N' base alloy steel or the like is used.

上記の拡散接合を行なうには、第2図のように、中間板
6とリブ7との間に中間材8を施し、これらを中間材8
の融点以下に加熱し、圧縮応力を負荷して接合面に均一
に荷重がかかるように圧接せしめる。中間材8は例えば
Ni−P(Ni:90〜99%、P:1〜10%)また
は、Ni−B(Ni:90〜99%、B二1〜10%)
が望ましい。Ni−P及びNi−Bは溶融温度が980
C及び1400Cと一般の構造用鋼の温度よシ低い。第
2図のように中間材8を挾んで高温に加熱し、圧縮応力
を負荷すると、中間材が母材(中間板6及びリブ7)側
へ拡散移行する。更に時間の経過と共に拡散は進行し、
最終的には中間板6とリブ7とが完全に接合される。そ
の接合されるまでに要する時間は温度が中間材の溶融温
度に近いほど短かくなる。加熱温度は融点から約300
C下までの範囲が望ましい。
To perform the above diffusion bonding, as shown in FIG. 2, an intermediate material 8 is applied between the intermediate plate 6 and the rib 7, and these
The materials are heated to a temperature below their melting point, and compressive stress is applied to the bonding surfaces so that the load is evenly applied to the joint surface. The intermediate material 8 is, for example, Ni-P (Ni: 90-99%, P: 1-10%) or Ni-B (Ni: 90-99%, B2 1-10%).
is desirable. Ni-P and Ni-B have a melting temperature of 980
C and 1400C, which is lower than the temperature of general structural steel. As shown in FIG. 2, when the intermediate material 8 is sandwiched and heated to a high temperature and compressive stress is applied, the intermediate material diffuses and migrates toward the base material (intermediate plate 6 and ribs 7). Furthermore, as time passes, the diffusion progresses,
Finally, the intermediate plate 6 and the rib 7 are completely joined. The time required for joining becomes shorter as the temperature approaches the melting temperature of the intermediate material. The heating temperature is approximately 300° below the melting point.
A range below C is desirable.

拡散処理工程における雰囲気は、材料を高温に加熱する
ために、材料の酸化防止の点から非酸化性雰囲気である
ことが望ましい。
In order to heat the material to a high temperature, the atmosphere in the diffusion treatment step is preferably a non-oxidizing atmosphere from the viewpoint of preventing oxidation of the material.

中間材8は先に述べた成分のNi−PまたはNi−Bが
箔状に形成されているものを用いることが好ましい。ま
たは、Niを主成分としてCr。
As the intermediate material 8, it is preferable to use a material in which Ni--P or Ni--B, which is the component described above, is formed into a foil shape. Or Cr with Ni as the main component.

Fe、S i、P+ B、Mo、Coなどの元素が単独
または複合含有する晶質または非晶質の箔材であること
が好ましい。中間板6とリブ7との間に上記の箔状に形
成された中間材8を挿入し、かかる後、上記の拡散接合
処理をすることによって接合が達せられる。箔の厚さは
1mm以下であることが望ましく、特に20μm以下が
望ましい。
A crystalline or amorphous foil material containing elements such as Fe, Si, P+B, Mo, and Co, singly or in combination, is preferable. Bonding is achieved by inserting the foil-shaped intermediate material 8 between the intermediate plate 6 and the ribs 7, and then performing the diffusion bonding process described above. The thickness of the foil is preferably 1 mm or less, particularly preferably 20 μm or less.

