JPS6349357Y2 - - Google Patents

Info

Publication number
JPS6349357Y2
JPS6349357Y2 JP1983091886U JP9188683U JPS6349357Y2 JP S6349357 Y2 JPS6349357 Y2 JP S6349357Y2 JP 1983091886 U JP1983091886 U JP 1983091886U JP 9188683 U JP9188683 U JP 9188683U JP S6349357 Y2 JPS6349357 Y2 JP S6349357Y2
Authority
JP
Japan
Prior art keywords
water
filtration
layer
tank
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983091886U
Other languages
Japanese (ja)
Other versions
JPS601494U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983091886U priority Critical patent/JPS601494U/en
Publication of JPS601494U publication Critical patent/JPS601494U/en
Application granted granted Critical
Publication of JPS6349357Y2 publication Critical patent/JPS6349357Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Description

【考案の詳細な説明】 この考案は、排水処理装置、特に中水造水装置
として使用可能な排水処理装置における新規考案
に係わる。
[Detailed description of the invention] This invention relates to a new invention in a wastewater treatment device, particularly a wastewater treatment device that can be used as a gray water generation device.

近来、大都市で建設される大型ビルでは省エネ
ルギー等の社会的要請に基き、中水道を導入しよ
うとする機運にある。
In recent years, large buildings being constructed in large cities are beginning to introduce gray water systems based on social demands such as energy conservation.

このような中水道では、生活雑排水を処理して
水洗便所や洗車、散水、空調設備等の用水として
使用するようにしているが、特にビル等に設置す
る場合には、小型で処理性能が高く、かつ、維持
管理がしやすい排水処理装置が必要となる。
These gray water systems treat gray water and use it for flush toilets, car washes, watering, air conditioning equipment, etc., but especially when installed in buildings etc., they are small and have low treatment performance. A wastewater treatment system that is expensive and easy to maintain is required.

このような要望に適合した排水処理装置とし
て、標準活性汚泥処理と濾過機能を一体化した曝
気濾過型の装置、つまり、上下に前記2つの機能
を1槽に併せもつた処理槽で、上部は汚泥処理や
生物膜法等の生物学的処理を行うための微生物繁
殖滞留域であり、下部は上記の処理された汚水を
濾過するために、比重が比較的大きい濾材例えば
砂礫や砂等による下部濾過層と比重が前記下部濾
過層の濾材よりは小さい濾材例えばアンスラサイ
トや粒状活性炭等による上部濾過層とより形成さ
れてなるところの濾過層で構成されたコンパクト
な処理槽が特公昭56−14360号、特開昭57−48388
号に提案されている。
A wastewater treatment device that meets these demands is an aeration filtration type device that integrates standard activated sludge treatment and filtration functions.In other words, it is a treatment tank that combines the above two functions in one tank, with the upper part This is a microbial breeding retention area for biological treatment such as sludge treatment and biofilm method, and the lower part is made of filter material with relatively high specific gravity, such as gravel or sand, in order to filter the above-mentioned treated wastewater. Japanese Patent Publication No. 56-14360 discloses a compact treatment tank consisting of a filtration layer and an upper filtration layer made of a filter material whose specific gravity is smaller than that of the filter material of the lower filtration layer, such as anthracite or granular activated carbon. No., Japanese Patent Publication No. 57-48388
proposed in No.

この両者は、上述の如く、生物学的処理をした
処理水を微生物汚泥との分離工程を経ることなく
直ちに濾過するとしたものであるが、特公昭56−
14360号の場合にあつては、微生物繁殖滞留域に
おける混合液の汚泥濃度が高く、濾過層に負担が
かかつて不利であるので、特開昭57−48388号は
当該汚泥濃度を小さくなるように改善した関係に
ある。しかるに、この改善タイプの処理槽にあつ
ても、以下の如き難点を有する。
As mentioned above, both of these methods involve immediately filtering the biologically treated water without going through the process of separating it from microbial sludge.
In the case of No. 14360, the sludge concentration of the mixed liquid in the microorganism breeding and retention area is high, which is disadvantageous as it places a burden on the filtration layer. We have an improved relationship. However, even this improved type of treatment tank has the following drawbacks.

