JPH02132449A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02132449A
JPH02132449A JP28650488A JP28650488A JPH02132449A JP H02132449 A JPH02132449 A JP H02132449A JP 28650488 A JP28650488 A JP 28650488A JP 28650488 A JP28650488 A JP 28650488A JP H02132449 A JPH02132449 A JP H02132449A
Authority
JP
Japan
Prior art keywords
layer
carbon
film
charge
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28650488A
Other languages
Japanese (ja)
Other versions
JP2818880B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Shigenori Hayashi
茂則 林
Noriya Ishida
石田 典也
Naoki Hirose
直樹 広瀬
Mari Sasaki
佐々木 麻里
Junichi Takeyama
竹山 順一
Shigeto Kojima
成人 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Ricoh Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, Ricoh Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63286504A priority Critical patent/JP2818880B2/en
Publication of JPH02132449A publication Critical patent/JPH02132449A/en
Application granted granted Critical
Publication of JP2818880B2 publication Critical patent/JP2818880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Abstract

PURPOSE:To enhance the adhesive property of films and to improve the durability of the photosensitive body by constituting a charge transfer layer of carbon or a film essentially consisting of carbon and reducing the thickness in the end part of the film. CONSTITUTION:A charge generating layer 2 and the charge transfer layer 1 are successively laminated via an under coating layer at need on a cylindrical conductive base 3 consisting of Al, etc., to form the photosensitive body. The layer 1 is formed of the C or the film essentially consisting of the C and is formed to have the film thickness smaller in the longitudinal end part than in the central part thereof. This layer 1 is formed by disposing a shielding mesh apart a spacing to cover the end part of the layer 2 of the base 3 carried into, for example, a plasma CVD device and evacuating the inside of the vessel, then introducing a prescribed amt. of H2 and methane into the device and impressing high-frequency electric power. The layer 2 is formed by application of a coating liquid contg. a trisazo pigment, etc.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、電子写真プロセスに用いられる円筒状感光体
ドラムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cylindrical photosensitive drum used in an electrophotographic process.

「従来技術」 従来、電子写真方式に於いて使用される感光体としては
、導電性支持体上にセレンなどの無機系光導電材料をハ
インダー中に分散させたもの、ボIJ−N〜ビニル力ル
ハゾールとトリニ1・ロフルオレオンあるいはアゾ顔料
などの有機系光導電材料を用いたもの、及び非晶質シリ
コン系材料を用いたもの等が一般に知られている。
``Prior Art'' Conventionally, photoreceptors used in electrophotography include those in which an inorganic photoconductive material such as selenium is dispersed in a binder on a conductive support, and Those using organic photoconductive materials such as ruhazol, trini-1-rofluoreon, or azo pigments, and those using amorphous silicon-based materials are generally known.

ここにいう「電子写真方式」とは一般的に光導電性の感
光体をまず暗所で、例えばコロナ放電によって帯電させ
、次いで像露光し、露光部のみの電荷を選択的に散逸せ
しめて静電潜像を得、この潜像部を染料.顔料などの着
色材と高分子物質などの結合剤とから構成される検電微
粒子(トナー)で現像し可視化して画像を形成する様に
した画像形成法の一つである。
The "electrophotographic method" referred to here generally refers to a photoconductive photoreceptor that is first charged in a dark place by, for example, corona discharge, and then exposed to image light to selectively dissipate the charge only in the exposed areas. An electric latent image is obtained, and this latent image area is dyed. This is one of the image forming methods in which an image is formed by developing and visualizing electrostatic fine particles (toner) composed of a coloring material such as a pigment and a binder such as a polymeric substance.

この様な電子写真法に於いて感光体に要求される基本的
な特性としては (1)暗所で適当な電位に帯電できること。
The basic characteristics required of the photoreceptor in such electrophotography are (1) the ability to be charged to an appropriate potential in a dark place;

(2)暗所において電荷の散逸がすくないこと。(2) Less charge dissipation in a dark place.

(3)光照射によって速やかに電荷を散逸せしめうろこ
と。
(3) Scales that quickly dissipate charge when irradiated with light.

などが挙げられる。Examples include.

上記の各惑光体はこれらの基本的な特性以外に実使用上
それぞれ優れた特徴及び欠点を有しているが、なかでも
近年は製造コス1〜が安い,環境汚染が少ない,比較的
自由な惑光体設計ができる等の理由により、有機系感光
体の発展が著しい。
In addition to these basic properties, each of the above-mentioned photoconductors has excellent features and disadvantages in practical use, but in recent years, they have become particularly popular, with low production costs of 1~1, less environmental pollution, and relatively free use. The development of organic photoreceptors is remarkable due to the ability to design photoconductors.

一般に有機系感光体とは電荷輸送材料を結着樹脂の中へ
分散あるいは溶解して導電性支持体上に塗布したもので
あり、ひとつの層で電荷保持,電荷発生.電荷輸送の機
能を有する単層型と電荷発生の機能を有する電荷発生層
(CGL),帯電電荷の保持とCGLから注入された電
荷の輸送機能を有する電荷輸送層(CTL),更には必
要に応じて支持体からの電荷の注入を阻止する、あるい
は支持体での光の反射を防止する等の機能を有した層な
どを積層した構成の機能分離型とが知られている。
In general, an organic photoreceptor is one in which a charge transport material is dispersed or dissolved in a binder resin and coated on a conductive support, allowing charge retention and charge generation in one layer. A single layer type with a charge transport function, a charge generation layer (CGL) with a charge generation function, a charge transport layer (CTL) with a function of holding charged charges and transporting charges injected from the CGL, and furthermore, as necessary. Accordingly, a functionally separated type is known, which has a laminated layer having the function of blocking the injection of charge from the support or preventing the reflection of light on the support.

機能分離型に使用されている電荷輸送層は帯電電荷を保
持させ、かつ露光により電荷発生層で発生分離した電荷
を移動させて保持していた帯電電荷と結合させることを
目的とする層である。帯電電荷を保持させる目的達成の
ために電気抵抗が高いことが要求され、また保持した帯
電電荷で高い表面電位を得る目的を達成するためには、
誘電率が小さくかつ電荷移動性が良いことが要求される
The charge transport layer used in the functionally separated type is a layer whose purpose is to retain electrical charges and to move the charges generated and separated in the charge generation layer upon exposure to combine with the retained electrical charges. . In order to achieve the purpose of retaining the charged charges, a high electrical resistance is required, and in order to achieve the purpose of obtaining a high surface potential with the retained charges,
It is required to have a low dielectric constant and good charge mobility.

