JPH06285496A - Hollow fiber membrane separation biological treatment and device for organic drainage - Google Patents

Hollow fiber membrane separation biological treatment and device for organic drainage

Info

Publication number
JPH06285496A
JPH06285496A JP5103751A JP10375193A JPH06285496A JP H06285496 A JPH06285496 A JP H06285496A JP 5103751 A JP5103751 A JP 5103751A JP 10375193 A JP10375193 A JP 10375193A JP H06285496 A JPH06285496 A JP H06285496A
Authority
JP
Japan
Prior art keywords
tank
hollow fiber
water
fiber membrane
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5103751A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Original Assignee
Ebara Infilco Co Ltd
Ebara Res Co Ltd
株式会社荏原総合研究所
荏原インフィルコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd, Ebara Res Co Ltd, 株式会社荏原総合研究所, 荏原インフィルコ株式会社 filed Critical Ebara Infilco Co Ltd
Priority to JP5103751A priority Critical patent/JPH06285496A/en
Publication of JPH06285496A publication Critical patent/JPH06285496A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • Y02W10/15Aerobic processes

Abstract

PURPOSE: To prevent the adhesion and solidification and press densification of sludge to membrane, keep the surface clean at all times and eliminate the necessity of maintenance work by coexisting biological granular solids in an aeration tank, keeping the solids in the suspension flowing state by aeration and discharing treated water through a hollow fiber membrane.
CONSTITUTION: In the hollow fiber membrane separation biological treatment method, urethane foam square grains A, the gravity of which is almost equal to that of water, are fed into an aeration tank 1, and microbes such as BOD utilized bacteria are carried on microbe carriers composed of the grains A. Also water to be treated in the tank 1 is disturbed by diffused air exhausted from an air blower 7 through an air diffusion pipe 6, and the grains A are suspension flowed by the turbulence generated by the diffused air. A membrane module 2 fitted with hollow fiber membrane is immersed in the tank 1, and the water treated biologically in the tank 1 is sucked by a pump 4, passed through the membrane module 2, filtered by the hollow fiber membrane fitted thereon and flowed out of a treated water outflow pipe 3 in the form of cleaing treated water 5 completely free from SS.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、下水など各種有機性汚水を微生物と中空糸膜分離によって高度に浄化する方法および装置に関するものである。 The present invention relates to a method and apparatus for purifying highly by the microorganisms and the hollow fiber membrane separation of various organic wastewater sewage.

【0002】 [0002]

【従来の技術】従来より活性汚泥の曝気槽内に中空糸膜の膜分離モジュールを浸漬し、浮遊微生物(活性汚泥フロック)によってBODを除去しつつ、膜によって微生物その他のSSを完全にろ過分離し、清澄処理水を得る技術が公知である。 BACKGROUND ART immersing the membrane separation module of hollow fiber membrane aeration tank of conventionally activated sludge, while removing BOD stray microbes (activated sludge flocs), completely separated by filtration microorganisms other SS by a membrane and, a technique for obtaining a clear treated water are known. しかし本発明者が、この従来技術による下水など有機性汚水の処理を行ったところ、中空糸膜の表面または膜の束の間に活性汚泥が強く付着し、付着した汚泥が脱水されるため、ケーキ状となってますます強固にこびりつくという重大な欠点があることが認められた。 However, the present inventors have, was subjected to this prior art process the organic wastewater sewage by, for activated sludge adheres strongly to the surface or membrane bundles of hollow fiber membranes, deposited sludge is dewatered, cake it was observed that there is a serious drawback that more and more strongly caking become. この現象は、活性汚泥のMLSS濃度が増加するほど顕著になることもわかった。 This phenomenon was also found to be significantly higher MLSS concentration of the active sludge is increased. こうなってしまうと膜のろ過抵抗が急増し、運転不能になる。 If it becomes this surge filtration resistance of the membrane becomes inoperable. しかし曝気槽内に浸漬したまま膜をクリーニングすることは不可能であり、膜モジュールを外に取り出して、高圧スプレー水を噴射しながら、膜に付着した汚泥を除去しなければならない。 However, it is impossible to clean the membrane while immersed in an aeration tank, remove the membrane module out, while spraying the high pressure spray water must be removed sludge adhered to the film. この作業は極めて面倒な作業であり、膜モジュールが多数ある場合などは数日がかりの大作業となる。 This work is very tedious work, such as when you have a large number of membrane module is the large work of Gakari few days.
実際上、このようなことは不可能である。 In practice, it is not such a thing.