すなわち、上記濾過層を構成する砂等の濾材が
微生物繁殖滞留域を構成する波状又はパイプ等を
基盤とした微生物膜に逆洗時に衝突し、これによ
つて剥離が起こり、その生物学的処理能力の劣化
をきたすことである。また、上記の剥離した汚泥
に濾材のアンスラサイトや砂等が付着して汚泥塊
を形成し、微生物滞留域に固定した波状板やパイ
プ状接触材が目詰まりを起すことがある。
In other words, during backwashing, the filter media such as sand that makes up the above-mentioned filtration layer collides with the microbial membrane based on corrugations or pipes that make up the microbial breeding and retention area, which causes peeling and biological treatment. This results in a deterioration of ability. Further, anthracite, sand, etc. of the filter medium may adhere to the above-mentioned exfoliated sludge, forming a sludge lump, and the corrugated plate or pipe-shaped contact material fixed in the microorganism retention area may become clogged.

又、両タイプにあつて、特に特公昭56−14360
号の場合にあつては、その特徴である濾過層の上
面に形成される緻密で吸着性を有するスラツジ層
膜が細粒の濾材を基盤とするために平滑、かつ、
均厚なものに形成され高度の物理的濾過の面から
は良くあるも、「流入負荷変動に強い」との要求
に応えることが不可能となつている欠点がある。
Also, for both types, especially the Special Publication Showa 56-14360
In the case of No. 1, the dense and adsorbent sludge layer formed on the top surface of the filtration layer is smooth and smooth because it is based on fine-grained filter media.
Although it is good in terms of high-level physical filtration because it is formed to be uniformly thick, it has the drawback that it is unable to meet the requirement of being ``resistant to fluctuations in inflow load.''

一方、曝気槽内を高MLSS状態に保てば、流入
負荷変動に強く、難分解性物質の除去が可能、発
生汚泥量が少なくなり、曝気槽容量を小さくでき
る等にも係らず、両タイプとも濾材に砂レキ、砂
等を使用しているため高MLSS状態にできない状
態である。なぜなら、高MLSSに曝気槽内を保つ
た場合、汚泥塊が生成しやすく、そのため濾材に
砂レキ、砂等を使用している方式では短時間に閉
塞を起こしてしまうからである。
On the other hand, if the inside of the aeration tank is maintained at a high MLSS state, it is resistant to inflow load fluctuations, difficult to decompose substances can be removed, the amount of sludge generated is reduced, and the aeration tank capacity can be reduced. Both filters use sand, sand, etc. as filter media, making it impossible to achieve high MLSS. This is because if the inside of the aeration tank is maintained at a high MLSS, sludge lumps are likely to form, and as a result, systems that use grit, sand, etc. as filter media will cause blockage in a short period of time.

また、槽内汚泥の排出が逆洗水量の増加に頼つ
ているため、槽内MLSSを一定に保つために要す
る逆洗水量は多量になり、その水量分各水層容量
を大きくとる必要があつた。そのため、施設設置
スペースが大となり建築空間の最大有効利用とい
つた面からも問題がある。
In addition, since the discharge of sludge in the tank relies on an increase in the amount of backwash water, the amount of backwash water required to maintain a constant MLSS in the tank increases, and it is necessary to increase the capacity of each water layer to account for the amount of water. Ta. As a result, the installation space for the facility becomes large, which poses a problem in terms of maximizing the effective use of architectural space.

さらに、都市部ビルなどのように用地費が高い
場所においては曝気濾過槽の付属設備の所要スペ
ースを更に小さくする必要があるが、従来法では
第1図に示す如く、ポンプ等の機械設置スペース
A、配管、操作バルブ等の設置スペースBは、処
理槽Cとは別の平面積を占めてレイアウトせざる
を得なかつた。
Furthermore, in locations where land costs are high, such as urban buildings, it is necessary to further reduce the space required for the equipment attached to the aeration filtration tank. A, installation space B for piping, operation valves, etc. had to be laid out occupying a separate planar area from the treatment tank C.