また中間材8として箔状に形成された材料を挿入する代
シに、中間板6及びリブ7の表面に、先に述べた成分の
Ni−p及びNi−Bのメッキ膜を施しておいてもよい
。すなわち、あらかじめ中間板6とリブ7の両方または
1方の表面にNi−PまたはNi−Bのメッキ膜を形成
させ、その後そのメッキ膜を介して前記と同様に中間板
6とリブ7との拡散接合を行なうものである。メッキ膜
の厚さは1run以下が望ましく、特に20μm以下が
望ましい。メッキ膜の厚さが厚すぎると、拡散処理に長
時聞損するばかりでなく、接合部の高温強度を低下させ
るので好ましくない。
In addition, before inserting the foil-shaped material as the intermediate material 8, the surfaces of the intermediate plate 6 and ribs 7 are plated with Ni-P and Ni-B, which are the components mentioned above. Good too. That is, a Ni-P or Ni-B plating film is formed on both or one of the surfaces of the intermediate plate 6 and the ribs 7 in advance, and then the intermediate plate 6 and the ribs 7 are bonded through the plating film in the same manner as described above. Diffusion bonding is performed. The thickness of the plating film is preferably 1 run or less, particularly preferably 20 μm or less. If the thickness of the plating film is too thick, it is not preferable because not only will the diffusion treatment be delayed for a long time, but also the high temperature strength of the joint will be reduced.

セパレータは拡散接合した後に、溶体化処理。Separators are solution-treated after diffusion bonding.

焼入れ処理または規準処理などを施すと、高温に保持さ
れるために拡散接合部の中間材8の元素が更に母材側へ
移行する。したがって接合部は母材の成分に近くなシ、
継手性能が更に向上することとなる。
When quenching treatment or standard treatment is performed, the elements of the intermediate material 8 of the diffusion bonding portion further migrate to the base material side because the temperature is maintained at a high temperature. Therefore, the joint is close to the base metal composition.
Joint performance will further improve.

第3図は前記のようにして一体化された中間板およびリ
ブを外枠と共に一体に組立てた本発明のセパレータの構
造の詳細を示す。第1図及び第2図で示した一体化され
た中間板6及びリブ7の周シをガス送給管10の付いた
外枠9が囲んでいる。
FIG. 3 shows details of the structure of the separator of the present invention in which the intermediate plate and ribs integrated as described above are assembled together with the outer frame. An outer frame 9 with a gas feed pipe 10 surrounds the integrated intermediate plate 6 and ribs 7 shown in FIGS. 1 and 2.

外枠9はセパレータの保持及びガスの電池外への漏出防
止の役目を持っている。外枠9の厚さはリブ7の厚さよ
シも、リブ7の上に登載される電極の厚さ分だけ厚くな
っている。中間板6と外枠9は、前述した中間板6とリ
ブ7との拡散接合法と同様の方法によって接合される。
The outer frame 9 has the role of holding the separator and preventing gas from leaking out of the battery. The thickness of the outer frame 9 is thicker than the thickness of the ribs 7 by the thickness of the electrodes mounted on the ribs 7. The intermediate plate 6 and the outer frame 9 are joined by a method similar to the diffusion bonding method for the intermediate plate 6 and the ribs 7 described above.

ガス送給管10は外枠9に溶接などの接合法を用いて接
合される。
The gas feed pipe 10 is joined to the outer frame 9 using a joining method such as welding.

なお、本発明によればセパレータは、第3図のような角
型形状の他に、円型形状にも製作可能である。
In addition, according to the present invention, the separator can be manufactured not only in a square shape as shown in FIG. 3 but also in a circular shape.

第6図はリブ7の形状の変形例を示す。すなわち、本発
明においては、セパレータのリブ7は、第1図ないし第
3図で示した長方体の他に、立方体(第6図a)、角錐
台(同b)又は上部が波型の長方体(同C)であっても
よい。更に、この他、円型台又は円柱型であってもよい
FIG. 6 shows a modification of the shape of the rib 7. That is, in the present invention, the ribs 7 of the separator are not only rectangular as shown in FIGS. It may be a rectangular parallelepiped (C). Furthermore, in addition to this, a circular stand or a cylindrical shape may be used.

