JPH02131195A - Soil water treatment device - Google Patents

Soil water treatment device

Info

Publication number
JPH02131195A
JPH02131195A JP63284565A JP28456588A JPH02131195A JP H02131195 A JPH02131195 A JP H02131195A JP 63284565 A JP63284565 A JP 63284565A JP 28456588 A JP28456588 A JP 28456588A JP H02131195 A JPH02131195 A JP H02131195A
Authority
JP
Japan
Prior art keywords
filter layer
filled
filter
water
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63284565A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
竹内 秀二
Yoshinari Fujisawa
能成 藤沢
Shinichi Endo
伸一 遠藤
Seiichi Kanamori
聖一 金森
Yuji Yoshii
吉井 裕二
Hirohisa Yamada
山田 尋久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63284565A priority Critical patent/JPH02131195A/en
Publication of JPH02131195A publication Critical patent/JPH02131195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To treat continuously for a long time with high water applying speed by forming waterproof fiber into non-woven fabric and filling a fiber medium with void at the time of applying water not to be varied substantially in a filter layer for microbe contacting. CONSTITUTION:Raw water from a raw water inflow pipe 4 flows into a treat ment tank 1, and air (O2) from an air diffusion pipe 7 on a bottom section is fed to microbes, and treated water passing through a filter layer 2 is dis charged through an extrusion pipe 5 and a discharge pipe 6. Plastic fibers 13, a number of bending processed waterproof fibers, are coated with bonding agent into non-woven three-dimensional mesh in said filter layer 2 filled with fiber filter mediums 12 having non-varying void content substantially at the time of applying water. Thus, pressure loss of the filter layer is small, and continuous treatment at high rate of water filtration without damaging removal efficiency of BOD and SS can be carried out for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、都市下水、産業排水等の有機性排水あるいは
下水二次処理水を生物膜濾過法によって処理する汚水処
理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sewage treatment device for treating organic wastewater such as urban sewage and industrial wastewater, or secondary treated sewage water by a biofilm filtration method.

[従来の技術] 生物膜濾過法による汚水処理装置は、処理槽内に玉砂利
、砕石、ラシヒリングなど粒状濾材よりなる生物膜濾層
を備え、濾層の下部から空気を吹き込む散気手段が設け
られ、濾材の表面あるいは濾層の空隙に着生している好
気性微生物の作用によって原水中のBOD成分を酸化分
解処理する装置である。この装置は、濾層内での気液接
触がよいために酸素溶解効率が高く、また有機物の除去
と同時に懸濁性固形物(以下、ssと云う)を除去する
機能をも有しており、近年、その適用についての開発研
究がなされている。
[Prior art] A sewage treatment device using the biofilm filtration method is equipped with a biofilm filter layer made of granular filter media such as gravel, crushed stone, and Raschig ring in the treatment tank, and is provided with an aeration means for blowing air from the bottom of the filter layer. This is a device that oxidizes and decomposes BOD components in raw water by the action of aerobic microorganisms that grow on the surface of the filter medium or in the pores of the filter layer. This device has high oxygen dissolution efficiency due to good gas-liquid contact within the filter layer, and also has the function of removing suspended solids (hereinafter referred to as SS) at the same time as removing organic matter. , In recent years, development research has been conducted on its application.

例えば、濾層に粒状濾材を充填した生物濾過膜法による
装置を使用し、活性汚泥法による処理水の高度処理を行
った研究結果が発表されてぃる(第25回下水道研究発
表会講演集,294頁〜296頁, 1988年)。第
6図はこの装置の説明図である。第6図において、この
装置は処理槽2o内に4〜7龍の粒状濾材を1m充填し
て濾層21を形成している。そして、処理槽20の上部
には原水流入管22が、下部には処理水排出管23がそ
れぞれ配管され、また濾層21の下方には濾材に着生し
た微生物に酸素を供給するための空気供給管24が配管
されている。図中、25は処理水排出管23に接続させ
て処理槽20に洗浄水を流入させる逆洗水供給管、26
は逆洗排水管を示し、空気供給管24は逆洗時に空気を
吹き込む空気供給管を兼ねている。
For example, research results have been published on advanced treatment of treated water using the activated sludge method using a biological filtration membrane method in which the filter layer is filled with granular filter media (Proceedings of the 25th Sewerage Research Conference). , pp. 294-296, 1988). FIG. 6 is an explanatory diagram of this device. In FIG. 6, this apparatus has a processing tank 2o filled with 1 m of 4 to 7 granular filter media to form a filter layer 21. A raw water inflow pipe 22 is installed in the upper part of the treatment tank 20, and a treated water discharge pipe 23 is installed in the lower part of the treatment tank 20. Also, below the filter layer 21, air is provided to supply oxygen to the microorganisms attached to the filter medium. A supply pipe 24 is installed. In the figure, 25 is a backwash water supply pipe that is connected to the treated water discharge pipe 23 and allows cleaning water to flow into the treatment tank 20, and 26
indicates a backwash drain pipe, and the air supply pipe 24 also serves as an air supply pipe for blowing air during backwashing.

このように構成された装置において、原水流入管22か
ら供給された原水は濾層21を通過する間にBOD及び
SSが除去され、処理水は処理水排出管23から排出す
る。この浄化処理の間に、SSの捕捉及び微生物の増殖
によって濾層21の圧損が上昇するので、圧損がある限
度に達した時点で濾層21の逆洗を行う。
In the apparatus configured as described above, BOD and SS are removed from the raw water supplied from the raw water inflow pipe 22 while passing through the filter layer 21, and the treated water is discharged from the treated water discharge pipe 23. During this purification process, the pressure loss of the filter layer 21 increases due to the capture of SS and the growth of microorganisms, so the filter layer 21 is backwashed when the pressure loss reaches a certain limit.

実施結果において、BOD,SSの除去はいづれも良好
であるが、24時間通水後の圧損は第7図のように高い
傾向を示している。そして、この圧損の結果に基づいた
逆洗の必要頻度は、濾過速度6m/時(144m/日)
の場合で2日に1回程度であることが記載されている。
The results show that both BOD and SS are removed well, but the pressure drop after 24 hours of water flow tends to be high as shown in Figure 7. The required frequency of backwashing based on this pressure drop result is a filtration rate of 6 m/hour (144 m/day).
It is stated that this happens about once every two days.