本案では、叙上の諸点に鑑み全く新しい発想に
基づきなされたもので、その要旨とするところ
は、活性汚泥や生物膜等の生物処理を行うための
曝気部に構成される微生物繁殖滞留域の下部に該
曝気部平面積に比し狭小平面積に構成した所定の
遊空間部を介して上方を濾材流出防止用の網状物
で覆つた繊維塊の充填物を入れた筒型あるいは球
状の容器よりなる濾過塔を接続させ、これによつ
て形成された槽底部の空間部に機械、バルブ、配
管等を収容し、槽内MLSS濃度を高く保つ事によ
り、曝気部を小さくしさらに流入負変動等にも対
処できる様に工夫されているものとし、また、繊
維塊の充填物を採用する事により濾過速度を高く
とれる事から曝気部の一部面積にて濾過塔を設置
する事が可能となり、空間の有効利用が図れ、装
置のより一層のコンパクト化が実現され、さらに
濾材の逆洗も空気のみで行う事が可能であり、逆
洗水量の増加により汚泥を排出しないため逆洗水
槽そのものをなくし、あるいは小型にする事がで
き建物内に設置する場合非常に有利となつた。
This proposal was developed based on a completely new idea in view of the above points, and its gist is that the microorganism breeding and retention area constructed in the aeration section for biological treatment of activated sludge, biofilm, etc. A cylindrical or spherical container in which a filling of fiber mass is placed in the lower part thereof with a predetermined free space configured to have a narrower planar area than the planar area of the aeration part, and the upper part thereof is covered with a net-like material for preventing outflow of the filter medium. By connecting a filtration tower made up of 100% filtration towers, and accommodating machines, valves, piping, etc. in the space formed at the bottom of the tank, and keeping the MLSS concentration in the tank high, the aeration section can be made smaller and negative fluctuations in the inflow can be reduced. In addition, by using a fiber mass filling, the filtration rate can be increased, making it possible to install a filtration tower in a part of the area of the aeration section. , space can be used more effectively, the equipment can be made more compact, and the backwashing of the filter media can be performed using only air, and the backwashing water tank itself does not discharge sludge due to the increased amount of backwashing water. It is very advantageous when installing inside a building because it can eliminate or make it smaller.

以下、これを図にもとづいて詳細に説明する。 This will be explained in detail below based on the drawings.

第2図a,bは、本案の2つの機能を併せもつ
処理槽1の平面図、縦断面図で、曝気部2の下部
に該曝気部平面積に比し狭小平面積に構成した濾
過部3が接続され、当該曝気部2の下部には散気
管4が設けられると共に上部には原水管5また、
レベルコントローラ7が設けられている。余剰汚
泥は、図示省略のポンプ(エアリフトポンプも
可)により系外へ排出される。該濾過部3は、繊
維塊を濾材とする充填層8でもつて成り、当該充
填層8の逆洗時の濾材撹拌代9を確保の所定上方
には、濾材流出防止用網状物10が覆設されたと
ころの筒型あるいは球状の容器塔よりなつてい
る。
Figures 2a and 2b are a plan view and a vertical cross-sectional view of the treatment tank 1 which has two functions of the present invention, in which a filtration section is constructed at the lower part of the aeration section 2 to have a narrow plane area compared to the plane area of the aeration section. 3 is connected to the aeration section 2, and an aeration pipe 4 is provided at the bottom of the aeration section 2, and a raw water pipe 5 is installed at the top.
A level controller 7 is provided. Excess sludge is discharged out of the system by a pump (not shown) (an air lift pump is also possible). The filtration section 3 is composed of a packed layer 8 using fiber lumps as a filter medium, and a mesh 10 for preventing the filter medium from flowing out is covered above the packed layer 8 at a predetermined level to ensure a stirring allowance 9 for the filter medium during backwashing. It consists of a cylindrical or spherical container tower.

当該網状物10は、合成繊維や金属製に限ら
ず、使用する繊維塊の最小径よりもメツシユが小
さく、かつ、逆洗の水圧や処理時の水圧に耐えれ
ばよい、又、設置は、充填層8の上方10cm〜1.0
m程度の位置に水平に全面に渡つて架ける。
The net-like material 10 is not limited to synthetic fiber or metal, and it is sufficient that the mesh is smaller than the minimum diameter of the fiber mass used and can withstand the water pressure of backwashing and water pressure during treatment. 10cm to 1.0cm above layer 8
Stretch horizontally over the entire surface at a distance of approximately 300 m.