上記で述べた中間板6とリブ7及び中間板6と外枠9が
拡散接合された後は、セパレータの耐酸化性及び耐還元
性腐食を良好にするために、第7図に示すごとく、好ま
しくはセパレータの全面または内表面に保護膜11を形
成させる。保護膜11はNi、Cu+ Crr Co、
Ag、Paなどであシ、電気メッキ又は化学メッキ等に
よって施される。なお、保護膜11の成分は耐酸化性及
び耐還元性腐食に優れているならば、Ni、Cr。
After the intermediate plate 6 and the ribs 7 and the intermediate plate 6 and the outer frame 9 are diffusion bonded, as shown in FIG. 7, in order to improve the oxidation resistance and reduction corrosion resistance of the separator. Preferably, a protective film 11 is formed on the entire surface or inner surface of the separator. The protective film 11 is made of Ni, Cu+ Crr Co,
It is applied by Ag, Pa, etc., electroplating, chemical plating, etc. Note that the components of the protective film 11 may be Ni or Cr as long as they have excellent oxidation resistance and reduction corrosion resistance.

Cu、pa及びGoなどの純金属の他に他の成分が含有
していても差し支えない。また保護膜11は単層のみな
らず、複数層積層してもよい。また、その複数の層の成
分は同一成分またはそれぞれの層が異なる成分であって
もよい。保護膜11を有せしめれば、保護膜11が耐酸
化性及び耐還元性腐食に優れているために、セパレータ
の中間板6、リブ7及び外枠11の材質は安価な炭素鋼
、低合金鋼及びCr鋼などの適用が可能となる。
There is no problem even if other components are contained in addition to pure metals such as Cu, Pa, and Go. Further, the protective film 11 is not limited to a single layer, and may be formed by laminating a plurality of layers. Moreover, the components of the plurality of layers may be the same component or each layer may be a different component. If the protective film 11 is provided, the intermediate plate 6, ribs 7, and outer frame 11 of the separator can be made of inexpensive carbon steel or low alloy material because the protective film 11 has excellent oxidation resistance and reduction corrosion resistance. Application of steel, Cr steel, etc. becomes possible.

以上説明した所に基づく具体的実施例を以下に述べる。Specific examples based on the above description will be described below.

実施例1 第1表は実験に用いた供試材の化学組成を示す。Example 1 Table 1 shows the chemical composition of the test materials used in the experiment.

供試材には12Cr系耐熱鋼を用いた。12Cr heat-resistant steel was used as the test material.

第    1    表 1表の供試材よυ試験片を採取した。試験片の形状は直
径20問、長さ50団の円柱である。試験片の表面は全
面ペーパナ800番で仕上げた。このような試験片の全
面に市販の無電解メッキ液を用いて、Ni−P及びNi
−Bメッキを施した。
1 υ test pieces were taken from the test materials shown in Table 1. The shape of the test piece is a cylinder with a diameter of 20 pieces and a length of 50 pieces. The entire surface of the test piece was finished with paper cutter No. 800. Using a commercially available electroless plating solution on the entire surface of such a test piece, Ni-P and Ni
-B plating was applied.

メッキ厚さはいずれも20μmである。The plating thickness was 20 μm in both cases.

次に、上記のメッキを施した試験片を用いて、それぞれ
同種のメッキ材着きの試験片を長手方向に突合せて、拡
散接合を行った。拡散接合の加熱条件はNi−Pメッキ
試験片が800C,4時間保持 Ni−Bメツギ試験片
が1150C,4時間保持°とした。加熱中の圧縮圧力
は両者共1000に9とした。拡散接合中の雰囲気は大
気環境であった。
Next, using the above-mentioned plated test pieces, test pieces coated with the same type of plating material were longitudinally butted against each other to perform diffusion bonding. The heating conditions for diffusion bonding were as follows: Ni-P plated test piece was held at 800C for 4 hours, and Ni-B Metsugi test piece was heated at 1150C and held for 4 hours. The compression pressure during heating was set to 9:1000 in both cases. The atmosphere during diffusion bonding was an atmospheric environment.

以上の拡散接合後、試験片に熱処理を施した。After the above diffusion bonding, the test piece was heat treated.