これらの要件を満足させるための電荷輸送層として、電
荷輸送物質および必要に応じて用いられるハインダー樹
脂より構成されるものを用いる。
In order to satisfy these requirements, a charge transport layer composed of a charge transport substance and a binder resin used as necessary is used.

電荷輸送物質には、正孔輸送物質と電子輸送物質がある
Charge transport materials include hole transport materials and electron transport materials.

正孔輸送物質としては、ポリ−N−ビニル力ルハゾール
およびその誘導体,ポリーγ一カルバゾリルエチルグル
タメートおよびその誘導体,ピレンーホルムアルデヒト
縮合物およびその誘導体,ポリビニルピレン,ポリビニ
ルフェナントレン,オキサゾール誘導体,オキザジアゾ
ール誘導体,イミダゾール誘導体,トリフェニルアミン
誘導体9−(p−ジエチルアミノスチリル)アントラセ
ン,1,1−ビス−(4−ジベンジルアミノフェニル)
プロパン,スチリルアントラセン.スチリルピラゾリン
,フェニルヒドラゾン類.α−フェニルスチルベン誘導
体等の電子供与性物質を挙げることができる。
Examples of hole transport substances include poly-N-vinyl ruhazole and its derivatives, poly-γ-carbazolylethyl glutamate and its derivatives, pyrene-formaldehyde condensate and its derivatives, polyvinylpyrene, polyvinylphenanthrene, oxazole derivatives, and oxadiazole derivatives. , imidazole derivative, triphenylamine derivative 9-(p-diethylaminostyryl)anthracene, 1,1-bis-(4-dibenzylaminophenyl)
Propane, styryl anthracene. Styrylpyrazoline, phenylhydrazones. Examples include electron-donating substances such as α-phenylstilbene derivatives.

電子輸送物質としては、たとえば、クロルアニル,プロ
ムアニル,テトラシアノエチレン,テトラシアノキノン
ジメタン,2,4.7−トリニトロ−9フルオレノン,
2,4,5.7−テトラニトロ−9−フルオレノン,2
,4,5.7−テトラニトロキサントン,2,4.8−
 }リニトロチオキサントン,2,6.8− トリニト
口−4■−インデノ〔1.2−b )チオフェン−4オ
ン,1,3.7−トリニトロジヘンゾチオフェノン5,
5−ジオキサイドなどの電子受容性物質が挙げられる。
Examples of electron transport substances include chloranil, promanil, tetracyanoethylene, tetracyanoquinone dimethane, 2,4,7-trinitro-9fluorenone,
2,4,5.7-tetranitro-9-fluorenone, 2
,4,5.7-tetranitroxanthone,2,4.8-
}linitrothioxanthone, 2,6.8-trinitro-4-indeno[1.2-b)thiophene-4one, 1,3.7-trinitrodihenzothiophenone 5,
Examples include electron-accepting substances such as 5-dioxide.

以上の物質を適当な溶剤に溶解ないし分散してこれを塗
布乾燥することにより電荷輸送層を形成する。
A charge transport layer is formed by dissolving or dispersing the above-mentioned substances in a suitable solvent and applying and drying the solution.

また、以上述べた電荷輸送層の他に、アモルファスカー
ボン即ち炭素または炭素を主成分とする被膜を電荷輸送
層として用いることが、特願昭63013051号、特
願昭63−073259〜特願昭63−073261、
特願昭63−081360〜特願昭63−081365
 、特願昭63−081445〜特願昭63−0814
90 、特願昭63−082425〜特願昭63−08
2488 、特願昭63−218961〜特願昭63−
218963等に開示されている。炭素または炭素を主
成分とする被膜は非常に高い硬度を有しており、電荷輸
送層として用いた場合には非常に良好な耐摩耗性が期待
できる。
In addition to the above-mentioned charge transport layer, it is also known that amorphous carbon, that is, carbon or a film containing carbon as a main component, can be used as the charge transport layer. -073261,
Patent application 1986-081360 to 1983-081365
, patent application No. 63-081445 to patent application No. 63-0814
90, Japanese Patent Application No. 63-082425 to No. 63-08
2488, Japanese Patent Application No. 63-218961 - Japanese Patent Application No. 1983-
218963 and the like. Carbon or a film containing carbon as a main component has extremely high hardness, and can be expected to have very good wear resistance when used as a charge transport layer.

このような炭素または炭素を主成分とする被膜として本
発明人の出願による「炭素被膜を有する複合体及びその
作成方法j (特願昭56−146936号昭和56年
5月17日出願)が知られており、前記炭素または炭素
を主成分とする被膜は有機系材料と馴染みが良く、密着
性も良好である。それは、炭素を主成分とする被膜はあ
る種の有機膜であると考えられ、有機感光体と炭素を主
成分とする被膜の界面ではポリマー的な結合をしている
と予想されるからである。
As such carbon or a coating mainly composed of carbon, "Composite with Carbon Coating and Method for Preparing the Same" filed by the present inventor (Japanese Patent Application No. 146936/1982 filed on May 17, 1982) is known. The carbon or coating mainly composed of carbon is compatible with organic materials and has good adhesion.This is because the coating mainly composed of carbon is considered to be a type of organic film. This is because it is expected that there is a polymeric bond at the interface between the organic photoreceptor and the coating mainly composed of carbon.

「発明が解決しようとする問題点」 しかしながら、電荷発生層に接して電荷輸送層を炭素ま
たは炭素を主成分とする被膜で形成した場合、炭素を主
成分とする被膜は内部応力が109dyn/cm2以上
と大きく、使用の初期においては電荷発生層との間で良
好な密着性が得られるものの、長期使用においてはビー
リングが発生するという問題があった。
"Problems to be Solved by the Invention" However, when the charge transport layer is formed in contact with the charge generation layer using carbon or a film mainly composed of carbon, the film mainly composed of carbon has an internal stress of 109 dyn/cm2. As described above, although good adhesion with the charge generation layer can be obtained at the initial stage of use, there is a problem in that beering occurs during long-term use.