尚、該濾過部3は、槽中央部ではなく、槽側方
に配してもよい。
Note that the filtration section 3 may be arranged on the side of the tank instead of at the center of the tank.

上記繊維塊とは、繊維径10〜100ミクロンの細
い短繊維を小さな毛玉ボール状に加工成型したも
ので、3〜50mmの球形又は偏平楕円形をしたもの
である。
The above-mentioned fiber mass is formed by processing and molding thin short fibers with a fiber diameter of 10 to 100 microns into a small fluff ball shape, which is spherical or oblate oval with a diameter of 3 to 50 mm.

このような形にした第1の理由は、これを構成
する短繊維のまま使用すると濾過中又は洗浄中に
隔板の穴から流出するので、これを防止すること
であり、第2の理由は、SSを捕捉した濾材の洗
浄即ち、SSと濾材の分離を容易にすることであ
る。
The first reason for this shape is to prevent the short fibers from flowing out through the holes in the partition plate during filtration or washing if they are used as they are.The second reason is to prevent this. , to facilitate the cleaning of the filter medium that has captured SS, that is, to facilitate the separation of the SS and the filter medium.

つまり、ややゆるく固められた繊維塊の濾材は
比重が軽いため空気吹込みにより容易に水中で流
動し、激しく撹拌され、洗浄されるが、洗浄され
たSSの分離は濾材が大きいので容易である。
In other words, since the filter medium, which is a loosely compacted fiber mass, has a light specific gravity, it easily flows in water by blowing air, is vigorously stirred, and washed, but it is easy to separate the washed SS because the filter medium is large. .

又、洗浄時の水中での流動性を良くするためと
成型の容易なことから、形を球形としている。
In addition, the shape is spherical to improve fluidity in water during washing and to facilitate molding.

しかして、本案の濾材充填層8の平均空隙率は
96%であり、濾材層比表面積3000m2/m3程度であ
り、砂充填濾材層(空隙率50%)に比べ、大きな
空間(大きなSS捕捉容量)が繊維塊の特長であ
る。
Therefore, the average porosity of the filter medium packed bed 8 of the present invention is
The specific surface area of the filter media layer is approximately 3000 m 2 /m 3 , and the fiber mass is characterized by a large space (large SS trapping capacity) compared to a sand-filled filter media layer (porosity 50%).

かかる繊維塊の充填層8の厚さは10cm〜1.0m
程度で、の濾過作用を詳述すると次記の如くであ
る。
The thickness of the packed layer 8 of such fiber mass is 10 cm to 1.0 m.
The filtration action in terms of degree is detailed as follows.

すなわち、被処理水中の粗大なSSは繊維塊の
間隙で捕捉され、微細なSSは繊維塊の内部に入
り、繊維と繊維の間で主に捕捉され、しかして、
SSの捕捉は深層的に行なわれる。
In other words, coarse SS in the water to be treated is captured in the gaps between the fiber masses, and fine SS enters the interior of the fiber masses and is mainly captured between the fibers.
SS acquisition is done in depth.

また、繊維塊は適度な弾力性を持つが、濾過速
度が速い場合、濾過中に下層の繊維塊が水圧によ
り若干変形を受け厚みのある円盤状になり、下層
程充填度が高くなり、濾過精度を上げるために好
ましい形となる。
In addition, the fiber mass has a moderate elasticity, but when the filtration speed is high, the fiber mass in the lower layer is slightly deformed by water pressure during filtration and becomes a thick disk shape, and the degree of filling becomes higher in the lower layer. This is the preferred shape for increasing accuracy.

通常、砂濾過の場合に於いては、懸濁粒子径が
大きく、濾過速度が大きい場合、粒子が濾材に接
触した後、安定した付着状態が維持できない。つ
まり、捕捉SSの飛散による付着効率の減少があ
ることを示すのであるが、繊維塊の場合に於いて
は、濾過速度の変化に対し除去効率が一定である
ことが確認される。
Normally, in the case of sand filtration, if the suspended particles have a large diameter and the filtration rate is high, a stable adhesion state cannot be maintained after the particles come into contact with the filter medium. In other words, this indicates that the adhesion efficiency decreases due to the scattering of captured SS, but in the case of fiber lumps, it is confirmed that the removal efficiency remains constant with respect to changes in the filtration rate.