【0003】 [0003]

【発明が解決しようとする課題】本発明者は、従来技術により曝気槽内の有機性汚水中に含まれるBODなどを生物処理により除去しつつ、分離膜によって浮遊活性汚泥などをろ過分離し、清澄処理水を得る処理を実施し、 SUMMARY OF THE INVENTION It is an object of the present invention have, while removing such BOD contained in the organic wastewater in the aeration tank by the prior art by biological treatment, filtered off and suspended activated sludge by separating membrane, conducted a process of obtaining the clarified treated water,
問題点の生じる原因を詳しく検討した結果から次の知見を得た。 We obtained the following findings from the result of examining the cause of occurrence of the problem in detail. 1)曝気槽内の浮遊活性汚泥濃度が高濃度になるほど、 About 1) suspended activated sludge concentration in the aeration tank is a high concentration,
膜への汚泥の付着、圧密化が起き易い。 Adhesion of sludge to the membrane, is liable to occur compaction. 2)曝気槽内の浮遊活性汚泥濃度が数百ミリグラム/リットル以下ならば分離膜への汚泥の付着は著しく少なくなる。 2) sludge adhesion of floating activated sludge concentration in the aeration tank to several hundred milligrams / liter or less if it separation membrane is significantly less. 本発明は前記従来装置の重大欠点を完全に解決し、膜の取り出し、清掃作業を不要にできる画期的技術を提供するものである。 The present invention completely solves the severe drawbacks of the conventional apparatus, taken out of the film, there is provided a breakthrough technology that can be made unnecessary cleaning. 具体的には、膜への汚泥の付着、固着圧密化を防止し、常に膜表面を清浄に保てる新技術を確立し、メンテナンス作業の不要化を図るものである。 Specifically, attachment of sludge to the membrane, to prevent sticking compaction, always membrane surface to establish a new technology capable of maintaining clean, but to reduce the unnecessary of the maintenance work.

【0004】 [0004]

【課題を解決するための手段】本発明は、上記新知見に次の新たな着想を統合して完成されたものである。 The present invention SUMMARY OF] are those that are completed by integrating the following new idea in the new findings. すなわち、(1)有機性排水を沈殿槽に導いて、汚泥などを沈降により固液分離せしめた後、中空糸膜を浸漬した曝気槽内に供給して、生物処理ならびに膜分離しつつ、該曝気槽内の液を前記沈降分離工程に還流すると共に、前記曝気槽内に生物付着粒状固体を共存させ、曝気によって該粒状固体を懸濁流動状態に置き、前記中空糸膜を通して処理水を取り出すことを特徴とする中空糸膜分離生物処理方法。 That is, leading to sedimentation tank (1) organic wastewater, after allowed to solid-liquid separation such as by settling sludge, is supplied to the hollow fiber membrane immersed aeration tank, while biological treatment and membrane separation, the the liquid in the aeration tank with reflux in the sedimentation separation step, the coexistence of biofouling particulate solid in said aeration tank, placing a particulate solid suspended fluidized state by aeration, take out the treated water through the hollow fiber membranes hollow fiber membrane separation biological treatment method characterized by. および、(2)有機性排水の沈澱槽と曝気槽を有し、該沈澱槽処理水を前記曝気槽に導く配管、および前記曝気槽内の水を前記沈澱槽に返送する配管を有すると共に、前記曝気槽には曝気手段の他曝気槽内の水をろ過する中空糸膜固液分離装置を配備し、さらに生物付着粒状固体を前記曝気槽内水中に浮遊共存させたことを特徴とする中空糸膜分離生物処理装置である。 And, (2) it has a settling tank and aeration tank of organic waste water pipe leading to the precipitation tank treated water to said aeration tank, and the water in the aeration tank and having a pipe for returning to said precipitation tank, hollow to other aeration tank of water deploying hollow fiber membrane solid-liquid separator for filtration, further characterized in that biofouling granular solid was suspended coexist in the water the aeration tank of the aeration means in the aeration tank fiber membrane is separating biological treatment device.