[発明が解決しようとする課題] 上記の従来技術は有用な技術ではあるが、圧損が高く、
比較的短時間で逆洗を実施しなけれならず、なお、改良
すべき余地がある。
[Problem to be solved by the invention] Although the above-mentioned conventional technology is a useful technology, the pressure loss is high and
Backwashing must be performed in a relatively short period of time, and there is still room for improvement.

本発明は、上記の問題点を解決し、BOD、SSの除去
効率を損なうことなく、長時間の処理を継続することが
できる生物膜濾過法による汚水処理装置を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a wastewater treatment device using a biofilm filtration method that can continue treatment for a long time without impairing the removal efficiency of BOD and SS.

[課題を解決するための手段] 上記の目的を達成するために、本発明の汚水処理装置に
おいては、処理槽内の微生物接触用の濾層には耐水性繊
維を不織に形成し且つ通水時における空隙率が実質的に
変化しない繊維濾材を充填している。この繊維濾材を形
成する耐水性繊維にはプラスチック繊維あるいは金属繊
維を使用する。
[Means for Solving the Problems] In order to achieve the above object, in the sewage treatment apparatus of the present invention, the filter layer for contacting microorganisms in the treatment tank is formed with water-resistant fibers in a non-woven manner. It is filled with a fiber filter medium whose porosity does not substantially change when wet. Plastic fibers or metal fibers are used as the water-resistant fibers forming this fibrous filter medium.

また、前記濾層を少なくとも二つに分割し、原水が最初
に通過する処理初期の濾層(以下、初期濾層と云う)に
は99.5%〜95%の空隙率を有する前記繊維濾材を
充填し、原水が最後に通過する処理終期の濾層(以下、
終期濾層と云う)にはり5%〜70%の空隙率を有する
前記繊維濾材を充填することにより、処理効率をさらに
高めることができる。
Further, the filter layer is divided into at least two parts, and the filter layer at the initial stage of treatment through which the raw water first passes (hereinafter referred to as the initial filter layer) includes the fiber filter material having a porosity of 99.5% to 95%. The filter layer at the end of the treatment (hereinafter referred to as
The processing efficiency can be further increased by filling the fibrous filter medium having a porosity of 5% to 70% into the final filter layer.

さらに、処理槽内に濾材の異なる少なくとも一つの濾層
を備え、初期濾層には前記繊維濾材を充填し、終期濾層
には粒状の濾材を充填することにより、粒状濾材の特性
を活用しながら濾層全体の圧損の上昇を抑制することが
できる。
Furthermore, the treatment tank is equipped with at least one filter layer of different filter media, the initial filter layer is filled with the above-mentioned fibrous filter media, and the final filter layer is filled with granular filter media, thereby utilizing the characteristics of the granular filter media. At the same time, it is possible to suppress an increase in pressure loss throughout the filter layer.

そして、上記の処理槽内に濾材の異なる少なくとも二つ
の濾層を備えた汚水処理装置において、初期濾層を少な
くとも二つに区画し、区画した最初の濾層部には9つ,
5%〜95%の空隙率を有する前記繊維濾材を充填し、
区画した最後の濾層部には95%〜70%の空隙率を有
する前記繊維濾材を充填することにより、前記初期濾層
の効率を一層高めることができる。
In the sewage treatment device having at least two filter layers with different filter media in the treatment tank, the initial filter layer is divided into at least two, and the first divided filter layer has nine filter layers,
Filling the fiber filter medium with a porosity of 5% to 95%,
The efficiency of the initial filter layer can be further increased by filling the last partitioned filter layer with the fiber filter medium having a porosity of 95% to 70%.

[作用] 本発明の装置の濾層に充填する繊維濾材は、各種の濾材
選定実験の結果により見いだされたものであり、耐水性
繊維をカールさせる等の曲げ加工をして小さな弾性体に
し、この曲げ加工した繊維を不織に形成したものである
。このため、空隙率は粒状濾材に比べ非常に大きく、従
って、この繊維濾材を充填した濾層の圧損は極めて小さ
い。しかも、後述のごとく、BOI).SSの除去効率
を損なうことがないと云う特性を有する。
[Function] The fiber filter medium to be filled in the filter layer of the device of the present invention was discovered as a result of various filter medium selection experiments, and is made by bending water-resistant fibers such as curling them into a small elastic body. This bent fiber is formed into a non-woven material. Therefore, the porosity is much larger than that of granular filter media, and therefore the pressure loss of a filter layer filled with this fibrous filter media is extremely small. Moreover, as mentioned below, BOI). It has the property of not impairing SS removal efficiency.

上記繊維濾材は空隙率が70%〜99.5%のものが使
用される。この空隙率は、通水中に短時間で圧損が上昇
することなく、且つSSの除去率が良好であることを前
提にして決定した。空隙率が70%未満では、短時間の
通水で圧損が急激に増加するので本発明の目的に沿うこ
とができず、空隙率が99、5%を超えるとSSの除去
率が不十分となり濾材としての機能が不足する。
The fibrous filter medium used has a porosity of 70% to 99.5%. This porosity was determined on the premise that the pressure drop would not increase in a short period of time during water flow and that the SS removal rate would be good. If the porosity is less than 70%, the pressure drop will increase rapidly with water passing for a short time, so the purpose of the present invention cannot be achieved, and if the porosity exceeds 99.5%, the SS removal rate will be insufficient. Its function as a filter medium is insufficient.

また、繊維濾材は、空隙率を適宜の大きさにしたものを
広範囲の空隙率に亙って製造することができるので、原
水の水質、特に含有するSSの粒径に応じて空隙率が適
切なものを選定することができる。空隙率の小さい濾材
はSSの除去率はよいが、SSの捕捉に伴う圧損の上昇
率が大きい。
In addition, fiber filter media can be manufactured with an appropriate porosity over a wide range of porosity, so the porosity can be adjusted appropriately depending on the quality of the raw water, especially the particle size of the SS contained. You can choose what you want. A filter medium with a small porosity has a good SS removal rate, but the pressure drop increases at a high rate due to SS capture.