この理由は、繊維塊は繊維より構成され、弾力
性を有しており、既述の如く濾過速度が高くなる
と水圧により濾材層がやや圧縮され、充填度が上
ることになり、高い濾過速度でのSSのくぐり抜
けが抑制される効果が生じ、これが濾過速度の高
い場合の付着効果の悪化を補償することによると
解される。一方、充填層8の表面は、砂濾過の場
合と異なり、平坦状ではなく、かるかに凹凸のは
げしいものとなるが、これを基盤に付着する上記
の緻密なスラツジ層膜は、これに沿つて凹凸に形
成されると共にその厚も不均一化するために当該
層膜表面積の拡大と薄層厚の易濾過部の混在とに
よつて適度な物理的濾過能に維持され、「流入負
荷変動に強い」との面についての対応が可能であ
る。
The reason for this is that the fiber mass is composed of fibers and has elasticity, and as mentioned above, when the filtration rate increases, the water pressure compresses the filter medium layer slightly, increasing the degree of filling. This is thought to be due to the fact that the penetration of SS is suppressed, and this compensates for the deterioration of the adhesion effect when the filtration rate is high. On the other hand, unlike in the case of sand filtration, the surface of the packed bed 8 is not flat, but rather has a very uneven surface. Because the layer is formed unevenly and its thickness is uneven, an appropriate physical filtration capacity is maintained by expanding the surface area of the layer and mixing thin layer thickness for easy filtration. It is possible to respond to the aspect of ``strong in the field''.

本案にあつては、処理槽として当然の構成とし
て、該充填層8は砂利等よりなる支持床11の上
に積層され、また、当該支持床11中には集水管
12が配設されている。
In this case, as a natural structure of a treatment tank, the packed bed 8 is stacked on a support bed 11 made of gravel or the like, and a water collection pipe 12 is arranged in the support bed 11. .

そして、本案にあつては、逆洗用の散気管13
は、該充填層8の表層よりわずか下の位置に配さ
れる。
In this case, the air diffuser 13 for backwashing
is arranged at a position slightly below the surface layer of the filling layer 8.

当該散気管13を用いてなされる逆洗について
以下詳述する。
Backwashing performed using the air diffuser 13 will be described in detail below.

すなわち、濾過を所定時間以上継続させると、
ついには濾過圧の上昇またはSSのリークが始ま
る。この状態に至る前に洗浄しなければならな
い。
In other words, if filtration continues for a predetermined period of time or more,
Eventually, the filtration pressure will increase or the SS will begin to leak. It must be cleaned before reaching this state.

濾材の洗浄方式は、以下の二方法がある。 There are two methods for cleaning filter media:

(a) 該逆洗用の散気管13よりの空気吹込みによ
る自動半連続洗浄。
(a) Automatic semi-continuous cleaning by blowing air from the air diffuser 13 for backwashing.

(b) 上記の空気吹込みと同時に該集水管12から
洗浄水を濾過層底部から連続に供給する連続洗
浄。
(b) Continuous cleaning in which cleaning water is continuously supplied from the bottom of the filtration layer from the water collecting pipe 12 at the same time as the above air blowing.

前者(a)の方が洗浄水量が少なくて済むので有利
であるが、本案の場合、濾材の比重が極めて軽く
(a)のみで充分撹拌され、所定の洗浄をなし得る。
The former (a) is advantageous because it requires less water for washing, but in this case, the specific gravity of the filter medium is extremely light.
Only (a) can be sufficiently stirred and the desired cleaning can be performed.

(a)法を詳しく述べると、先ず通水を停止し、つ
いで、処理槽内の水位を下げた後、ブロアーを稼
動させ、散気管13よりの空気を吹き込む。
To explain method (a) in detail, first, water flow is stopped, then the water level in the treatment tank is lowered, and then the blower is operated to blow in air from the aeration pipe 13.

この空気により槽内の水は、激しく撹拌され、
濾材層は個々の繊維塊にほぐされ分散し、濾材撹
拌代の部分で水流にのつて対流しながら洗浄され
る。
This air violently stirs the water in the tank,
The filter medium layer is loosened and dispersed into individual fiber clumps, and is washed by convection in the water flow in the area where the filter medium is stirred.