【0005】中空糸膜を装填した膜分離モジュールを浸漬させた曝気槽内に、流動し易い微生物固定化担体粒子を懸濁流動させて処理を行い、槽内の微生物濃度を高く維持しつつ、曝気槽内液を前段の沈殿槽に循環させることによって、浮遊微生物を沈降分離し、浮遊状の微生物(担体に付着していない微生物)濃度を数百ミリグラム/リットル以下に維持でき、しかも微生物固定化担体粒子が中空糸膜の表面と接触する時に、膜の表面をクリーニングするという重要な効果が得られた。 [0005] The hollow fiber membrane aeration tank was immersed membrane separation module loaded, the flow easily microbe immobilizing carrier particles are suspended fluidized performs processing, while maintaining a high concentration of microorganisms in the tank, by circulating the aeration tank liquid upstream of the settling tank, a floating microorganisms sedimentation, it can maintain the floating-shaped microorganism (microorganism not attached to the carrier) concentration below several hundred milligrams / liter, moreover microorganisms fixed reduction when the carrier particles are in contact with the surface of the hollow fiber membrane, is an important effect of cleaning the surface of the film was obtained. この結果、膜に活性汚泥が付着圧密化することがなくなり、膜を槽外に取り出して清掃するという作業が要らなくなることが判明した。 As a result, prevents the activated sludge adhered compacted layer, it may no longer need to work that cleaning takes out the film Sogai was found.

【0006】微生物固定化担体粒子としては、軽く、流動し易いもの、微生物固定化能力が大きいこと、膜と接触するときの膜の清掃作用が大きいものが好適であり、 [0006] As the microorganism-immobilized carrier particles are light, those prone to flow, it is greater microbe-immobilized capability, it is preferable that the cleaning action of the film is large at the time of contact with the membrane,
これらの条件を満足する粒状物としては、プラスチック担体や、軽量のゼオライトなど鉱物、軽量骨材などの無機多孔性担体や、紐(繊維)状物の短束状物または塊状物など、あるいはゲル包括微生物担体その他種々公知の担体が使えるが、特に目の大きな立体網目構造の粒状ろ材が好適な担体粒状物である。 The granules satisfying these conditions, and a plastic carrier, minerals such as light weight zeolite, and an inorganic porous carrier such as lightweight aggregate, the cord (fiber) like material short bundles like material or bulk product, such as, or a gel Although comprehensive microbial carrier other various known carriers can be used, in particular granular filter media suitable carrier granules of larger solid network of the eye.

【0007】上記立体的網目状粒状体ろ材は、表面から内部にかけて連続した穴を持つように形成され、公知の発泡法等により製造できる。 [0007] The three-dimensional mesh-like granular material filter material is formed with a continuous bore from the surface to the inside, it can be produced by a known foaming method. また、粒状体の素材としては、上記性質を有するものであるならば特に制限されず、有機高分子、無機化合物等公知のものを使用できるが、中でも素材自体に適度な弾性と強度とを有する素材が好ましく、特にウレタン樹脂等が好ましい。 Further, as the material of the granules is not particularly limited if those having the properties described above, an organic polymer, although those inorganic compounds known can be used, and an appropriate elasticity and strength to inter alia the material itself It is preferred materials, particularly urethane resins are preferred. 例えば、 For example,
ポリウレタンフォーム等の弾性多孔性粒状物を、ウレタン樹脂等のプラスチックスを連続気泡を造る発泡法で発泡して作製して、そのまま使用するか所望の形状、サイズに切断して使用する。 The elastic porous granules such as polyurethane foam, plastics such as urethane resin prepared by foaming a foam method of making an open cell, as a desired shape or use, using cut into size.

【0008】その形状は角形、球状、その他種々の形状がとれるが、角形が好ましい。 [0008] The shape of rectangular, spherical, although various other shapes can take, square is preferred. 特に形状が角状で、粒径が10×10×10mm位のサイコロ状あるいは10 Particularly shape with angular, diced or 10 particle size is 10 × 10 × 10 mm position
×20×20mmの直方体、10×30×30mmの直方体などが好適である。 × 20 × 20 mm rectangular, etc. cuboid 10 × 30 × 30 mm is suitable. 粒状物の粒径があまり小粒径であると、分離膜表面の清掃力が小さくなり、あまり大粒径であると微生物の固定化量が少なくなり、粒状物内部が腐敗し易いので好ましくない。 Undesirable if the particle size of the granules is too small particle size, the cleaning power of the separation membrane surface is reduced, the less the amount of the immobilized microorganism If it is too large particle size, since the particulates inside rot prone . その素材の比重は、 The specific gravity of the material,
通常0.9〜1.2程度が好ましい。 Usually about 0.9 to 1.2 is preferred. また空隙率は、9 The porosity, 9
0%以上が好ましい。 0% or more is preferable. 気孔径、即ち、孔径は、0.1〜 Pore ​​size, i.e., pore size, 0.1
6mm、好ましくは2〜4mmの範囲から選択することが望ましい。 6 mm, preferably it is desirable to select from a range of 2-4 mm. また、1cm長さ当たりの孔の数は、5〜 The number of holes per 1cm length, 5
20個が好ましい。 20 is preferred.