また、空隙率の大きい濾材は圧損上昇率は小さいが、S
Sの除去率は低い。このため、主として粒径の大きいS
Sを含む原水の処理には空隙率の大きいものを使用し、
また主として粒径の小さいSSを含む原水の処理に際し
ては空隙率の小さいものを使用することにより、SSの
捕捉に伴う圧損の上昇を抑制するとともに、目標とする
SSの除去率をも確保できるような濾材の選定ができる
In addition, filter media with large porosity have a small pressure drop increase rate, but S
The removal rate of S is low. For this reason, mainly S with large particle size
For treating raw water containing S, use one with a high porosity.
In addition, when treating raw water that mainly contains SS with a small particle size, by using a material with a small porosity, it is possible to suppress the increase in pressure drop due to the capture of SS, and also to ensure the targeted SS removal rate. Filter media can be selected.

そして、粒径の大きいSSと小さいSSが混在する原水
を処理する場合には、濾層を少なくとも二つに区画し、
それぞれの濾層には空隙率の異なる繊維濾材を充填する
のがよい。このように構成した装置は、初期濾層には粒
径の大きいSSの除去を目的として空隙率の大きい繊維
濾材を充填し、終期濾層には初期濾層に充填したものよ
り小さい空隙率の繊維濾材を充填し、初期濾層で除去で
きなかったSSを捕捉する。このような順序で繊維濾材
を充填して濾層を形成させれば、空隙率が小さい繊維濾
材が充填された終期濾層の負荷が軽減され、圧損の急激
な上昇を招くことなく長時間の処理が継続できるととも
に、SSの除去率を高めることができる。なお、必要に
応じ、初期濾層と終期濾層の間に所用数の中間濾層を設
けてもよい。中間濾層に充填する繊維濾材の空隙率は、
初期濾層に充填した繊維濾材よりも小さく、終期濾層に
充填した繊維濾材よりも大きくする。
When treating raw water containing a mixture of SS with large particle size and SS with small particle size, the filter layer is divided into at least two parts,
It is preferable to fill each filter layer with fiber filter media having different porosity. In the device configured in this way, the initial filter layer is filled with a fiber filter medium with a high porosity for the purpose of removing SS with a large particle size, and the final filter layer is filled with a fiber filter medium with a smaller porosity than that filled in the initial filter layer. A fiber filter medium is filled to capture SS that could not be removed by the initial filter layer. If the filter layer is formed by filling the fiber filter media in this order, the load on the final filter layer filled with the fiber filter media with a small porosity will be reduced, and it can be used for a long time without causing a sudden increase in pressure drop. The process can be continued and the SS removal rate can be increased. Note that, if necessary, a required number of intermediate filter layers may be provided between the initial filter layer and the final filter layer. The porosity of the fiber filter medium filled in the intermediate filter layer is
It is smaller than the fiber filter medium filled in the initial filter layer and larger than the fiber filter medium filled in the final filter layer.

さらに、初期濾層に繊維濾材を充填し、終期濾層に粒状
濾材を充填した装置においては、繊維濾材を充填した初
期濾層では主として大きなSSが除去され、粒状濾材を
充填した終期濾層では微細なSSをも除去される。しか
も、初期濾層の働きによって終期濾層に持ち込まれるS
Sの量は著しく減少するので、粒状濾材を充填した装置
であっても長時間の処理を継続することができる。
Furthermore, in a device in which the initial filter layer is filled with a fibrous filter medium and the final filter layer is filled with a granular filter medium, large SS is mainly removed in the initial filter layer filled with a fibrous filter medium, and in the final filter layer filled with a granular filter medium. Even minute SS is removed. Furthermore, S is brought into the final filter layer by the action of the initial filter layer.
Since the amount of S is significantly reduced, processing can be continued for a long time even in an apparatus filled with granular filter media.

上記した繊維濾材を充填した初期濾層と粒状濾材を充填
した終期濾層を備えた装置において、繊維濾材を充填す
る初期濾層を少なくとも二つに区画し、区画された濾層
部には原水の通水方向に従って順次空隙率の小さい濾材
を充填すれば、粒径分布が広範囲に亙るSSを含有する
原水を処理しても、初期濾層の圧損の上昇率が大きくな
ることなく、終期濾層の負荷を軽減して長時間継続した
処理を行うことができる。
In a device equipped with the above-mentioned initial filter layer filled with fiber filter media and final filter layer filled with granular filter media, the initial filter layer filled with fiber filter media is divided into at least two parts, and raw water is added to the divided filter layer parts. If filter media with small porosity are filled sequentially according to the water flow direction, even if raw water containing SS with a wide particle size distribution is treated, the rate of increase in pressure drop in the initial filter layer will not increase, and the final filter will be It is possible to reduce the load on the layers and continue processing for a long time.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第2図は本発明の装置に充填する繊維濾材を模式的に示
した説明図である。この繊維濾材12は曲げ加工された
多数の耐水性繊維であるプラスチック繊維13を結合剤
で被覆結合し、三次元の網目様の構造にして不織に形成
したものである。繊維濾材12を構成する前記繊維13
の径は100デニール(約0 . 0 9 1 ml+
) 〜1 0 0 0 01〇一 テニール(約0−91mm)の範囲である。そして、繊
維濾材12の空隙率は前述のように70%〜99.5%
の範囲で選定する。
FIG. 2 is an explanatory diagram schematically showing a fiber filter medium to be filled in the apparatus of the present invention. The fiber filter medium 12 is made of a non-woven material in which a large number of bent plastic fibers 13, which are water-resistant fibers, are coated and bonded with a binder to form a three-dimensional mesh-like structure. The fibers 13 constituting the fiber filter medium 12
The diameter is 100 denier (approximately 0.091 ml+
) to 10000101 tenier (approximately 0-91 mm). The porosity of the fiber filter medium 12 is 70% to 99.5% as described above.
Select within the range.

繊維濾材12を構成する前記繊維13の径は濾材選定実
験の結果を基に次のように決定した。充填した繊維濾材
12は通水中に圧縮されて減容されることがあれば、空
隙率が減少して処理性能が変わるので好ましくない。こ
のため、前記繊維13は、通水時に繊維濾材12が実質
的に圧縮されないだけの強度を有する必要があり、この
条件に適合する前記繊維13の径は約100デニール以
上が必要となる。しかし、前記繊維13があまり太くな
ると、濾材単位容積当たりの濾材有効表面積が減少し、
処理効率が悪化する。このように、処理効率との関係を
考慮すると前記繊維13の径は10000デニール以下
であるのが望ましい。
The diameter of the fibers 13 constituting the fiber filter medium 12 was determined as follows based on the results of a filter medium selection experiment. If the filled fiber filter medium 12 is compressed and reduced in volume during water flow, the porosity will decrease and the processing performance will change, which is not preferable. For this reason, the fibers 13 need to have enough strength to prevent the fiber filter medium 12 from being substantially compressed during water passage, and the diameter of the fibers 13 that meets this condition needs to be about 100 deniers or more. However, if the fibers 13 become too thick, the effective surface area of the filter medium per unit volume of the filter medium decreases,
Processing efficiency deteriorates. Thus, in consideration of the relationship with processing efficiency, it is desirable that the diameter of the fibers 13 be 10,000 deniers or less.