このとき、捕捉されたSSは濾材の表面及び内
部から完全に剥離する。余剰汚泥は、沈降をまつ
て、ポンプ6により適時引抜くものとする。
At this time, the captured SS is completely peeled off from the surface and inside of the filter medium. Excess sludge is allowed to settle and is drawn out by the pump 6 in a timely manner.

本案にあつては、濾材の比重が軽いので、SS
を含む洗浄排水は、空気で濾材を浮かせながら、
槽下部に常設のドレーン(図示省略)より系外に
排出してしまうことも出来る。
In this case, since the specific gravity of the filter medium is light, SS
Washing waste water containing
It is also possible to drain the water out of the system through a permanently installed drain (not shown) at the bottom of the tank.

この逆洗時、繊維塊は網状物10より流出して
上の微生物繁殖滞留域に侵入することはない。
During this backwashing, the fiber mass does not flow out of the net-like material 10 and enter the upper microbial growth retention area.

上記の逆洗の時期の決定の仕方としては、以下
の如く種々あるが、原水の特性、逆水の頻度、要
求水質のグレード、維持管理体制等の条件によつ
て選択すればよい。
There are various ways to determine the timing of backwashing, as described below, and it may be selected depending on conditions such as the characteristics of raw water, the frequency of backwashing, the grade of required water quality, and the maintenance management system.

(イ) 水質チエツクによる方法。(b) Method by water quality check.

処理水の水質(特に浮遊物質濃度や濁度等)
を定期的に又は自動測定し、それを判定して行
う。
Water quality of treated water (especially suspended solids concentration, turbidity, etc.)
This is done by measuring regularly or automatically and making a judgment.

(ロ) 処理槽水位検知による方法。(b) Method using treatment tank water level detection.

濾過能力低下により処理槽の水位は上昇する
こととなるので、所定レベルに上昇した時点で
逆洗開始とする。
Since the water level in the treatment tank will rise due to the decrease in filtration capacity, backwashing will begin when the water level rises to a predetermined level.

(ハ) タイマーによる方法。(c) Method using a timer.

(イ)等の方法で、逆洗時期の状況が明らかにな
り、そのサイクルタイムが判明する場合には、
タイマー組込みによる自動洗浄を行うことがで
きる。
If the situation of backwashing period is clarified by method (a) etc. and the cycle time is known,
Automatic cleaning is possible with a built-in timer.

(ニ) 水量検知による方法。(d) Method based on water volume detection.

濾層が閉塞してくると、処理水の瞬間流量は
小さくなつていくのを利用する。
This method takes advantage of the fact that when the filter layer becomes clogged, the instantaneous flow rate of treated water decreases.

(ホ) 積算水量検知による方法。(e) Method by detecting cumulative water volume.

原水側又は処理水側で積算流量を検知し、一
定の流量毎に行う。
The integrated flow rate is detected on the raw water side or the treated water side, and the process is performed at regular flow rate intervals.

以上に述べた本案の充填層8による濾過層は従
来の砂濾過層に較らべ、以下列記の特徴を有して
いる。
The filtration layer formed by the packed bed 8 of the present invention described above has the following characteristics as compared to the conventional sand filtration layer.

(1) 超高速で濾過ができる。(1) Ultra-high-speed filtration is possible.

細径の繊維よりなる空隙率の大きい球形濾材
を充填しているので、濾過速度(LV)が30〜
70m/Hrで濾過が可能であり、このため濾過
槽の設置面積が小さくできる。しかして、平面
積、層厚、水頭共に小にして、所定の処理水量
の確保は可能であるので、微生物繁殖滞留域に
比し狭小面積の構成であつても一向に差し支え
はない。
Since it is filled with a spherical filter medium made of small diameter fibers and has a high porosity, the filtration rate (LV) is 30~30.
Filtration is possible at a rate of 70 m/hr, which allows the installation area of the filtration tank to be small. Since it is possible to secure a predetermined amount of water to be treated by reducing the planar area, layer thickness, and water head, there is no problem even if the area is narrower than the microbial breeding and retention area.