本発明は前記のような問題点を無くし、電子写真感光体
における電荷輸送層に炭素または炭素を主成分とする被
膜を応用することを目的としてなされたものである。
The present invention has been made for the purpose of eliminating the above-mentioned problems and applying carbon or a film containing carbon as a main component to a charge transport layer in an electrophotographic photoreceptor.

「問題点を解決するための手段」 即ち前記の目的を達成するために、円筒状導電性支持体
上に電荷発生の機能を有する電荷発生層、電荷発生層か
ら注入された電荷の輸送機能を有する電荷輸送層をこの
順に積層した電子写真用感光体であって、電荷輸送層が
炭素または炭素を主成分とする被膜より成り、かつ前記
電荷輸送層の膜厚が円筒状導電性支持体の長さ方向に沿
って、その中心部より端部に近くなるに従って薄くなっ
ていることを特徴とする電子写真用感光体としたもので
ある。
"Means for Solving the Problems" That is, in order to achieve the above object, a charge generation layer having a charge generation function and a charge transport function injected from the charge generation layer are provided on a cylindrical conductive support. An electrophotographic photoreceptor comprising charge transport layers laminated in this order, wherein the charge transport layer is made of carbon or a film containing carbon as a main component, and the thickness of the charge transport layer is equal to that of the cylindrical conductive support. The electrophotographic photoreceptor is characterized in that the thickness of the electrophotographic photoreceptor becomes thinner in the longitudinal direction from the center toward the ends.

本発明人らは長期の信頬性試験を繰り返し、前記ピーリ
ングの発生の多くは保護膜端部より発生していることを
つきとめ、端部の膜厚を少なくとも端部より中心に1n
+m以上、好ましくは5n+m以上にわたって、その端
部の膜厚が、中心部の膜厚に比べ3分の1以下好ましく
は5分の1以下の膜厚とすると保護膜と下地とのピーリ
ングの発生は10分の1以下に低減できることを確認し
、本発明に到った。
The inventors of the present invention repeatedly conducted long-term reliability tests and found that most of the peeling occurred from the edges of the protective film, and the film thickness at the edges was reduced to at least 1 nm from the center of the edges.
+m or more, preferably 5n+m or more, if the film thickness at the edge is one-third or less, preferably one-fifth or less of the film thickness at the center, peeling between the protective film and the base will occur. It was confirmed that this can be reduced to one-tenth or less, leading to the present invention.

「発明の構成」 本発明の感光体の一例の断面図を第1図に示す。"Structure of the invention" FIG. 1 shows a cross-sectional view of an example of the photoreceptor of the present invention.

導電性支持体(3)上に電荷発生層(2)、電荷輸送層
(1)を構成した。
A charge generation layer (2) and a charge transport layer (1) were formed on a conductive support (3).

本発明における導電性支持体としては導電体,あるいは
導電処理をした絶縁体が用いられる。
As the conductive support in the present invention, a conductor or an insulator treated for conductivity is used.

たとえばAI,Ni,Fe,Cu,Auなどの金属ある
いは合金,ポリエステル,ポリカーボネート,ポリイミ
ド,ガラス等の絶縁性基体上にAI,Ag,Au等の金
属あるいはInzo:+,SnOz等の導電材料の薄膜
を形成したもの,導電処理をした紙等が例示できる。
For example, a thin film of a metal such as AI, Ag, Au, or a conductive material such as Inzo:+, SnOz, etc. on an insulating substrate such as a metal or alloy such as AI, Ni, Fe, Cu, or Au, or polyester, polycarbonate, polyimide, or glass. Examples include paper with conductive treatment, etc.

また、導電性支持体の形状は円筒状に限らず必要に応じ
て板状,ベルト状のものを用いてもよい。
Further, the shape of the conductive support is not limited to a cylindrical shape, but a plate shape or a belt shape may be used as necessary.

電荷発生層(CC;L)としては、結晶セレン,セレン
化ヒ素等の無機光導電性粉体あるいは有機系染顔料を結
着剤樹脂に分散もしくは溶解させたものが用いられる。
As the charge generation layer (CC; L), an inorganic photoconductive powder such as crystalline selenium or arsenic selenide, or an organic dye and pigment dispersed or dissolved in a binder resin is used.