第1図は本発明の第一実施例を模式的に示した断面図で
ある。竪型の処理槽1内には第2図に示した繊維濾材を
充填した濾層2を備えている。濾層2の下端及び上端に
は、多孔板、格子等の形状をなし、実質的に通水抵抗が
殆どない濾層保持材3を備え、濾層2の担持または濾材
の浮き上がり防止のための固定をしている。処理槽1に
は各種の配管が接続されており、その上方には原水流入
管4が、底部には処理水抜き出し管5が配管され、この
処理水抜き出し管5には処理水排出管6が接続されて原
水・処理水の流路が形成されている。また底部には濾層
2の下方に挿入され濾層2に着生した微生物に酸素を供
給するための散気管7を備え、この散気管7には空気供
給管8が連結されている。そして、濾層2の逆洗時に使
用する手段として、処理水抜き出し管6に接続させて逆
洗水供給管9が設けられ、濾層2の上部に位置する処理
槽1の外周には逆洗水集合管11に接続された1本また
は複数本の逆洗水排出管10がそれそれ取り付けられて
いる。また、散気管7及び空気供給管8は逆洗時の空気
吹き込み手段と共用になっている。
FIG. 1 is a sectional view schematically showing a first embodiment of the present invention. A vertical treatment tank 1 is provided with a filter layer 2 filled with a fiber filter medium as shown in FIG. The lower and upper ends of the filter layer 2 are provided with a filter layer holding material 3 in the form of a perforated plate, a grid, etc., which has virtually no water flow resistance, and is used to support the filter layer 2 or to prevent the filter material from lifting up. It is fixed. Various types of piping are connected to the treatment tank 1. A raw water inflow pipe 4 is connected to the upper part of the tank 1, a treated water withdrawal pipe 5 is connected to the bottom of the treatment tank 1, and a treated water discharge pipe 6 is connected to the treated water withdrawal pipe 5. They are connected to form a flow path for raw water and treated water. Further, an aeration tube 7 is provided at the bottom of the filter layer 2 to supply oxygen to microorganisms that have grown on the filter layer 2, and an air supply tube 8 is connected to the aeration tube 7. As a means for backwashing the filter layer 2, a backwash water supply pipe 9 is provided connected to the treated water withdrawal pipe 6, and the outer periphery of the treatment tank 1 located above the filter layer 2 is provided with a backwash water supply pipe 9. One or more backwash water discharge pipes 10 connected to the water collecting pipe 11 are installed respectively. Further, the air diffuser pipe 7 and the air supply pipe 8 are also used as air blowing means during backwashing.

この装置の操作について説明する。原水流入管4から原
水を流入させ、原水が濾層2の上端まで達した時点で、
原水の流入を中断し、散気管7から処理槽1内に空気を
吹き込んで処理水排出管6から処理水を排出する。原水
は、濾層2を通過する間にBODが分解されるとともに
、SSの大部分が捕捉されて除去され、低BOD濃度、
低SS濃度の処理水となる。
The operation of this device will be explained. Raw water is introduced from the raw water inlet pipe 4, and when the raw water reaches the upper end of the filter layer 2,
The inflow of raw water is interrupted, air is blown into the treatment tank 1 from the aeration pipe 7, and the treated water is discharged from the treated water discharge pipe 6. While the raw water passes through the filter layer 2, BOD is decomposed and most of the SS is captured and removed, resulting in a low BOD concentration.
The treated water has a low SS concentration.

このようにして処理は継続されるが、処理が長時間に亙
ると濾層2の圧損が徐々に上昇するので、圧損がある限
度に達した時点で濾層2の逆洗を行う。逆洗を行う場合
、原水の供給及び処理水の抜き出しを止めて処理を一時
中断し、空気吹き込み管8がら空気の吹き込みを行う。
The treatment continues in this manner, but as the treatment continues for a long time, the pressure loss in the filter layer 2 gradually increases, so when the pressure loss reaches a certain limit, the filter layer 2 is backwashed. When backwashing is performed, the supply of raw water and the extraction of treated water are stopped, the process is temporarily interrupted, and air is blown through the air blowing pipe 8.

この際、濾層2に付着しているSSは剥離して滞留する
原水中に懸濁する。空気の吹き込みを所定時間実施後、
逆洗水供給管9から逆洗水を流入させ、多量のSSを含
んだ逆洗水は逆洗水排出管10を経由して逆洗水集合管
11から排出する。
At this time, the SS adhering to the filter layer 2 is peeled off and suspended in the remaining raw water. After blowing air for a specified time,
Backwash water is introduced from the backwash water supply pipe 9, and backwash water containing a large amount of SS is discharged from the backwash water collection pipe 11 via the backwash water discharge pipe 10.