(2) 濾過処理水の水質が良い。(2) The quality of the filtered water is good.

細径の繊維よりなる比表面積の非常に大きな
濾材使用のため、原水(生物処理水)SS14〜
28mg/を濾過すると処理水はSS2mg/以
下、透視度100cm以上と良い水質が得られる。
Raw water (biologically treated water) SS14~
When 28mg/ of water is filtered, the treated water has a SS of 2mg/or less and a transparency of 100cm or more, resulting in good water quality.

(3) 圧力損失が小さく、省エネルギーがはかれ
る。
(3) Low pressure loss and energy savings.

濾過の空隙率が大きいので、高速(LV50
m/Hr)の濾過でも圧力損失は0.06Kg/cm2
小さく、ポンプ動力が少ない。
Since the filtration porosity is large, high speed (LV50
Even with filtration (m/Hr), the pressure loss is as small as 0.06Kg/ cm2 , and the pump power is small.

(4) 洗浄水必要量が少量である。(4) The amount of washing water required is small.

洗浄方法は空気による水中撹拌で充分有効で
あり、洗浄水は濾過処理水の1〜2%の量で良
い。
As a washing method, stirring in water using air is sufficiently effective, and the washing water may be used in an amount of 1 to 2% of the filtered water.

(5) 脱窒を行う場合も対応可能である。(5) It is also possible to perform denitrification.

本案の濾過層による浄化は、物理的濾過によ
る微細浮遊物質の除去にとどまらず、LVを0.1
〜5m/時程度によることにより、濾材に付着
した微生物の活動によつて汚水中の残存有機物
の補足が脱窒が行なわれる。
The purification by the filtration layer of this proposal does not only remove fine suspended solids through physical filtration, but also reduces the LV by 0.1.
5 m/hour, residual organic matter in the wastewater is supplemented and denitrified by the activity of microorganisms attached to the filter medium.

窒素除去のメカニズムは、処理槽上部の微生
物滞留域で、汚水中のアンモニア性窒素や有機
態窒素は酸化されて亜硝酸性窒素や硝酸性窒素
になる(硝化)。
The mechanism of nitrogen removal is in the microbial retention area at the top of the treatment tank, where ammonia nitrogen and organic nitrogen in wastewater are oxidized to nitrite nitrogen and nitrate nitrogen (nitrification).

次に、濾過層を通過する際には、濾層内は空
洗以外は殆んど溶存酸素が零に近い嫌気性の状
態となつているため微生物の作用により上記
NO2−NやNO3−NがN2(窒素ガス)等のガス
に変換されて放出される(脱窒)。
Next, when passing through the filtration layer, the dissolved oxygen inside the filtration layer is in an anaerobic state with almost zero dissolved oxygen except for air washing, so due to the action of microorganisms, the above-mentioned
NO 2 -N and NO 3 -N are converted into gases such as N 2 (nitrogen gas) and released (denitrification).

その他、本案にあつては、集水をポンプで引
抜くとすると、レイアウトが非常に行ないやす
い。
In addition, in this case, if the water collection is drawn out by a pump, the layout will be much easier.

本案の最大の特徴は、曝気部2に比し濾過部3
が狭小であるために曝気部2の下部に空間を形成
し得ることであるが、これを機械、操作バルブ、
配管等の収容部として利用することにより、スペ
ースが制約された条件下でも施工が可能である。
The biggest feature of this proposal is that the filtration section 3 is smaller than the aeration section 2.
Since the space is narrow, a space may be formed at the bottom of the aeration section 2, but this can be removed by machines, operating valves,
By using it as a housing section for piping, etc., construction can be carried out even under conditions where space is limited.

すなわち、図示の如く、ポンプ14、操作バル
ブ15、配管16等は全て曝気部2下部の槽1が
占める面積内に収容されて、別個のスペースを占
めることはない。
That is, as shown in the figure, the pump 14, operating valve 15, piping 16, etc. are all accommodated within the area occupied by the tank 1 at the bottom of the aeration section 2, and do not occupy a separate space.