【0009】曝気槽内に投入する量としては、ポリウレタンフォーム製の粒径10×20×20mmの直方体粒状物を使用する場合、曝気槽1m 3あたり20〜30V [0009] The amount to be introduced into the aeration tank, when using a rectangular granules polyurethane foam having a particle size of 10 × 20 × 20mm, 20~30V per aeration tank 1 m 3
/V%が適当であり、あまりぎっしりと投入しすぎると担体が流動し難くなり、本発明の目的を達成できない。 / V% are suitable, it becomes difficult to flow is too much densely charged carrier, can not achieve the object of the present invention.
また、少なすぎると微生物濃度を高く保てない。 In addition, a high not keep the microbial concentration is too small. 本発明によって処理を続けると、微生物が繁殖し、その一部は微生物固定化担体に保持され、一部は浮遊微生物となって曝気槽内を浮遊するがこの浮遊微生物は前段の沈殿槽に供給されて沈降分離される。 Continuing the process by this invention, the microorganism is propagated, some of which are held in a microbe-immobilized carrier, some floating to This microorganisms floating aeration tank in a floating microorganisms supplied to the sedimentation tank of the previous stage It is sedimentation is. 従って、処理を長時間続けても、曝気槽内の浮遊微生物濃度が増加しないので、 Therefore, even if treatment is continued for a long time, because the microorganisms floating concentration in the aeration tank does not increase,
中空糸膜への汚泥固着トラブルが発生しない。 Sludge fixing trouble of the hollow fiber membrane does not occur.

【0010】 [0010]

【実施例】次に本発明の代表的実施例を図1に基づいて説明する。 Representative examples of EXAMPLES The present invention will now be described with reference to FIG.

【0011】(実施例1)以下に本発明の脱リン材の製造方法を詳しく説明する。 [0011] (Example 1) will be described in detail a manufacturing method of dephosphorization material of the present invention are described below. 1は本発明の曝気槽であり、 1 is a aeration tank of the present invention,
曝気槽1内には、比重が水にほぼ等しい図2に示すウレタンフォーム角状粒状物Aが投入されており、これら粒状物Aからなる微生物担体にはBODを資化するBOD The aeration tank 1, specific gravity are urethane foam angle shaped granules A is turned illustrated in approximately equal 2 in water, to assimilate the BOD microorganism carrier consisting granules A BOD
資化菌などの微生物が保持されている。 Microorganisms such as assimilating bacteria is held. 空気源である空気ブロワー7から散気管6を経て曝気槽1内に吐出される散気空気によって槽1内の被処理水は攪乱されている。 Treatment water in the tank 1 by aeration air discharged into the aeration tank 1 via the pipe 6 diffusing from the air blower 7 is an air source is disrupted. 上記微生物を保持しているウレタンフォーム角状粒状物Aは、上記散気空気が引き起こす乱流によって懸濁流動している。 Urethane foam angle shaped granules retain the microorganisms A are suspended fluidized by turbulence the air diffuser air causes. また、曝気槽1内には中空糸膜を装填した膜モジュール2が浸漬されており、曝気槽1内で生物学的に処理された処理水はポンプ4によって吸引されて膜モジュール2を通り、膜モジュール2に装填した膜によってろ過されて処理水流出管3を通り、SSゼロの清澄処理水5となって、系外に流出して行く。 Further, through the hollow fiber membranes are loaded with membrane module 2 is immersed, aeration tank membrane module 2 biologically treated treated water is sucked by the pump 4 in the 1 to the aeration tank 1, filtered by a membrane which is loaded into the membrane module 2 through the treated water outlet pipe 3, it becomes clear treated water 5 SS zero, going to flow out to the outside of the system.