電荷発生物質としての有機染顔料として例えば、シーア
イピグメントブル−25〔カラーインデックス(CI)
21180) ,シーアイピグメントレッド4HCI2
1200) ,  シーアイアシッドレッド52(Cl
 45100),シーアイベーシックレッド3(C4 
45210),さらに、ポリフィリン骨格を有するフタ
口シアン系顔料,アズレニウム塩顔料,スクアリック塩
顔料.カルバゾール骨格を有するアゾ顔料(特開昭53
−95033号公報に記載),スチリルスチルベン骨格
を有するアゾ顔料(特開昭53−138229号公報に
記載),トリフェニルアミン骨格を有するアゾ顔料(特
開昭53132547号公報に記載),ジベンゾチオフ
ィン骨格を有するアゾ顔料(特開昭54−21728号
公報に記載),オキサジアゾール骨格を有するアブ顔料
(特開昭54−12742号公報に記載)5フルオレノ
ン骨格を有するアゾ顔料(特開昭54−22834号公
報に記載),ビススチルベン骨格を有するアゾ顔料(特
開昭5417733号公報に記載),ジスチリルオキサ
ジアゾール骨格を有するアゾ顔料(特開昭54−212
9号公報に記載),ジスチリル力ルバゾール骨格を有す
るアブ顔料(特開昭54−2129号公報に記載),ジ
スチリル力ルバゾール骨格を有するアゾ顔料(特開昭5
417734号公報に記載),カルバゾール骨格を有す
るトリアゾ顔料(特開昭57−195767号公報,同
57−195768号公報に記載)等、さらにシーアイ
ピグメントブル−16(c+ 74100)等のフタ口
シアニン系顔料,シーアイバッドブラウン5(CI 7
3410),シーアイバッドダイ (Cl 73030
)9等のインジゴ系顔料,アルゴスカーレッドB (ハ
ンオレット社製),インダスレンスカーレットR (バ
イエル社製)等のペリレン系顔料等を使用することがで
きる。
As an organic dye and pigment as a charge generating substance, for example, C.I. Pigment Blue-25 [Color Index (CI)
21180), CI Pigment Red 4HCI2
1200), Sea Acid Red 52 (Cl
45100), C.I. Basic Red 3 (C4
45210), and cyanide pigments having a porphyrin skeleton, azulenium salt pigments, and squalic salt pigments. Azo pigments having a carbazole skeleton
-95033), azo pigments having a styrylstilbene skeleton (described in JP-A-53-138229), azo pigments having a triphenylamine skeleton (described in JP-A-53132547), dibenzothiophine Azo pigments having a skeleton (described in JP-A No. 54-21728), ab pigments having an oxadiazole skeleton (described in JP-A-54-12742), azo pigments having a fluorenone skeleton (described in JP-A-54-12742), -22834), azo pigments with a bisstilbene skeleton (described in JP-A-5417733), azo pigments with a distyryloxadiazole skeleton (described in JP-A-54-212),
9), an azo pigment having a distyryl-rubazole skeleton (described in JP-A-54-2129), an azo pigment having a distyryl-rubazole skeleton (described in JP-A-54-2129),
417734), triazo pigments having a carbazole skeleton (described in JP-A-57-195767 and JP-A-57-195768), and cyanine-based pigments such as C.I. Pigment Blue-16 (c+ 74100). Pigment, Sea Eye Bud Brown 5 (CI 7
3410), Sea Eye Baddie (Cl 73030)
) 9 and other indigo pigments, and perylene pigments such as Argo Scarlet B (manufactured by Hanolet) and Indus Thread Scarlet R (manufactured by Bayer).

これらの電荷発生物質は単独で、あるいは2種類以上併
用して用いられる。
These charge generating substances may be used alone or in combination of two or more.

結着剤樹脂は、電荷発生物質100重量部に対して0〜
100重量部用いるのが適当であり、好ましくは0〜5
0重量部である。
The amount of the binder resin is 0 to 100 parts by weight of the charge generating substance.
It is appropriate to use 100 parts by weight, preferably 0 to 5 parts by weight.
It is 0 parts by weight.

これらの有機染顔料と併用される結着剤樹脂としてはポ
リイミド,ポリウレタン,ボリエステルエポキシ樹脂,
ポリカーボネート,ポリエーテルなどの縮合系樹脂並び
にポリスチレン,ポリアクリレート,ポリメタクリレー
ト,ボリーN−ビニル力ルバゾール,ポリビニルプチラ
ール,スチレンーブタジエン共重合体,スチレンーアク
リロニトリル共重合体等の重合体および共重合体等の接
着性,絶縁性樹脂が挙げられる。
Binding resins used in combination with these organic dyes and pigments include polyimide, polyurethane, polyester epoxy resin,
Condensation resins such as polycarbonate and polyether, and polymers and copolymers such as polystyrene, polyacrylate, polymethacrylate, poly-N-vinyl rubber, polyvinyl butyral, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, etc. Adhesive and insulating resins such as

電荷発生層は、電荷発生物質を必要ならばバインダー樹
脂とともに、テトラヒドロフラン,シクロヘキサノン,
ジオキサン,ジクロルエタン等の溶媒を用いてボールミ
ル,アトライター,サントミルなどにより分散し、分散
液を適度に希釈して塗布することにより形成できる。塗
布は、浸漬塗工法やスプレーコート ビードコート法な
どを用いて行なうことができる。
The charge generation layer contains a charge generation substance, along with a binder resin if necessary, tetrahydrofuran, cyclohexanone,
It can be formed by dispersing using a ball mill, attritor, Santomill, etc. using a solvent such as dioxane or dichloroethane, diluting the dispersion liquid appropriately, and applying the dispersion. Application can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.

電荷発生層の膜厚は、0.01〜5μm程度が適当であ
り、好ましくは0.1〜2μmである。
The thickness of the charge generation layer is suitably about 0.01 to 5 .mu.m, preferably 0.1 to 2 .mu.m.

電荷発生物質として結晶セレン又はセレン化ヒ素合金等
の粒子を用いる場合は電子供与性結着剤及び/又は電子
供与性有機化合物と併用される。このような電子供与性
物質としてはポリビニル力ルバゾールおよびその誘導体
(例えばカルハゾール骨格に塩素,臭素などのハロゲン
,メチル基.アミノ基などの置換基を有するもの),ポ
リビニルビレン,オキサジアゾール.ビラヅリンヒドラ
ゾン,ジアリールメタン α−フェニルスチルヘン l
・リフェニルアミン系化合物などの窒素含有化合物およ
びジアリールメタン系化合物等があるが、特にポリビニ
ル力ルハゾールおよびその誘導体が好ましい。またこれ
らの物質を混合して用いても良い。混合して用いる場合
もポリビニルカルバゾールおよびその誘導体に他の電子
供与性有機化合物を添加するのが好ましい。この種の無
機系電荷発生物質の含有量は層全体の30〜90重量%
が適当である。また無機系電荷発生物質を用いた場合の
電荷発生層の厚さは0.2〜5μmが適当である。
When particles of crystalline selenium or arsenic selenide alloy are used as the charge-generating substance, they are used in combination with an electron-donating binder and/or an electron-donating organic compound. Examples of such electron-donating substances include polyvinyl Rubazole and its derivatives (for example, those having substituents such as halogens such as chlorine and bromine, and substituents such as methyl and amino groups in the carhazole skeleton), polyvinylpyrene, and oxadiazole. Biladurine hydrazone, diarylmethane α-phenylstilhene l
- Nitrogen-containing compounds such as liphenylamine compounds, diarylmethane compounds, etc. are included, and polyvinyl ruhazole and its derivatives are particularly preferred. Alternatively, a mixture of these substances may be used. Even when used in combination, it is preferable to add other electron-donating organic compounds to polyvinylcarbazole and its derivatives. The content of this type of inorganic charge generating substance is 30 to 90% by weight of the entire layer.
is appropriate. Further, when an inorganic charge generating material is used, the thickness of the charge generating layer is suitably 0.2 to 5 .mu.m.