熱処理は焼入れ:1100C,2時間保持後空冷及び焼
もどし:650C,2時間保持後空冷の条件で行った。
The heat treatment was performed under the conditions of quenching: 1100C, held for 2 hours, then air cooled, and tempering: 650C, held for 2 hours, then air cooled.

次に、熱処理後の上記試験片よシ引張試験片を採取した
。試験片形状は平行部中央に接合部を置き、平行部直径
6φ及び平行部長さ24圏である。
Next, a tensile test piece was taken from the above test piece after heat treatment. The shape of the test piece was such that the joint was placed in the center of the parallel part, the diameter of the parallel part was 6φ, and the length of the parallel part was 24 mm.

第2表は母材及びN i−P及びNi−B接合材の引張
強さを示す。N t−P及びN i −B接合材は引張
強さがいずれも母材と同程度の継手強度を示しておシ、
優れた接合性能を示すことが明らかでちる。
Table 2 shows the tensile strength of the base material and the N i-P and Ni-B bonding materials. Both Nt-P and Ni-B joint materials have tensile strength comparable to that of the base metal.
It is clear that it exhibits excellent bonding performance.

第   2   表 特に実機燃料電池のセパレータに発生する引張応力はI
OKり7間2以下であると考えられるから、上記の拡散
接合部はその値を十分満足している。
Table 2 In particular, the tensile stress generated in the separator of an actual fuel cell is I
Since it is considered that the OK ratio is 7 to 2 or less, the above-mentioned diffusion bonding portion sufficiently satisfies this value.

実施例2 次に前述したような表面保護膜を形成した場合における
酸化性及び還元性腐食試験結果について述べる。
Example 2 Next, the results of oxidative and reductive corrosion tests in the case where a surface protective film as described above was formed will be described.

本実施例材の母材には第1表に示した12Cr鋼を用い
た。腐食試験片の形状は板厚4mm、板幅15聰、板長
さ25閣である。表面処理(保護膜11)には市販のN
i−P及びN5−Bメッキ液を用いて無電解Nlメッキ
及び電気メツキ法にょるCr及びCuメッキを施した。
The 12Cr steel shown in Table 1 was used as the base material of this example material. The shape of the corrosion test piece was 4 mm thick, 15 mm wide, and 25 mm long. Commercially available N was used for surface treatment (protective film 11).
Cr and Cu plating was performed by electroless Nl plating and electroplating using i-P and N5-B plating solutions.

一方、比較材として表面処理を施さない市販のSUS 
304゜5US316.インコネル625と第1表に示
した12Cr鋼を用いた。
On the other hand, commercially available SUS without surface treatment was used as a comparison material.
304°5US316. Inconel 625 and 12Cr steel shown in Table 1 were used.

腐食試験は実機溶融炭酸塩燃料電池のセパレータの腐食
環境を模凝して実施した。試験はあらがじめ試験片KL
 1zco3:に2CO3= 62 : 38(7)割
合の溶融炭酸塩を塗布し、下記の2種類のガス環境で6
50C,100h保持で実施した。腐食の評価は腐食試
験後の試験片の重量増加量によって実施した。
The corrosion test was conducted by simulating the corrosive environment of the separator of an actual molten carbonate fuel cell. The test was conducted using test piece KL in advance.
1zco3: was coated with molten carbonate at a ratio of 2CO3 = 62:38 (7), and 6
It was carried out at 50C and held for 100 hours. Corrosion was evaluated based on the weight increase of the test piece after the corrosion test.

(酸化性雰囲気)空気: C02=70 : 30(還
元性雰囲気)H2: C02=80 : 20(水蒸気
を1時間機シ1QQce 混合送給) 第8図は還元性雰囲気下における腐食試験結果を示す。
(Oxidizing atmosphere) Air: C02 = 70: 30 (Reducing atmosphere) H2: C02 = 80: 20 (Water vapor was mixed and fed at 1QQce for 1 hour) Figure 8 shows the results of a corrosion test under a reducing atmosphere. .