【0012】図1にBで示したものは、ポリウレタンフォーム角状粒状物Aからなる担体に付着していない曝気槽1内の被処理水中に浮遊している浮遊微生物である。 [0012] Figure 1 illustrates in B is a floating microorganisms floating in the water to be treated in the aeration tank 1 that is not attached to a support made of polyurethane foam angle shaped granules A.
これら浮遊微生物Bは還流ポンプ10によって被処理水と共に還流管9を通って沈殿槽11に還流される。 These microorganisms floating B is refluxed in the sedimentation tank 11 through the return pipe 9 with the water to be treated by reflux pump 10. またこの沈殿槽11には外部から下水など原水が原水流入管8を通って流入する。 The raw sewage flows from the outside into through the water inlet pipe 8 to the settling tank 11. 上記還流ポンプ10によって曝気槽1内の被処理水は浮遊微生物Bを伴って沈殿槽11に還流するが、その際生物処理水中に懸濁流動している粒状物Aが流出しないように目の大きいネット14が排出管9の入口に張設してある。 Treatment water in the aeration tank 1 by the reflux pump 10 flows back to the settling tank 11 with a floating microorganism B, but the eye so that when granules A in suspension flow into the biological treatment water does not flow out large net 14 are stretched to the inlet of the discharge pipe 9. このネットは多孔板やスリットなど通水性のものであれば何でも良い。 This net is anything good as long as it is water-permeable, such as a porous plate or a slit. また図1において、12は沈殿槽11の底部に沈殿した沈殿汚泥であり、13は沈殿汚泥12を排出する排泥管である。 In Figure 1, 12 is a settled sludge precipitated to the bottom of the settling tank 11, 13 is a discharge mud pipe for discharging the settled sludge 12.

【0013】下水などの原水を本発明の方法で処理を行った結果、ポリウレタンフォーム角状粒状物Aには15 [0013] As a result of treatment by the method of the present invention the raw water such as sewage, the polyurethane foam angle shaped granules A 15
000〜20000mg/リットルもの高濃度の微生物が保持され、浮遊微生物を数百ミリグラム/リットルの濃度と低く見積もっても、極めて高度に原水が浄化されることが認められる。 000~20000Mg / liters high levels of microorganisms are retained, even to estimate the airborne microorganisms low concentration of a few hundred milligrams / liter, it is recognized that raw water extremely high is purified. 本発明の生物処理装置は1年間連続運転しても、汚泥が中空糸モジュール2に装填した膜の表面に固着したり、汚泥が中空糸の束に食い込んでろ過抵抗を急上昇させたりするトラブルは発生しなかった。 Be continuously operated for one year biological treatment apparatus of the present invention, or adhered to the surface of the sludge was loaded into the hollow fiber module 2 film, trouble sludge or to soar filtration resistance bites into the bundle of hollow fibers It did not occur. また、本発明の曝気槽1での生物処理工程では原水中に毛髪、ビニール片などの夾雑物が含まれていると、 Further, when the biological treatment step in the aeration tank 1 of the present invention contains contaminants in the raw water hair, such as vinyl strip,
これらが粒状物Aや中空糸モジュール2に絡みつきトラブルとなるが、本発明では、予め沈殿槽11で夾雑物を除去できるのでこのようなトラブルを防止できる。 These become trouble entangled in the particulate material A and the hollow fiber module 2, in the present invention, such a trouble can be prevented can be removed contaminants advance in the precipitation tank 11.

【0014】(比較例1)比較例として、生物処理槽1 [0014] (Comparative Example 1) Comparative Example, the biological treatment tank 1
中にポリウレタンフォーム角状粒状物Aからなる微生物担体を投入せず、また曝気槽内の被処理水を還流させることなく、曝気槽内の浮遊微生物の濃度を18000m Without without introducing microbial carrier of polyurethane foam angle shaped granules A, also is refluxed for-treatment water in the aeration tank during, 18000M the concentration of airborne microorganisms in the aeration tank
g/リットルに維持して原水の生物学的処理を行ったところ、中空糸膜の表面に汚泥が固着して、ほぼ15〜2 Was subjected to biological treatment of raw water by keeping the g / liter, and adhered sludge on the surface of the hollow fiber membrane, approximately 15 to 2
0日に1回の頻度で中空糸膜のろ過抵抗が急上昇し、その度に中空糸モジュール2を取り外し人手で中空糸膜の糸を一本一本ほぐしながら中空糸膜に付着・固着した汚泥を洗浄しなければならなかった。 Filtration resistance of the hollow fiber membrane is rapidly increased at a frequency of once day 0, adhered and fixed to the hollow fiber membrane while disentangling one by one thread of the hollow fiber membrane manually remove the hollow fiber module 2 each time the sludge It had to be cleaned.