本発明において電荷輸送層として用いる炭素または炭素
を主成分とする被膜を作製する装置の一例を第2図に示
す。図面において、ステンレス容器(1”)は蓋(1′
)を有し、反応空間(1)を構成させている。被膜を形
成しようとする基体(10)を保持体(8) , (8
”)により回転させつつ保持した。その裏側のM(1’
”)側には排気口(7)をホモジナイザ(20’)を有
して設け、基体の装着の時は蓋(1”)を上方向に開け
て行う。高周波電圧または直流電圧はこの基体の保持体
により一方の電極と他の一方の網状電極(20)との間
に印加した。ここに、高周波または直流電源(6)より
13.56MHzまたは直流バイアス付の高周波電界を
加える。この直流ハイアスの値により炭素または炭素を
主成分とする被膜の硬さを制御できることは本発明に用
いた被膜形成方法の特徴の一つである。
FIG. 2 shows an example of an apparatus for producing carbon or a coating mainly composed of carbon used as a charge transport layer in the present invention. In the drawing, the stainless steel container (1") has a lid (1'
), forming a reaction space (1). The substrate (10) on which the coating is to be formed is held between the holders (8) and (8
”) was rotated and held.M(1') on the back side
An exhaust port (7) with a homogenizer (20') is provided on the ``) side, and the cover (1'') is opened upward when mounting the substrate. A high frequency voltage or a DC voltage was applied between one electrode and the other mesh electrode (20) by means of this base holder. Here, a high frequency electric field of 13.56 MHz or with a DC bias is applied from a high frequency or DC power supply (6). One of the characteristics of the film forming method used in the present invention is that the hardness of carbon or a film containing carbon as a main component can be controlled by the value of this DC high ass.

基体(10)はこの電界に垂直に第2図では位置させて
いる。基体端部より10mmほど重なるように基体表面
より少なくとも1 0mm好ましくは5mm以下の空間
をあけて、シールドメッシュ(22)を設置している。
The substrate (10) is positioned in FIG. 2 perpendicular to this electric field. A shield mesh (22) is installed with a space of at least 10 mm, preferably 5 mm or less, from the surface of the base so as to overlap by about 10 mm from the end of the base.

シールドメッシュは端部付近の基体とメッシュ間の空間
がプラズマ化されないように設けるものであり、基体と
同電位に保つ。このメッシュの重なり具合で基体端部の
膜厚を調整することができる。また、基体の円周方向の
均一性を向上させるために、その円周方向に回転させて
いる。
The shield mesh is provided to prevent the space between the base and the mesh near the end from becoming plasma, and is kept at the same potential as the base. The thickness of the film at the end of the substrate can be adjusted by adjusting the degree of overlapping of the meshes. Further, in order to improve the uniformity of the substrate in the circumferential direction, the substrate is rotated in the circumferential direction.

さらに第2図において左右方向が長いときは被膜形成と
同時にこのシールトメッシュとドラムを回転しつつ移動
させてもよい。この基体を多数配設し(図面の前後方向
)これらを回転しつつ均一な膜厚で多数同時に作るべく
移動させてもよい。
Furthermore, when the left and right direction is long in FIG. 2, the seal mesh and the drum may be rotated and moved at the same time as the coating is formed. A large number of these substrates may be arranged (in the front-rear direction of the drawing) and moved while rotating so as to simultaneously form a large number of films with uniform thickness.

反応性気体はドーピング系(13)より(18)を経て
石英管(29)で作られたマイクロ波を用いた共鳴空間
(2)に供給される。この共鳴空間は外側に空心磁石コ
イル(5) , (5’)を配し磁場を加える。同時に
マイクロ波発振器(3)によりアナライザー(4)を経
て例えば2.45GHzのマイクロ波が共鳴空間(2)
に供給される。この空間ではホイッスラーモードの共鳴
を起こすべく、反応性気体としてメタン、エタン、エチ
レン、アセチレンのような炭化水素若しくは四弗化炭素
、六弗化二炭素、六弗化ヘンゼン等の弗化炭素、若しく
は三弗化水化炭素等の弗化水化炭素等の炭化物気体を(
32)より加える。
The reactive gas is supplied from the doping system (13) via (18) to the resonance space (2) using microwaves made of a quartz tube (29). Air-core magnet coils (5) and (5') are placed on the outside of this resonance space to apply a magnetic field. At the same time, the microwave oscillator (3) passes through the analyzer (4) and a microwave of, for example, 2.45 GHz is transmitted to the resonant space (2).
supplied to In this space, in order to cause Whistler mode resonance, reactive gases include hydrocarbons such as methane, ethane, ethylene, and acetylene, or carbon fluorides such as carbon tetrafluoride, dicarbon hexafluoride, and Hensen hexafluoride. Carbide gases such as fluorocarbon hydride such as trifluorohydrocarbon (
32) Add more.

さらに水素で希釈されたジボラン(BZH6)またはフ
ォスヒン(pna)を、若しくは三弗化窒素、アンモニ
ア等の窒素化合物をドーピング用のガスとして(32)
より、さらに水素のキャリアガスを(31)より加える
Furthermore, diborane (BZH6) or phosphin (pna) diluted with hydrogen, or a nitrogen compound such as nitrogen trifluoride or ammonia is used as a doping gas (32)
Further, hydrogen carrier gas is added from (31).

圧力は、排気系(11)のコントロールハルブ(14)
によりターボ分子ポンプを併用した真空ポンプ(9)の
排気量を調整して行った。
The pressure is controlled by the control hub (14) of the exhaust system (11).
The displacement of the vacuum pump (9) which is also used with a turbo molecular pump was adjusted according to the following.

また、高周波電力として50W〜IKW 、プラズマ電
界として0.03〜3W/cm2を加えた。DCバイア
スは特に加えないと炭素膜中に水素が多く含まれ、光学
的エネルギハンド中も2.5〜3.5eVが得られる。
Furthermore, 50 W to IKW was applied as high frequency power and 0.03 to 3 W/cm2 as plasma electric field. Unless a DC bias is particularly applied, a large amount of hydrogen is contained in the carbon film, and 2.5 to 3.5 eV can be obtained even during optical energy handing.