第3図は本発明の第二実施例を模式的に示した断面図で
ある。第3図において、第1図と同じ構13一 成部分については同一の符号を付し説明を省略する。ま
た、この装置の操作は第1図の装置と基本的に同じであ
るので、その説明を省略する。濾層2には第2図に示し
た繊維濾材が充填されており、この濾層2は上部から初
期濾層2a、中間濾層2b、終期濾層2cの3区画に分
割されている。濾層2a,2b,2cに充填されている
繊維濾材はそれぞれ空隙率が異なっており、初期濾層2
aには空隙率99.5%〜95%程度で空隙率の大きい
繊維濾材が充填され、終期濾層2cには空隙率95%〜
70%程度で空隙率が小さい繊維濾材が充填されている
。そして、中間濾層2bに充填する濾材は初期濾層2a
に充填した繊維濾材と終期濾層2cに充填した繊維濾材
の空隙率によって決められ、その中間の空隙率のものが
使用される。実際に使用する繊維濾材の空隙率は処理す
る原水の水質(特にSS濃度、SSの粒径分等)によっ
て決定する。
FIG. 3 is a sectional view schematically showing a second embodiment of the present invention. In FIG. 3, the same components of the structure 13 as in FIG. 1 are designated by the same reference numerals, and the explanation thereof will be omitted. Furthermore, since the operation of this apparatus is basically the same as that of the apparatus shown in FIG. 1, the explanation thereof will be omitted. The filter layer 2 is filled with the fiber filter medium shown in FIG. 2, and the filter layer 2 is divided into three sections from the top: an initial filter layer 2a, an intermediate filter layer 2b, and a final filter layer 2c. The fibrous filter media filled in the filter layers 2a, 2b, and 2c have different porosity, and the initial filter layer 2
A is filled with a fiber filter medium having a large porosity with a porosity of about 99.5% to 95%, and the final filter layer 2c has a porosity of 95% to 95%.
It is filled with a fiber filter medium that has a small porosity of about 70%. The filter medium filled in the intermediate filter layer 2b is the initial filter layer 2a.
The porosity is determined by the porosity of the fibrous filter medium filled in the filter layer 2c and the fibrous filter medium filled in the final filter layer 2c, and one with a porosity between the two is used. The porosity of the fiber filter medium actually used is determined by the quality of the raw water to be treated (particularly the SS concentration, SS particle size, etc.).

なお、本実施例においては濾層の区画を3分割にしたが
、濾層数としては、少なくとも初期濾層14一 および終期濾層の2層が必要であり、3層以上の濾層の
配置は処理する原水の性状によって適宜決定する。
In this example, the filter layer was divided into three sections, but the number of filter layers requires at least two layers, an initial filter layer 14 and a final filter layer, and the arrangement of three or more filter layers is not possible. is determined appropriately depending on the properties of the raw water to be treated.

第4図は本発明の第三実施例を模式的に示した断面図で
ある6第4図において、第1図と同じ構成部分について
は同一の符号を付し説明を省略する。また、この装置の
操作は第1図の装置と基本的に同じであるので、その説
明を省略する。処理槽1内には異なる濾材を充填した二
つの濾層2が備えられており、初期濾層2aには第2図
に示した繊維濾材が充填され、終期濾屑2cには粒状濾
材が充填されている。
FIG. 4 is a cross-sectional view schematically showing a third embodiment of the present invention.6 In FIG. 4, the same components as in FIG. Furthermore, since the operation of this apparatus is basically the same as that of the apparatus shown in FIG. 1, the explanation thereof will be omitted. The treatment tank 1 is equipped with two filter layers 2 filled with different filter media, the initial filter layer 2a is filled with the fibrous filter material shown in FIG. 2, and the final filter waste 2c is filled with granular filter media. has been done.

初期濾層2aに充填する繊維濾材は、処理する原水の水
質(特にSS濃度、SSの粒径布等)処理水の目標水質
等によって決定されるが、その空隙率が99,5%〜7
0%のものが適宜選定される。終期濾層2Cに充填する
粒状濾材としては、アンスラサイト、砂利、砂、シャモ
ット(膨張頁岩)、粒状活性炭、プラスチック粒、セラ
ミック粒等が使用される。この粒状濾材の粒径は処理す
る原水の水質(特にSSの粒径布)、処理水の目標水質
によって決定されるが、通常約0.3mm〜20■lの
範囲である。
The fiber filter medium to be filled in the initial filter layer 2a is determined by the quality of the raw water to be treated (particularly the SS concentration, SS particle size distribution, etc.), the target water quality of the treated water, etc.
0% is selected as appropriate. As the granular filter medium to be filled in the final filter layer 2C, anthracite, gravel, sand, chamotte (expanded shale), granular activated carbon, plastic particles, ceramic particles, etc. are used. The particle size of this granular filter medium is determined by the quality of the raw water to be treated (particularly the particle size distribution of SS) and the target quality of the treated water, but is usually in the range of about 0.3 mm to 20 liters.

第5図は本発明の第四実施例を模式的に示した断面図で
ある。第5図において、第1図と同じ構成部分について
は同一の符号を付し説明を省略する。また、この装置の
操作は第1図の装置と基本的に同じであるのて、その説
明を省略する。本実施例は、処理槽1内に異なる濾材を
充填した二つの濾層2が備えられており、初期濾層2a
には第2図に示した繊維濾材が充填され、終期濾層2c
には粒状濾材が充填されている。この構成は第4図の実
施例と同様であるが、本実施例は、初期濾層2aがさら
に区画されて最初の濾層部2a′及び最後の濾層部2a
″によって形成されている点が異なる。そして、最初の
濾層部2a′には空隙率が99.5%〜95%の繊維濾
材が充填され、最後の濾層部2a″には空隙率が95%
〜70%の繊維濾材が充填されている。
FIG. 5 is a sectional view schematically showing a fourth embodiment of the present invention. In FIG. 5, the same components as in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. Furthermore, since the operation of this apparatus is basically the same as that of the apparatus shown in FIG. 1, the explanation thereof will be omitted. In this embodiment, two filter layers 2 filled with different filter media are provided in the processing tank 1, and an initial filter layer 2a
is filled with the fiber filter medium shown in FIG. 2, and the final filter layer 2c
is filled with granular filter media. This configuration is similar to the embodiment shown in FIG. 4, but in this embodiment, the initial filter layer 2a is further divided into a first filter layer section 2a' and a final filter layer section 2a.
The first filter layer section 2a' is filled with a fiber filter medium with a porosity of 99.5% to 95%, and the last filter layer section 2a'' is filled with a fiber filter medium with a porosity of 99.5% to 95%. 95%
Filled with ~70% fibrous filter media.

この実施例は、前述のように、粒径分布幅が大きいSS
を含有する原水中のSSを効率よく除去することを図っ
たものである。各濾層部2a’及び2a″に充填する繊
維濾材は、第4図の実施例の場合と同様に決定される。
As mentioned above, this example uses SS with a large particle size distribution width.
The aim is to efficiently remove SS from raw water containing SS. The fiber filter media to be filled in each filter layer portion 2a' and 2a'' is determined in the same manner as in the embodiment shown in FIG.

終期濾層2cに充填ずる粒状濾材としては、第4図の実
施例と同様のものが使用される。
As the granular filter medium filled in the final filter layer 2c, the same one as in the embodiment shown in FIG. 4 is used.