比較材であるS US 304 、5US316及び1
2Cr鋼の腐食増量は1.5〜2.2 Tn? / c
rIKである。インコネル625の腐食増量はo、2s
+rq/cniであり、比較材の中では耐還元性腐食は
最も優れていた。一方、表面に各種の保護膜11を形成
させた本実施例材では約0.1 ”i / crtlで
あシ、比較材に比べて著しく低い。特に12Cr鋼の場
合の腐食増量を比較すると、本発明実施例材の方が22
倍少ないことが明らかである。
Comparative materials SUS 304, 5US316 and 1
Is the corrosion weight increase of 2Cr steel 1.5 to 2.2 Tn? /c
It is rIK. Corrosion increase of Inconel 625 is o, 2s
+rq/cni, and the reduction corrosion resistance was the best among the comparative materials. On the other hand, the material of this example with various protective films 11 formed on the surface has a corrosion resistance of approximately 0.1"i/crtl, which is significantly lower than that of the comparative material. In particular, when comparing the corrosion weight increase in the case of 12Cr steel, The example material of the present invention was 22
It is clear that it is twice as low.

第9図は酸化性雰囲気での腐食試験の結果である。腐食
増量は比較例が0.7〜λ4 my / ctdである
のに対し、本発明実施例では0.1〜0.2 rrq 
/ c!dでア)、本発明実施例材は酸化性雰囲気に対
しても耐腐食性に優れていることが明らかである。
FIG. 9 shows the results of a corrosion test in an oxidizing atmosphere. The corrosion weight increase is 0.7 to λ4 my/ctd in the comparative example, whereas it is 0.1 to 0.2 rrq in the example of the present invention.
/c! In d and a), it is clear that the example materials of the present invention have excellent corrosion resistance even in an oxidizing atmosphere.

なお、保護膜11を形成させる方法は第3図〜第6図で
示したごとき中間板6、リブ7及び外枠9が別々に構成
されておらず1体物のセパレータにも応用して差し支え
ない。
Note that the method for forming the protective film 11 may also be applied to separators that are a single unit, in which the intermediate plate 6, ribs 7, and outer frame 9 are not configured separately, as shown in FIGS. 3 to 6. do not have.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、機械加工が不要で
、薄肉、安価でかつ耐食性の優れた溶融炭酸塩型燃料電
池用セパレータが得られる。
As described above, according to the present invention, a separator for a molten carbonate fuel cell that does not require machining, is thin, inexpensive, and has excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るセパレータの斜視図、第
2図はその接合態様を示す部分側面図、第3図は外枠と
組付けた上記セパレータの斜視図、第4図は単セルの従
来の溶融炭酸塩型燃料電池の分解構成図、第5図は従来
の積層式の溶融炭酸塩型燃料電池の要部構成図、第6図
(a)(b)(C)は本発明に係るセパレータのリブの
他の例を示す斜視図、第7図は本発明による保護膜を施
したセパレータの部分断面図、第8図は還元性雰囲気下
での腐食試験結果、第9図は酸化性雰囲気下での腐食試
験結果を示す図である。 6・・・中間板、7・・・リブ、8・・・中間材、9・
・・外枠、10・・・ガス供給管。 特許出願人 工業技術院長 用田裕部 慄1 図 第S図 第6図 (こ) 第rll 第g固 材 料
Fig. 1 is a perspective view of a separator according to an embodiment of the present invention, Fig. 2 is a partial side view showing its joining mode, Fig. 3 is a perspective view of the separator assembled with an outer frame, and Fig. 4 is a simple An exploded configuration diagram of a conventional molten carbonate fuel cell, Figure 5 is a diagram showing the main parts of a conventional stacked type molten carbonate fuel cell, and Figures 6 (a), (b), and (C) are from this book. A perspective view showing another example of ribs of a separator according to the invention, FIG. 7 is a partial cross-sectional view of a separator provided with a protective film according to the invention, FIG. 8 is a corrosion test result under a reducing atmosphere, and FIG. 9 FIG. 2 is a diagram showing the results of a corrosion test under an oxidizing atmosphere. 6... Intermediate plate, 7... Rib, 8... Intermediate material, 9...
... Outer frame, 10... Gas supply pipe. Patent applicant: Director of the Agency of Industrial Science and Technology Hirobe Yoda 1 Figure S Figure 6 (ko) Part rll Part G Solid material