基体側を正バイアスとすると、水素イオンが反発されて
結果として膜中の水素含有量を減少させ、その光学的エ
ネルギバンド中も1.0〜2.OeVとなる。
When a positive bias is applied to the substrate side, hydrogen ions are repelled, resulting in a decrease in the hydrogen content in the film, and the optical energy band also decreases from 1.0 to 2. It becomes OeV.

更に必要に応じて、図面においては電子または共鳴励起
したアルゴンを反応空間に十分広げるため、一方の電極
(20)が反応性気体のホモジナイザ(20)の効果を
併用させ得る。即ち、このホモジナイザの穴より放出さ
れる気体(21)を基体表面に均一に広い面積で成膜さ
せ、その厚さも基体端部以外の大面積の均一性をより良
好に得るため好ましい もちろんホモシナイザをいれるとこの面への電子及び活
性気体の衝突は避けられず、結果としてそこでのエネル
ギ消費がおき、成長速度の減少が見られる。そのため、
全体の空間で高い成長速度をより得んとするためには、
マイクロ波による励起が高周波はプラズマCVDのみで
あるよりも有効である。
Further, if necessary, in the drawing, one electrode (20) can also use the effect of a reactive gas homogenizer (20) in order to sufficiently spread electron or resonance excited argon into the reaction space. That is, in order to form a film uniformly over a wide area on the surface of the substrate with the gas (21) released from the holes of the homogenizer, and to obtain better uniformity in the thickness over a large area other than the ends of the substrate, it is of course preferable to use a homogenizer. When this happens, collisions of electrons and active gases on this surface are unavoidable, resulting in energy consumption there and a reduction in the growth rate. Therefore,
In order to obtain a high growth rate in the entire space,
High frequency excitation by microwave is more effective than plasma CVD alone.

基体表面温度は−100〜+150゜C好ましくは−1
00〜+IOO’Cであり、電荷発生層の耐熱性が十分
高くない場合でもこの炭素膜のコート中に何ら損傷、溶
融、変質することはない。
Substrate surface temperature is -100 to +150°C, preferably -1
00 to +IOO'C, and even if the heat resistance of the charge generation layer is not sufficiently high, there will be no damage, melting, or deterioration during coating with this carbon film.

さらにマイクロ波での予備励起を行うと、この場合の成
膜速度は500〜IOOOA/分が得られ、きわめて高
速成膜が可能である。しかしこの予備励起を行わないと
、100〜200人/分の成膜速度しか得られない。
Furthermore, if preliminary excitation with microwaves is performed, a film formation rate of 500 to IOOOA/min can be obtained in this case, and extremely high-speed film formation is possible. However, without this pre-excitation, a deposition rate of only 100 to 200 persons/min can be obtained.

上記の様な作製方法で作製された炭素または炭素を主成
分とする被膜はダイヤモンドと類似のC−C結合を作り
、ビッカース硬度100〜3000Kg/cm2、比抵
抗(固有抵抗’I I X 107〜I XIO”Ωc
mを有するとともに、光学的エネルギバンド巾(E.と
いう)が1.OeV以上、好ましくは1.5〜5.5e
Vを有する赤外または可視領域で透光性のダイヤモンド
と類似の特性を有するものである。
Carbon or a coating mainly composed of carbon produced by the above-mentioned production method forms C-C bonds similar to those of diamond, has a Vickers hardness of 100 to 3000 Kg/cm2, and a specific resistance (specific resistance 'I I I XIO”Ωc
m, and the optical energy band width (referred to as E.) is 1. OeV or more, preferably 1.5 to 5.5e
It has properties similar to those of diamond, which is transparent in the infrared or visible region.

電荷輸送層としての機能を発揮しようとすれば、少なく
とも5μm以上、好ましくは10μm以上の膜厚が必要
なため、第1図に示すように両端00〜5mmの部分(
11)の膜厚を2μm〜5μm8中央部の実際に使用す
る部分(12)の膜厚を10μm〜15μm、端部より
5〜10mfflの部分(13)を端部より中央部に近
くなるに従って徐々に膜厚が大きくなるように構成した
In order to function as a charge transport layer, a film thickness of at least 5 μm or more, preferably 10 μm or more is required, so as shown in FIG.
11) The film thickness is 2 μm to 5 μm.8 The film thickness of the central part (12) that is actually used is 10 μm to 15 μm, and the film thickness of the part (13) that is 5 to 10 mffl from the end is gradually increased as it gets closer to the center than the end. The structure was designed so that the film thickness was increased.

また、電荷輸送層上に機械的強度向上、或いは?水性向
上のため保護層として炭素または炭素を主成分とする被
膜を設けてもよい。勿論その場合も端部は中央部に比べ
て薄くすることは言うまでもない。
In addition, mechanical strength improvement or? Carbon or a coating mainly composed of carbon may be provided as a protective layer to improve water resistance. Of course, in that case, it goes without saying that the end portions should be made thinner than the center portion.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

〔実施例〕〔Example〕

この実施例は電荷輸送層として、水素とメタンとを1=
1としダイヤモンド結合を有するアモルファスまたはダ
イヤモンド微結晶を含むアモルファス炭素膜を形成させ
たものである。
In this example, hydrogen and methane are used as the charge transport layer at 1=
1, an amorphous carbon film containing diamond bonds or diamond microcrystals is formed.

アルミ製シリンダー状支持体(外形40mmφ、長さ2
50mm)に下記組成比の混合物をボールミルで12時
間分散し調整した下引層形成液を乾燥後のまくあつが約
2μmになる用に浸漬法で塗工し下引層を形成した。
Aluminum cylindrical support (outer diameter 40mmφ, length 2
A subbing layer forming solution prepared by dispersing a mixture having the composition ratio shown below in a 50 mm film for 12 hours using a ball mill was applied by dipping to form an undercoat layer so that the thickness after drying would be about 2 μm.