なお、本実施例においては、初期濾層2aを2区画にし
て繊維濾材の空隙率を2段階にしたが、場合によっては
3区画以上にしてもよい。
In this embodiment, the initial filter layer 2a is divided into two sections and the porosity of the fiber filter medium is set to two levels, but depending on the case, the number of sections may be three or more.

以上、各実施例について説明したが、本発明の実施態様
は上記の実施例に限定されるものではなく、例えば、濾
材を構成する繊維の材質はポリ塩化ビニリデンに限らず
、ポリエチレン、ポリプロピレン等のプラスチックある
いはステンレス鋼等の金属であってもよい。また、濾層
を通過する原水の流れは下向流、上自流の何れであって
もよい。さらに、繊維濾材を充填した濾層は第2図に示
したような立方体や直方体に成形されたものを敷き詰め
るようにして形成させるだけでなく、適度の大きさの立
方体や球状に成形した濾材あるいは不定形の濾材を充填
してもよい。また濾材を籠状の容器に詰め、このパック
を複数個充填して濾層を形成するか、あるいは一つの濾
層を一体に形成させてもよい。
Although each embodiment has been described above, the embodiments of the present invention are not limited to the above embodiments. For example, the material of the fibers constituting the filter medium is not limited to polyvinylidene chloride, but may also be made of polyethylene, polypropylene, etc. It may be made of plastic or metal such as stainless steel. Further, the flow of raw water passing through the filter layer may be either a downward flow or an upward flow. Furthermore, the filter layer filled with fiber filter media is not only formed by laying out cubes or rectangular parallelepipeds as shown in Figure 2, but also filter media filled with moderately sized cubes or spheres or It may be filled with an irregularly shaped filter medium. Alternatively, the filter medium may be packed in a basket-like container and a plurality of these packs may be filled to form a filter layer, or one filter layer may be formed integrally.

次に、上記の構成による汚水処理装置により実験を行っ
た結果について説明する。
Next, the results of experiments conducted using the sewage treatment apparatus having the above configuration will be explained.

(実施例1) 内径5c2I1、高さ2.5mのアクリル樹脂製の処理
槽に、繊維濾材を充填して濾層を形成した第1図の装置
と同様の構成の装置を使用し、下水二次処理水の生物膜
濾過法による処理実験を行った。
(Example 1) An apparatus having the same configuration as the apparatus shown in Fig. 1, in which a filter layer was formed by filling a fiber filter medium in an acrylic resin treatment tank with an inner diameter of 5c2I1 and a height of 2.5m, was used to treat sewage water. Next, we conducted a treatment experiment using the biofilm filtration method for the treated water.

濾層に充填した繊維濾材は、ポリ塩化ビニリデン繊維で
形成したものを使用し、充填高さは100■にした。な
お、粒状濾材を使用した比較例として、粒径3〜7闘の
アンスラサイトを100cm充填した実験も同時に実施
した。これらの実験条件及び結果は第1表に示す。
The fiber filter material filled in the filter layer was made of polyvinylidene chloride fibers, and the filling height was 100 cm. As a comparative example using a granular filter medium, an experiment in which 100 cm of anthracite with a particle size of 3 to 7 mm was filled was also conducted at the same time. These experimental conditions and results are shown in Table 1.

第1表(′MM例1) (実施例2) 繊維濾材を充填した濾層を3区画に分割して初期濾層、
中間濾層、終期濾層の3層を設け、第3図の装置と同じ
構成にした装置を使用し、下水二次処理水の生物膜濾過
法による処理実験を行った。充填高さは各濾層それぞれ
30σにした。そして、比較例の条件は実施例1と同じ
にした。これらの実験条件及び結果は第2表に示す。
Table 1 ('MM Example 1) (Example 2) The filter layer filled with fiber filter media was divided into three sections, and the initial filter layer,
Using an apparatus having three layers, an intermediate filtration layer and a final filtration layer, and having the same configuration as the apparatus shown in FIG. 3, a treatment experiment was conducted using the biofilm filtration method for secondary sewage treatment water. The filling height of each filter layer was 30σ. The conditions of the comparative example were the same as those of Example 1. These experimental conditions and results are shown in Table 2.

第1表において、最終圧損は処理実験終了時(処理継続
時間)の圧損を示す。この表で明らかなように、BOD
,SSの除去については、実施例と比較例の間の差は殆
どない。しかし、最終圧損についは、実施例にあっては
通水速度120m/日で240時間(10日間)後の圧
損が僅か2〜3cmH20であるのに対し、比較例にお
ける圧損は110cmH20に達し、著しい差が生じて
いる。通水速度を240m/日に上げた場合にも同様の
結果になっている。
In Table 1, the final pressure drop indicates the pressure drop at the end of the treatment experiment (treatment duration). As is clear from this table, BOD
, SS removal, there is almost no difference between the example and the comparative example. However, regarding the final pressure drop, in the example, the pressure drop after 240 hours (10 days) at a water flow rate of 120 m/day was only 2 to 3 cmH20, whereas in the comparative example, the pressure drop reached 110 cmH20, which was significant. There is a difference. Similar results were obtained when the water flow rate was increased to 240 m/day.

第2表において、比較例の最終圧損は急激に上昇し、実
施例と比較例の間には実施例1と同様に極めて大きな差
が生じている。なお、この実験においては、濾層を分割
して空隙率の小さい濾材を充填しているので、SSの除
去については実施例1の場合より良好の結果を得ている
In Table 2, the final pressure drop of the comparative example increases rapidly, and there is a very large difference between the example and the comparative example, as in the case of example 1. In this experiment, since the filter layer was divided and filled with a filter medium having a small porosity, better results were obtained in terms of SS removal than in Example 1.

(実施例3) 繊維濾材を充填した初期濾層とアンスラサイトを充填し
た終期濾層を備え、第4図の装置と同じ構成にした装置
を使用し、下水二次処理水の生物膜濾過法による処理実
験を行った。アンススサイトは粒径3〜4關のものを使
用した。充填高さは、繊維濾材を充填した初期濾層50
Ω、アンスラサイトを充填した終期濾層20cmにした
。そして、比較例の条件は実施例1と同じにした。これ
らの実験条件及び結果は第3表に示す。
(Example 3) A biofilm filtration method for secondary treated sewage water was carried out using a device having the same configuration as the device shown in Fig. 4, including an initial filter layer filled with a fiber filter medium and a final filter layer filled with anthracite. A processing experiment was conducted using Anthusite with a particle size of 3 to 4 was used. The filling height is the initial filter layer 50 filled with fiber filter media.
Ω, the final filter layer filled with anthracite was 20 cm. The conditions of the comparative example were the same as those of Example 1. These experimental conditions and results are shown in Table 3.