Claims (1)

【特許請求の範囲】 1、炭素鋼、低合金鋼、Cr鋼又はステンレス鋼よりな
る中間板の片面又は両面にガス流通路および保持部を形
成するための上記と同材質のリブおよび外枠を拡散接合
により接合し、その後、これらの表面に耐酸化腐食性及
び耐還元腐食性の保護膜を形成することを特徴とする溶
融炭酸塩型燃料電池用セパレータの製造法。 2、拡散接合は、中間板、リブおよび外枠の接合面に予
めNi−PまたはNi−Bメッキを施し、該メッキ材の
溶融温度以下に加熱保持しながら接合部に圧縮応力を負
荷することからなる特許請求の範囲第1項の溶融炭酸塩
型燃料電池用セパレータの製造法。 3、拡散接合は中間板、リブおよび外枠の接合面に予め
、Niを主成分として、その他Cr、Fe、Si、P、
B、Mo、Coなどの元素を単独または複合含有する晶
質または非晶質の箔材を挿入し、箔材の溶融温度以下に
加熱保持しながら接合部に圧縮応力を負荷することから
なる特許請求の範囲第1項の溶融炭酸塩型燃料電池用セ
パレータの製造法。 4、中間板、リブ及び外枠の拡散接合後に、溶体化処理
または焼入れ、焼もどし処理を施す特許請求の範囲第1
項、第2項又は第3項の溶融炭酸塩型燃料電池用セパレ
ータの製造法。 5、リブの形状が長方体、立方体、四角垂台、円柱、円
垂台又は上部が波形を有する長方体である特許請求の範
囲第1項ないし第4項のいずれかに記載の溶融炭酸塩型
燃料電池用セパレータの製造法。 6、保護膜の主成分がNi−P、Ni−B、Cr、Ni
、Cu、Ag又はPaである特許請求の範囲第1項ない
しは第5項のいずれかに記載の溶融炭酸塩型燃料電池用
セパレータの製造法。
[Claims] 1. An intermediate plate made of carbon steel, low alloy steel, Cr steel, or stainless steel has ribs and an outer frame made of the same material as above for forming gas flow passages and holding parts on one or both sides of the intermediate plate. A method for producing a separator for a molten carbonate fuel cell, which comprises bonding by diffusion bonding, and then forming a protective film resistant to oxidative corrosion and reductive corrosion on these surfaces. 2. Diffusion bonding involves applying Ni-P or Ni-B plating to the joint surfaces of the intermediate plate, ribs, and outer frame in advance, and applying compressive stress to the joint while heating and maintaining the plated material below the melting temperature. A method for producing a separator for a molten carbonate fuel cell according to claim 1, comprising: 3. Diffusion bonding is performed in advance by applying Ni as the main component to the bonding surfaces of the intermediate plate, ribs, and outer frame, as well as other materials such as Cr, Fe, Si, P,
A patent that involves inserting a crystalline or amorphous foil material containing elements such as B, Mo, Co, etc. singly or in combination, and applying compressive stress to the joint while heating and maintaining the foil material below its melting temperature. A method for producing a separator for a molten carbonate fuel cell according to claim 1. 4. After diffusion bonding of the intermediate plate, ribs, and outer frame, solution treatment, quenching, or tempering treatment is performed in claim 1.
A method for producing a separator for a molten carbonate fuel cell according to item 1, 2 or 3. 5. The melt according to any one of claims 1 to 4, wherein the shape of the rib is a rectangular parallelepiped, a cube, a rectangular pedestal, a cylinder, a circular pedestal, or a rectangular parallelepiped with a corrugated upper part. Method for manufacturing separators for carbonate fuel cells. 6. The main components of the protective film are Ni-P, Ni-B, Cr, and Ni.
, Cu, Ag, or Pa, the method for producing a separator for a molten carbonate fuel cell according to any one of claims 1 to 5.
JP59180451A 1984-08-31 1984-08-31 Manufacture of separator for molten carbonate fuel cell Granted JPS6161373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180451A JPS6161373A (en) 1984-08-31 1984-08-31 Manufacture of separator for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180451A JPS6161373A (en) 1984-08-31 1984-08-31 Manufacture of separator for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6161373A true JPS6161373A (en) 1986-03-29
JPH0318314B2 JPH0318314B2 (en) 1991-03-12