〔下引層形成液〕[Subbing layer forming liquid]

TiO■(石原産業社製 タイベーク) 1重量部ポリ
アミド樹脂(東レ社製 CM−8000) 1重量部メ
タノール            25重景部この下引
層上に下記処方の電荷発生層塗工液を(I8) 浸漬塗工し、120″Cで10分管乾燥させ、膜厚約0
.15μmの電荷発生層を形成した。
TiO■ (Tie Bake manufactured by Ishihara Sangyo Co., Ltd.) 1 part by weight Polyamide resin (CM-8000 manufactured by Toray Industries) 1 part by weight methanol 25 parts by weight Dip a charge generation layer coating liquid (I8) of the following formulation onto this subbing layer. Coat and dry the tube at 120"C for 10 minutes until the film thickness is about 0.
.. A charge generation layer of 15 μm was formed.

〔電荷発生層塗工液〕[Charge generation layer coating liquid]

下記構造のトリスアゾ顔料     30重量部ポリエ
ステル樹脂(東洋紡社製 ハイロン)12重量部 シクロヘキサン          360重量部上記
混合物をボールミルで72時間分散した後さらにシクロ
ヘキサン:メチルエチルケトン=1=1(重量比)の混
合溶媒500重量部で希釈調整する。
Trisazo pigment with the following structure: 30 parts by weight Polyester resin (Toyobo Hylon) 12 parts by weight cyclohexane 360 parts After dispersing the above mixture in a ball mill for 72 hours, 500 parts by weight of a mixed solvent of cyclohexane:methyl ethyl ketone = 1=1 (weight ratio) Adjust the dilution in 1 part.

次いでこの電荷発生層上に炭素または炭素を主成分とす
る被膜をを設けた。
Next, carbon or a film containing carbon as a main component was provided on this charge generation layer.

反応空間の圧力をQ,l torr、非生成物気体とし
て(31)より水素を2003CCMで供給した。加え
て、メタンを(32)より2005CCMで供給した。
The pressure in the reaction space was set to Q, l torr, and 2003 CCM of hydrogen was supplied from (31) as a non-product gas. In addition, methane was fed from (32) at 2005 CCM.

マイクロ波は2.45G}lzの周波数を有し、出力5
00リで調整した。磁場(5),(5’)の共鳴強度は
875ガウスとした。
The microwave has a frequency of 2.45G}lz and an output of 5
Adjusted with 00ri. The resonance intensity of the magnetic fields (5) and (5') was set to 875 Gauss.

13.56MtlzO高周波電力を500W加えた。か
くして放電を開始した後排気系を調整した。
13.56MtlzO high frequency power of 500W was applied. After starting the discharge, the exhaust system was adjusted.

シールドメッシュ(22)を基体端部より約1 0mm
基体に重なるように、また、基体とシールドメッシュの
間隔を3mmとなるよう基体およびシールドメッシュを
設置したところ基体とシールドメノシュで挟まれた空間
はプラズマ化されず、基体の端には被膜は形成されず、
端部より10mmまでの間で膜厚は0、01μm〜10
μmまで変化していた。両端部より10+yunを除く
中心部の膜厚はほぼ10μMであり均一であった。
Place the shield mesh (22) approximately 10mm from the end of the base.
When the base and shield mesh were installed so that they overlapped with the base and the distance between the base and the shield mesh was 3 mm, the space between the base and the shield mesh was not turned into plasma, and no coating was left on the edges of the base. not formed,
The film thickness is 0.01μm to 10mm from the end to 10mm.
It varied down to μm. The film thickness at the center excluding 10+yun from both ends was approximately 10 μM and uniform.

基板温度が室温において被膜形成速度30人7秒を作る
ことができ、製膜時間は約60分だった。この速度はプ
ラズマCVDのみで得られる1.5人/秒に比べ20倍
の速さである。このアモルファス炭素の電気特性の1例
を調べると、固有抵抗10′3Ωcm、ビッカ−ス硬度
2300Kg/mm2、光学的エネルギバンド巾1.8
eVであった。
When the substrate temperature was room temperature, a film formation speed of 30 people and 7 seconds could be achieved, and the film formation time was about 60 minutes. This speed is 20 times faster than the 1.5 persons/second obtained by plasma CVD alone. An example of the electrical properties of this amorphous carbon is that it has a specific resistance of 10'3 Ωcm, a Vickers hardness of 2300 Kg/mm2, and an optical energy band width of 1.8.
It was eV.

〔比較例〕[Comparative example]

実施例と同様のアルミ製シリンダー状支持体に同様の方
法で下引層を形成し、同様の方法で電荷発生層を形成し
た後、膜厚を端部において薄くしない場合の炭素または
炭素を主成分とする被膜を電荷輸送層として形成した。
After forming a subbing layer in the same manner as on the same aluminum cylindrical support as in the example and forming a charge generation layer in the same manner, a carbon or carbon-based layer was formed in the case where the film thickness was not made thinner at the edges. A film containing the components was formed as a charge transport layer.

〔実験例1〕 本実施例及び実験例により作製された感光体に対し、−
60゜C→室温→−60’Cの温度・リ−イクルを10
0回行った結果を表1及び表2に示す。表1は実施例の
サンプルの結果を、表2は比較例のサンプルの結果を示
す。表1に示す様に、実施例のサンプルでは被膜にクラ
ンクが入ったり基板よりはがれたりピーリングせず、歩
留まりは100%だった。
[Experimental Example 1] For the photoreceptors manufactured according to this example and experimental examples, -
60°C → room temperature → -60'C temperature/recycle 10
The results of 0 tests are shown in Tables 1 and 2. Table 1 shows the results of the Example samples, and Table 2 shows the results of the Comparative Example samples. As shown in Table 1, in the samples of Examples, the coating did not crack, peel or peel from the substrate, and the yield was 100%.

それに比べて、表2に示す様に、比較例のサンプルでは
被膜にクラックが入ったり基板よりはがれたりピーリン
グが発生したサンプルは約90%もあり、本発明を応用
した炭素または炭素を主成分とする被膜よりなる電荷輸
送層の密着性がいかに優れているかを知ることができる
In comparison, as shown in Table 2, about 90% of the comparative samples had cracks in the coating, peeled off from the substrate, or peeled. It can be seen how excellent the adhesion of the charge transport layer made of the film is.