第3表(態例3) 第3表において、比較例の最終圧損は急激に上昇し、実
施例と比較例の間には実施例1及び実施例2と同様に極
めて大きな差が生じている。なお、この実験においては
、実施例はアンスラサイトの濾層の前段に繊維濾材の濾
層を備えているので、BOD及びssの除去は比較例よ
りも良好になっている。
Table 3 (Example 3) In Table 3, the final pressure drop of the comparative example increases rapidly, and there is an extremely large difference between the example and the comparative example, similar to examples 1 and 2. . In this experiment, since the example was equipped with a fibrous filter layer before the anthracite filter layer, the removal of BOD and ss was better than in the comparative example.

22一 (実施例4) 実施例1〜3の装置(第1図、第3図及び第4図の装置
と同様に構成)を使用し、高BOD、高SS濃度の下水
一次処理水を生物膜濾過法によって処理する実験を行っ
た。これらの実験条件及び結果は第4表に示す。
221 (Example 4) Using the apparatus of Examples 1 to 3 (configured similarly to the apparatuses of Figures 1, 3, and 4), primary treated sewage water with high BOD and high SS concentrations was subjected to biological treatment. An experiment was conducted using membrane filtration. These experimental conditions and results are shown in Table 4.

第4表において、各実施例の48時間後の圧損は約20
〜35ΩH20であるのに対し、比較例においては急激
に上昇して24時間後でも110cmH20にもなり、
長時間の処理は継続できなかった。この結果で明らかな
ように、本発明の装置はSS濃度が高い下水一次処理水
にも適用できることが確認された。
In Table 4, the pressure drop after 48 hours for each example is approximately 20
~35ΩH20, whereas in the comparative example it rose rapidly to 110cmH20 even after 24 hours.
Processing could not continue for a long time. As is clear from these results, it was confirmed that the apparatus of the present invention can be applied to primary treated sewage water with a high SS concentration.

[発明の効果] 本発明の汚水処理装置は、処理槽内の微生物接触用の濾
層に、プラスチック繊維あるいは金属繊維等の耐水性繊
維を不織に形成し且つ通水時における空隙率が実質的に
変化しない繊維濾材を充填しており、この濾層は圧損が
非常に小さく、シかもBOD,SSの除去効率が損なわ
れることがないので、高い通水速度で極めて長時間の連
続処理ができる。
[Effects of the Invention] The sewage treatment equipment of the present invention has a filter layer for contacting microorganisms in the treatment tank formed with non-woven water-resistant fibers such as plastic fibers or metal fibers, and has a substantial porosity during water flow. Filled with a fiber filter that does not change in temperature, this filter layer has a very small pressure drop and does not impair the removal efficiency of BOD and SS, so it can be continuously processed for an extremely long time at a high water flow rate. can.

また、前記繊維濾材を充填した濾層を少なくとも二つに
区画した本発明の汚水処理装置は、初期濾層には空隙率
の大きい繊維濾材が充填され、終期濾層には空隙率の小
さい繊維濾材が充填されているので、SSの除去が粒径
別に効率よく行われ、粒径分布が広範囲に亙るSSを含
む原水を通水しても濾層全体でSSを捕捉するので、長
時間の処理を行うことができる。
Further, in the sewage treatment apparatus of the present invention, in which the filter layer filled with the fiber filter medium is divided into at least two parts, the initial filter layer is filled with a fiber filter medium with a high porosity, and the final filter layer is filled with fibers with a low porosity. Since the filter medium is filled, SS is efficiently removed by particle size, and even when raw water containing SS with a wide particle size distribution is passed through, the entire filter layer captures SS, so it can be used for a long time. can be processed.

さらに、濾材の異なる少なくとも二つの濾層を備えた本
発明の汚水処理装置は、初期濾層には前記繊維濾材が充
填され、終期濾層には粒状の濾材が充填されているので
、粒状濾材を充填した終期濾層の負荷が著しく軽減され
、微細なSSが除去できるとともに、長時間の処理を行
うことができる。
Furthermore, in the sewage treatment apparatus of the present invention having at least two filter layers with different filter media, the initial filter layer is filled with the above-mentioned fibrous filter media, and the final filter layer is filled with the granular filter media. The load on the final stage filter layer filled with SS is significantly reduced, fine SS can be removed, and processing can be carried out for a long time.

そして、上記初期濾層を少なくとも二つに区画した本発
明の汚水処理装置は、区画された最初の濾層部には空隙
率の大きい繊維濾材が充填され、区画された最後の濾層
部には空隙率の大きい繊維濾材が充填されているので、
初期濾層におけるSSの除去が粒径別に効率よく行われ
、粒状濾材を充填した終期濾層に目詰まりを生ずること
がなく、長時間の処理を行うことができる。
In the sewage treatment apparatus of the present invention in which the initial filter layer is divided into at least two parts, the first divided filter layer is filled with a fiber filter medium having a large porosity, and the last divided filter layer is filled with a fiber filter medium having a large porosity. is filled with a fiber filter medium with a high porosity, so
SS in the initial filter layer is efficiently removed according to particle size, and the final filter layer filled with granular filter media is not clogged, allowing long-term treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を模式的に示した断面図、
第2図は本発明の装置に充填する繊維濾材を模式的に示
した説明図、第3図は本発明の第二実施例を模式的に示
した断面図、第4図は本発明の第三実施例を模式的に示
した断面図、第5図は本発明の第四実施例を模式的に示
した断面図、第6図は従来の生物膜濾過法による汚水処
理装置の説明図、第7図は第6図の従来の生物膜濾過法
による汚水処理装置における圧損の測定結果を示す図で
ある。 1・・・処理槽、2・・・濾層、2a・・・初期濾層、
2c・・・終期濾層、2a ・・・最初の濾層部、2a
 ・・・最後の濾層部、4・・・原水流入管、5・・・
処理水抜き出し管、6・・・処理水排出管、7・・・散
気管、8・・・空気供給管、12・・・繊維濾材、13
・・・プラスチック繊維。
FIG. 1 is a sectional view schematically showing a first embodiment of the present invention;
FIG. 2 is an explanatory diagram schematically showing a fiber filter medium to be filled in the apparatus of the present invention, FIG. 3 is a sectional view schematically showing a second embodiment of the present invention, and FIG. FIG. 5 is a cross-sectional view schematically showing the fourth embodiment of the present invention, FIG. 6 is an explanatory diagram of a sewage treatment device using a conventional biofilm filtration method, FIG. 7 is a diagram showing the measurement results of pressure drop in the sewage treatment apparatus using the conventional biofilm filtration method shown in FIG. 1... Processing tank, 2... Filter layer, 2a... Initial filter layer,
2c... Final filter layer, 2a... Initial filter layer part, 2a
...Last filter layer section, 4...Raw water inflow pipe, 5...
Treated water extraction pipe, 6... Treated water discharge pipe, 7... Aeration pipe, 8... Air supply pipe, 12... Fiber filter medium, 13
...Plastic fiber.