しかして、最適なレイアウトが可能となつた。 As a result, an optimal layout has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のもののスペース使用説明図、第
2図a,bは本装置の平面、縦断面である。 1……処理槽、2……曝気部、3……濾過部、
4……散気管、5……原水管、7……レベルコン
トローラ、8……充填層、9……濾材撹拌代、1
0……網状物、11……支持床、12……集水
管、13……散気管、14……ポンプ、15……
操作バルブ、16……配管。
FIG. 1 is a diagram illustrating the use of space in the conventional device, and FIGS. 2a and 2b are plane and longitudinal cross-sections of the present device. 1... treatment tank, 2... aeration section, 3... filtration section,
4... Diffuser pipe, 5... Raw water pipe, 7... Level controller, 8... Filled bed, 9... Filter medium stirring allowance, 1
0...Network, 11...Support floor, 12...Water collection pipe, 13...Diffuser pipe, 14...Pump, 15...
Operation valve, 16...piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 活性汚泥や生物膜等の生物処理を行うための曝
気部に構成される微生物繁殖滞留域の下部に該曝
気部平面積に比し狭小平面積に構成した所定の遊
空間部を介して上方を濾材流出防止用の網状物で
覆つた繊維塊の充填物を入れた筒型あるいは球状
の容器よりなる濾過塔を接続させ、これによつて
形成された槽底部の空間部に機械、バルブ、配管
等を収容し、さらに、逆洗用の配管を当該濾過塔
の中に配するとした事を特徴とする排水処理装
置。
At the bottom of the microorganism breeding and retention area configured in the aeration section for biological treatment of activated sludge, biofilm, etc., a predetermined free space section configured to have a narrower planar area than the aeration section planar area is provided. A filtration tower consisting of a cylindrical or spherical container filled with fiber lumps covered with a mesh material to prevent the filter media from flowing out is connected, and machines, valves, and piping are installed in the space at the bottom of the tank formed by this. What is claimed is: 1. A wastewater treatment device characterized by accommodating a filtration tower, etc., and further having a backwashing pipe arranged inside the filtration tower.
JP1983091886U 1983-06-15 1983-06-15 Wastewater treatment equipment Granted JPS601494U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983091886U JPS601494U (en) 1983-06-15 1983-06-15 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983091886U JPS601494U (en) 1983-06-15 1983-06-15 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPS601494U JPS601494U (en) 1985-01-08
JPS6349357Y2 true JPS6349357Y2 (en) 1988-12-19

Family

ID=30221982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983091886U Granted JPS601494U (en) 1983-06-15 1983-06-15 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JPS601494U (en)

Also Published As

Publication number Publication date
JPS601494U (en) 1985-01-08

Similar Documents

Publication Publication Date Title
EP0029066A4 (en) On-site wastewater treatment system.
CN204958517U (en) Dark bed filtering pond of denitrification of permanent water level and integration of change water level
CN105060476B (en) A kind of advanced nitrogen V-type filter tank
CN107555614A (en) A kind of floating media filter
CN105000760A (en) Technology of synchronous removal of nitrogen, phosphorus and suspended solids
CN107337274A (en) The method of its processing domestic sewage of villages and small towns of integrated expanded bed biomembrane Compound filter pool and application
CN207210068U (en) A kind of integrated expanded bed biomembrane Compound filter pool
JPS6349357Y2 (en)
JPH0810523A (en) Method for washing floating filter medium
JP2592356B2 (en) Organic sewage biological filtration equipment
JPS6349355Y2 (en)
JPS6349358Y2 (en)
CN209940749U (en) Optimized combined system for urban domestic sewage treatment
CN210505946U (en) Carbon-sand combined filter tank for water supply plant
CN206521313U (en) Continuous wash biofilter
CN220283865U (en) Pre-filtering charcoal sand filter
CN218811184U (en) Sewage treatment system
CN209619120U (en) A kind of sewage treatment device for hotel with high bio-degradable
JPH0717438Y2 (en) Organic wastewater treatment equipment
CN2280711Y (en) Up-flow type anaerobic-natural oxygen-recovering biological treatment device
CN215288438U (en) Horizontal flow denitrification filter tank system
CN108622998A (en) Biological filter
JPS6349356Y2 (en)
CN214571397U (en) Efficient and energy-saving treatment system for tunnel wastewater
CN220012412U (en) Sewage aeration biological filter