表1 表2 〔実験例2〕 実際にSampleを静電複写機に装着し繰り返しコピ
ーを採取して、炭素または炭素を主成分とする被膜より
なる電荷輸送層の端部よりの剥がれの発生を観察した。
Table 1 Table 2 [Experimental Example 2] Sample was actually attached to an electrostatic copying machine and copies were made repeatedly to check for peeling from the edges of the charge transport layer, which is made of carbon or a film mainly composed of carbon. Observed.

使用した紙のサイズはA4版サイズである。The size of the paper used was A4 size.

実験例により作製された感光体では104〜7×104
枚で剥がれの発生が認められたが、実験例により作製さ
れた感光体では105〜106枚の複写動作に対しても
変化はなかった。
In the photoreceptor produced in the experimental example, 104 to 7×104
Although peeling was observed in some sheets, there was no change in the photoreceptor fabricated in the experimental example even when copying 105 to 106 sheets.

本発明を応用した炭素または炭素を主成分とする被膜よ
りなる電荷輸送層の密着性が大変優れていることがここ
でも確認することができた。
It was also confirmed here that the charge transport layer made of carbon or a film mainly composed of carbon to which the present invention was applied had excellent adhesion.

『効果』 本発明は、感光体における電荷輸送層を炭素または炭素
を主成分とする被膜で構成し、膜の端部を薄くすること
により密着性を向上させたものである。これにより、感
光体の耐久性を格段に向上させることができた。
"Effects" In the present invention, the charge transport layer in the photoreceptor is composed of carbon or a film containing carbon as a main component, and the end portions of the film are made thinner to improve adhesion. This made it possible to significantly improve the durability of the photoreceptor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いた感光ドラムの実施例の断面図を
示す。 第2図は本発明で用いた炭素膜作製用プラズマCVD装
置を示す。
FIG. 1 shows a cross-sectional view of an embodiment of a photosensitive drum using the present invention. FIG. 2 shows a plasma CVD apparatus for producing a carbon film used in the present invention.

Claims (1)

【特許請求の範囲】[Claims]  円筒状導電性支持体上に電荷発生の機能を有する電荷
発生層、電荷発生層から注入された電荷の輸送機能を有
する電荷輸送層をこの順に積層した電子写真用感光体で
あって、前記電荷輸送層が炭素または炭素を主成分とす
る被膜から成り、かつ該電荷輸送層の膜厚が円筒状導電
性支持体の長さ方向に沿って、その中心部より端部に近
くなるに従って薄くなっていることを特徴とする電子写
真用感光体。
An electrophotographic photoreceptor in which a charge generation layer having a charge generation function and a charge transport layer having a function of transporting charges injected from the charge generation layer are laminated in this order on a cylindrical conductive support, The transport layer is made of carbon or a film containing carbon as a main component, and the thickness of the charge transport layer becomes thinner along the length of the cylindrical conductive support as it gets closer to the ends than the center. An electrophotographic photoreceptor characterized by:
JP63286504A 1988-11-13 1988-11-13 Electrophotographic photoreceptor Expired - Lifetime JP2818880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286504A JP2818880B2 (en) 1988-11-13 1988-11-13 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286504A JP2818880B2 (en) 1988-11-13 1988-11-13 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH02132449A true JPH02132449A (en) 1990-05-21
JP2818880B2 JP2818880B2 (en) 1998-10-30

Family

ID=17705266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286504A Expired - Lifetime JP2818880B2 (en) 1988-11-13 1988-11-13 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2818880B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324140A1 (en) * 2001-12-21 2003-07-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
CN1311305C (en) * 2001-12-21 2007-04-18 佳能株式会社 Electrophotographic sensitization body, image processing box and electronic photographic device
US7684733B2 (en) 2006-03-30 2010-03-23 Kyocera Corporation Electrophotographic photosensitive member rotatably supported in an image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146454A (en) * 1980-04-26 1980-11-14 Canon Inc Electrophotographic receptor
JPS63121854A (en) * 1986-11-11 1988-05-25 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146454A (en) * 1980-04-26 1980-11-14 Canon Inc Electrophotographic receptor
JPS63121854A (en) * 1986-11-11 1988-05-25 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324140A1 (en) * 2001-12-21 2003-07-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
CN1311305C (en) * 2001-12-21 2007-04-18 佳能株式会社 Electrophotographic sensitization body, image processing box and electronic photographic device
AU2002318901B2 (en) * 2001-12-21 2007-06-14 Canon Kabushiki Kaisha Electrophotographic Photosensitive Member, Process Cartridge and Electrophotographic Apparatus
US7684733B2 (en) 2006-03-30 2010-03-23 Kyocera Corporation Electrophotographic photosensitive member rotatably supported in an image forming apparatus

Also Published As

Publication number Publication date
JP2818880B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
US5059502A (en) Electrophotographic photoconductor
JP3350833B2 (en) Electrophotographic photoreceptor
US5840455A (en) Electrophotographic photoconductor
JPH02132449A (en) Electrophotographic sensitive body
JP3409107B2 (en) Electrophotographic photoreceptor
JP2818881B2 (en) Electrophotographic photoreceptor
JP2818882B2 (en) Electrophotographic photoreceptor
JP2979070B2 (en) Electrophotographic photoreceptor
JPH02210458A (en) Electrophotographic sensitive body
JPH03213869A (en) Manufacture of electrophotographic sensitive body
JP2599635B2 (en) Electrophotographic photoreceptor
JPH02210455A (en) Electrophotographic sensitive body
JPS60232553A (en) Electrophotographic sensitive body
JP3119860B2 (en) Manufacturing method of photoreceptor for electrophotography
JPH07140694A (en) Electrophotographic photoreceptor
JP2805050B2 (en) Electrophotographic photoreceptor
JP3523651B2 (en) Electrophotographic photoreceptor
US6649314B1 (en) Process for reducing image defects in an electrostatographic apparatus containing particulate contaminants
JPS5854347A (en) Electrophotographic receptor
JP3057196B2 (en) Electrophotographic photoreceptor
JPS61117558A (en) Electrophotographic sensitive body
JPH03213871A (en) Electrophotographic sensitive body
JP3000088B2 (en) Electrophotographic photoreceptor
JPH04133068A (en) Electrophotographic sensitive body
JP2001059174A (en) Formation of carbon film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11