Claims (6)

【特許請求の範囲】[Claims] (1)処理槽内に微生物接触用の濾層を備えた汚水処理
装置において、濾層には耐水性繊維を不織に形成し且つ
通水時における空隙率が実質的に変化しない繊維濾材が
充填されていることを特徴とする汚水処理装置。
(1) In a sewage treatment equipment equipped with a filter layer for contact with microorganisms in the treatment tank, the filter layer includes a fibrous filter material made of non-woven water-resistant fibers and whose porosity does not substantially change during water flow. A sewage treatment device characterized by being filled.
(2)繊維濾材を形成する耐水性繊維がプラスチック繊
維である請求項1記載の汚水処理装置。
(2) The sewage treatment device according to claim 1, wherein the water-resistant fibers forming the fiber filter medium are plastic fibers.
(3)繊維濾材を形成する耐水性繊維が金属繊維である
請求項1記載の汚水処理装置。
(3) The sewage treatment device according to claim 1, wherein the water-resistant fibers forming the fiber filter medium are metal fibers.
(4)濾層が少なくとも二つに分割され、原水が最初に
通過する処理初期の濾層には99.5%〜95%の空隙
率を有する繊維濾材が充填され、原水が最後に通過する
処理終期の濾層には95%〜70%の空隙率を有する繊
維濾材が充填されていることを特徴とする請求項1、請
求項2又は請求項3記載の汚水処理装置。
(4) The filter layer is divided into at least two parts, and the filter layer at the initial stage of treatment through which the raw water passes first is filled with a fiber filter medium having a porosity of 99.5% to 95%, through which the raw water passes last. 4. The sewage treatment apparatus according to claim 1, wherein the filter layer at the final stage of treatment is filled with a fiber filter medium having a porosity of 95% to 70%.
(5)処理槽内に微生物接触用の濾層を備えた汚水処理
装置において、処理槽内に濾材の異なる少なくとも二つ
の濾層を備え、原水が最初に通過する処理初期の濾層に
は耐水性繊維を不織に形成し且つ通水時における空隙率
が実質的に変化しない繊維濾材が充填され、原水が最後
に通過する処理終期の濾層には粒状濾材が充填されてい
ることを特徴とする汚水処理装置。
(5) In a sewage treatment equipment equipped with a filter layer for contact with microorganisms in the treatment tank, the treatment tank has at least two filter layers with different filter media, and the filter layer in the initial stage of treatment through which raw water first passes is water-resistant. The method is characterized in that it is filled with a fibrous filter medium in which non-woven fibers are formed and whose porosity does not substantially change during water flow, and the filter layer at the end of the treatment through which raw water passes is filled with a granular filter medium. sewage treatment equipment.
(6)請求項5記載の汚水処理装置において、原水が最
初に通過する処理初期の濾層が少なくとも二つに区画さ
れ、区画された最初の濾層部には99.5%〜95%の
空隙率を有する繊維濾材が充填され、区画された最後の
濾層部には95%〜70%の空隙率を有する繊維濾材が
充填されていることを特徴とする汚水処理装置。
(6) In the sewage treatment apparatus according to claim 5, the filter layer at the initial stage of treatment through which the raw water first passes is divided into at least two parts, and the first divided filter layer has a water content of 99.5% to 95%. A sewage treatment device characterized in that a fiber filter medium having a porosity is filled, and the last divided filter layer section is filled with a fiber filter medium having a porosity of 95% to 70%.
JP63284565A 1988-11-10 1988-11-10 Soil water treatment device Pending JPH02131195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284565A JPH02131195A (en) 1988-11-10 1988-11-10 Soil water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284565A JPH02131195A (en) 1988-11-10 1988-11-10 Soil water treatment device

Publications (1)

Publication Number Publication Date
JPH02131195A true JPH02131195A (en) 1990-05-18

Family

ID=17680109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284565A Pending JPH02131195A (en) 1988-11-10 1988-11-10 Soil water treatment device

Country Status (1)

Country Link
JP (1) JPH02131195A (en)

Similar Documents

Publication Publication Date Title
US7862711B2 (en) Biofilter units and water treatment facilities with using the same biofilter units
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
CN101708891B (en) Aerated biological activated carbon filters and method of applying same to purify feed water
JP2584386B2 (en) Biological filtration method and device
JP2002126777A (en) Filter tank and water treatment method
JPS58114792A (en) Aerobic biological treating device for waste water
JP2592356B2 (en) Organic sewage biological filtration equipment
JPH02191594A (en) Sewage treating device
JPH02131195A (en) Soil water treatment device
JP2565449B2 (en) Upflow biological treatment equipment
JPH02135200A (en) Treatment of organic waste water and device therefor
JPS6385B2 (en)
JPH02191595A (en) Sewage treating device
JP2831498B2 (en) Upflow sludge blanket type wastewater treatment equipment
JPH02227189A (en) Biological treatment apparatus
JPH11347313A (en) Water treatment utilizing capillarity and apparatus therefor
WO2003053866A1 (en) Water clarifying system
JPS61287494A (en) Method for continuously filtering water
JPH0299109A (en) Apparatus for separating suspended solids
CN105347467B (en) A kind of fixed bed partly fluidizes aerating biological filter sewage processing system
JPH02115005A (en) Filtration apparatus for suspended solid
JPH09187796A (en) High treatment apparatus for organic drainage
JPH07112191A (en) Biological filter
JP3005805B2 (en) Biological contact filtration device
JPS6349357Y2 (en)