【0015】 [0015]

【発明の効果】本発明の生物処理装置とそれを使用した生物処理方法の実施により、以下に示す極めて大きな効果が得られる。 The implementation of, according to the present invention and the biological treatment device of the present invention biological treatment method using the same, very large effect can be obtained as shown below. 中空糸膜の表面などに微生物汚泥が固着することがないので、中空糸モジュールのろ過抵抗を低く保つことができ、中空糸膜を取り外して洗浄する必要がない。 Because microbial sludge etc. surface of the hollow fiber membrane is prevented from sticking, it is possible to maintain the filtration resistance of the hollow fiber module low, it is not necessary to wash and remove the hollow fiber membranes. 従って、著しく生物処理装置のメンテナンスが容易である。 Therefore, it is easy to maintain a remarkably biological treatment device. 微生物濃度を高めても中空糸膜への微生物汚泥が固着を防ぐことができるので、生物反応速度を大きくでき、 Since even increasing the concentration of microorganisms is a microorganism sludge into the hollow fiber membrane can prevent sticking, it can increase the biological reaction rate,
生物処理装置をコンパクト化できる。 It can be made compact biological treatment device.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の生物処理装置の1例を示す模式図。 Schematic view showing an example of a biological treatment apparatus of the present invention; FIG.

【図2】本発明の生物処理に使用する粒状微生物担体の1例を示す斜視図。 Perspective view showing an example of a particulate microbial support used in the biological treatment of the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 曝気槽 2 中空糸膜モジュール 3 処理水流出管 4 ポンプ 5 処理水 6 散気管 7 空気源(ブロワー) 8 原水供給管 9 被処理水還流管 10 還流ポンプ 11 沈殿槽 12 沈殿汚泥 13 排泥管 14 ネット A ウレタンフォーム角状粒状物 B 浮遊微生物 1 the aeration tank 2 hollow fiber membrane module 3 treated water outlet tube 4 pump 5 treated water 6 aeration tube 7 air source (blower) 8 raw water supply pipe 9 treatment water return pipe 10 to reflux pump 11 sedimentation tank 12 settled sludge 13 Haidorokan 14 net A urethane foam angle-shaped granules B floating microorganisms

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 有機性排水を沈降により固液分離せしめた後、中空糸膜を浸漬した曝気槽内に供給して生物処理ならびに膜分離しつつ、該曝気槽内の液を前記沈降分離工程に還流すると共に、前記曝気槽内に生物付着粒状固体を共存させ、曝気によって該粒状固体を懸濁流動状態に置き、前記中空糸膜を通して処理水を取り出すことを特徴とする中空糸膜分離生物処理方法。 After 1. A allowed solid-liquid separation by settling the organic waste water, while biological treatment and membrane separation is supplied to the hollow fiber membrane immersed aeration tank, the liquid to the sedimentation separation step 該曝 gas tank with refluxing to the aeration tank coexist biofouling particulate solid, place the particulate solids in suspension fluidized state by aeration, the hollow fiber membrane separation organism, characterized by taking out the treated water through the hollow fiber membranes Processing method.
  2. 【請求項2】 有機性排水の沈澱槽と曝気槽を有し、該沈澱槽処理水を前記曝気槽に導く配管、および前記曝気槽内の水を前記沈澱槽に返送する配管を有すると共に、 2. A has a precipitation tank and an aeration tank of the organic waste water pipe leading to the precipitation tank treated water to said aeration tank, and the water in the aeration tank and having a pipe for returning to said precipitation tank,
    前記曝気槽には曝気手段の他曝気槽内の水をろ過する中空糸膜固液分離装置を配備し、さらに生物付着粒状固体を前記曝気槽内水中に浮遊共存させたことを特徴とする中空糸膜分離生物処理装置。 Hollow to other aeration tank of water deploying hollow fiber membrane solid-liquid separator for filtration, further characterized in that biofouling granular solid was suspended coexist in the water the aeration tank of the aeration means in the aeration tank fiber membrane separation biological treatment apparatus.
JP5103751A 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage Pending JPH06285496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103751A JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103751A JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Publications (1)