Family

ID=16083457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180451A Granted JPS6161373A (en) 1984-08-31 1984-08-31 Manufacture of separator for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS6161373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126560A (en) * 1988-11-07 1990-05-15 Sanyo Electric Co Ltd Manufacture of gas separator for molten carbonate fuel cell
WO2004070083A1 (en) * 2003-02-07 2004-08-19 Honda Motor Co., Ltd. Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
JP2004319290A (en) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2009199849A (en) * 2008-02-21 2009-09-03 Dainippon Printing Co Ltd Manufacturing method of fuel cell separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126560A (en) * 1988-11-07 1990-05-15 Sanyo Electric Co Ltd Manufacture of gas separator for molten carbonate fuel cell
WO2004070083A1 (en) * 2003-02-07 2004-08-19 Honda Motor Co., Ltd. Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
KR101017053B1 (en) 2003-02-07 2011-02-23 혼다 기켄 고교 가부시키가이샤 Method for passivating stainless steel product and method for producing stainless steel separator for fuel cell
JP2004319290A (en) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP4646102B2 (en) * 2003-04-16 2011-03-09 日本特殊陶業株式会社 Solid oxide fuel cell
JP2009199849A (en) * 2008-02-21 2009-09-03 Dainippon Printing Co Ltd Manufacturing method of fuel cell separator

Also Published As

Publication number Publication date
JPH0318314B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US5776624A (en) Brazed bipolar plates for PEM fuel cells
JP5047408B2 (en) Stainless steel or titanium separator for polymer electrolyte fuel cell
US6114058A (en) Iron aluminide alloy container for solid oxide fuel cells
JP3070038B2 (en) Current collector for fuel cell and method of manufacturing the same
CA2624979C (en) Hydrogen separation membrane with a carrier, fuel cell and hydrogen separation apparatus having same, and method of manufacturing same
KR20140034181A (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
JP6336382B2 (en) Single cell with separator, fuel cell stack, and manufacturing method of single cell with separator
JP2003168448A (en) Unit cell for solid electrolyte type fuel cell
JP2022553873A (en) Stack structure of solid oxide electrochemical cell
JP2002343376A (en) Lamination structure of plate-shaped solid oxide fuel cell
JPH1055811A (en) Corrosion resistance treatment method for separator of fused carbonate fuel cell
KR20030036789A (en) Bonding Electrochemical Cell Components
US20110079966A1 (en) Assembly comprising a seal inserted between two components of different mean thermal expansion coefficient, associated seal, application to sealing of hte electrolyzers and sofc fuel cells
JPS6161373A (en) Manufacture of separator for molten carbonate fuel cell
US3471338A (en) Method of making a fuel cell electrode
US11434547B2 (en) Metal porous material, fuel cell, and method of producing metal porous material
JPS6124158A (en) Electrode of fused carbonate type fuel cell
Fisher et al. Corrosion and wetting behaviour of metals and steels with molten alkali carbonates
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JPH10321245A (en) Molten carbonate type fuel cell
JPH0992307A (en) Molten carbonate type fuel cell
JPH06267550A (en) Separator for molten carbonate type fuel cell and its anticorrosive processing method
CA2656517A1 (en) Conducting plates for fuel cell elements
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JPH04306564A (en) Fused carbonate type fuel cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term