Publication Number Publication Date
JPH06285496A true JPH06285496A (en) 1994-10-11

Family

ID=14362278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103751A Pending JPH06285496A (en) 1993-04-07 1993-04-07 Hollow fiber membrane separation biological treatment and device for organic drainage

Country Status (1)

Country Link
JP (1) JPH06285496A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1101738A3 (en) * 1999-11-19 2003-09-10 KURARAY Co. LTD. Apparatus and method for waste water treatment
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7288197B2 (en) * 2004-12-22 2007-10-30 Industrial Technology Research Institute Biological membrane filtration system for water treatment and a water treatment process
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
CN103341285A (en) * 2013-07-16 2013-10-09 哈尔滨工业大学 Advection sedimentation/immersion type ultrafiltration integrated water treatment device
CN103435147A (en) * 2013-07-23 2013-12-11 天津工业大学 Self-cleaning submerged tubular membrane bioreactor
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
WO2015088353A1 (en) * 2013-12-09 2015-06-18 Biowater Technology AS Method for biological purification of water
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
US7063788B2 (en) 1995-08-11 2006-06-20 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US7615157B2 (en) 1995-08-11 2009-11-10 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US20100326897A1 (en) * 1995-08-11 2010-12-30 Mailvaganam Mahendran Membrane filtration module with adjustable header spacing
US7625491B2 (en) 1998-10-09 2009-12-01 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7347942B2 (en) 1998-10-09 2008-03-25 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
EP1101738A3 (en) * 1999-11-19 2003-09-10 KURARAY Co. LTD. Apparatus and method for waste water treatment
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7344645B2 (en) 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US7288197B2 (en) * 2004-12-22 2007-10-30 Industrial Technology Research Institute Biological membrane filtration system for water treatment and a water treatment process
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
CN103341285A (en) * 2013-07-16 2013-10-09 哈尔滨工业大学 Advection sedimentation/immersion type ultrafiltration integrated water treatment device
CN103435147A (en) * 2013-07-23 2013-12-11 天津工业大学 Self-cleaning submerged tubular membrane bioreactor
WO2015088353A1 (en) * 2013-12-09 2015-06-18 Biowater Technology AS Method for biological purification of water
CN105813988A (en) * 2013-12-09 2016-07-27 生物水技术公司 Method for biological purification of water
US10065153B2 (en) 2014-08-01 2018-09-04 Sumitomo Electric Industries, Ltd. Water treatment system
WO2016017335A1 (en) * 2014-08-01 2016-02-04 住友電気工業株式会社 Water treatment system
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
US5064531A (en) Water filtration apparatus
EP1375435A2 (en) Waste water treatment apparatus
US7553418B2 (en) Method for water filtration
US3713543A (en) Activated sewage plant
JP3068645B2 (en) Biological response method and apparatus for purifying water
US5932099A (en) Installation for biological water treatment for the production of drinkable water
US20080264855A1 (en) Method and apparatus for treating wastewater
US5733454A (en) Process and apparatus for the treatment of flowable waste
US5910249A (en) Method and apparatus for recovering water from a sewer main
US5766454A (en) Home wastewater treatment and denitrification system
US6110389A (en) Filtration unit
CA2118783A1 (en) Water Treatment System Particularly for Use in Aquaculture
JP3453173B2 (en) The hollow fiber membrane module with aeration tube
US6505744B1 (en) Solid-liquid separation equipment in particular for biological purification of wastewater
FI103275B (en) A method and apparatus for purifying waste water biologically
US20100133196A1 (en) Combined gravity separation-filtration for conducting treatment processes in solid-liquid systems
US4159945A (en) Method for denitrification of treated sewage
JP2000185293A (en) Biological filter apparatus
KR100216016B1 (en) Method and device for purifying water
WO1994021561A1 (en) Compact clarifier system for municipal waste water treatment
CN100563798C (en) Membrane abstersion method in membrane separation activated sludge process
JPH07100157B2 (en) Biological purification method the waste water, biological reactor and water purification equipment
KR20120062881A (en) Fluidized membrane bioreactor
KR20050007259A (en) Apparatus for treating organic material and nitrogen of wastewater by using air floatation type biofilter, and treatment method using the same
JP2006082024A (en) Biological treatment apparatus