JPH02115005A - Filtration apparatus for suspended solid - Google Patents

Filtration apparatus for suspended solid

Info

Publication number
JPH02115005A
JPH02115005A JP26759388A JP26759388A JPH02115005A JP H02115005 A JPH02115005 A JP H02115005A JP 26759388 A JP26759388 A JP 26759388A JP 26759388 A JP26759388 A JP 26759388A JP H02115005 A JPH02115005 A JP H02115005A
Authority
JP
Japan
Prior art keywords
filtration
filter
water
filled
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26759388A
Other languages
Japanese (ja)
Inventor
Shinichi Endo
伸一 遠藤
Yoshinari Fujisawa
能成 藤沢
Hideji Takeuchi
竹内 秀二
Seiichi Kanamori
聖一 金森
Yuji Yoshii
吉井 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26759388A priority Critical patent/JPH02115005A/en
Publication of JPH02115005A publication Critical patent/JPH02115005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continue filtration for long hours by providing a filter device with at least two filter layers, i.e., the initial and final layers, the former being filled with a fiber filter material unchanged in its void rate during water passage and consisting of nonwoven water resisting fibers and the latter being filled with granulated filter material. CONSTITUTION:This filtration apparatus 1 is provided with at least two filter layers 4 and 5. The filter layer 4 for passing drainage therethrough at the initial filtration stage consists of a plurality of water resisting fibers 3 (e.g., plastic fibers) in the form of a nonwoven fabric and is filled with the fiber filter material 2 whose void rate is not changed substantially during water passage. The filter layer 5 for passing the drainage therethrough at the final filtration stage is filled with a granulated member such as zeolite. As a result, the filtration can be performed for long hours at a high filtration velocity and the filtrate containing the suspended solids of lower concentration can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は用水や排水中の懸濁性固形物(以下、SSと称
する)を急速濾過によって分離する装置に係り、都市下
水、産業排水等の有機性排水の濾過に適用するのが好適
なSSの分離装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a device for separating suspended solids (hereinafter referred to as SS) in water and wastewater by rapid filtration, and is applicable to urban sewage, industrial wastewater, etc. The present invention relates to an SS separation device suitable for application to the filtration of organic wastewater.

[従来の技術] 用水や排水の高度処理おけるSS除去には、砂を濾材と
した急速濾過装置が採用されている。しかし、従来にお
いては、急速濾過装置は、用水の処理や、排水処理工程
の生物処理あるいは凝集沈殿後の処理用に設置され、流
入水中のSSが比較的低いところに採用されていた。こ
の理由は、砂を濾材とした装置をSSが高濃度の水に適
用すると、濾層表面にSSが短時間の間たまって濾過抵
抗が急激に上昇し、濾層の逆洗を頻繁に行わねばならな
いので、能率が極めて悪く、従って実施が困難であった
ことによる。しかし、急速濾過装置をSSが高濃度の水
にも適用できれば、その用途範囲が広がり、急速濾過は
水処理における有用な単位操作として活用することがで
きる。
[Prior Art] A rapid filtration device using sand as a filter medium is used to remove SS in advanced treatment of water and wastewater. However, conventionally, rapid filtration devices have been installed for treatment of industrial water, biological treatment in wastewater treatment process, or treatment after coagulation and sedimentation, and have been adopted in places where SS in inflow water is relatively low. The reason for this is that when a device using sand as a filter medium is applied to water with a high concentration of SS, SS accumulates on the surface of the filter layer for a short period of time, causing a rapid increase in filtration resistance, which requires frequent backwashing of the filter layer. This is because it was extremely inefficient and therefore difficult to implement. However, if the rapid filtration device can be applied to water with a high concentration of SS, its range of applications will expand, and rapid filtration can be utilized as a useful unit operation in water treatment.

このような新規用途開拓を目的とし、最近、SSが高濃
度の水にも適用できるように改良された急速濾過装置が
開発されている(第21回下水道研究発表会講演集、1
76頁〜178頁、 1984年)。
With the aim of developing such new applications, an improved rapid filtration device that can be applied to water with high SS concentrations has recently been developed (Proceedings of the 21st Sewerage Research Conference, 1).
76-178, 1984).

第6図はその改良された急速濾過装置の断面図である。FIG. 6 is a sectional view of the improved rapid filtration device.

第6図において、この装置は本体21内に有効径0.4
5mm(均等係数1.5)の砂が25cm充填された砂
層22を備え、砂層22の下部に下部集水装置23が設
けられ、また砂層22の上方1,2mのところには砂層
22の逆洗を開始する水位を検出するレベルセンサー2
4が備えられている。そして、装置本体21の上部には
原水流入管25を、下部集水装置23の下方には濾過水
排出管26を、砂層22とレベルセンサ24の間には逆
洗水排出管27をそれぞれ備え、要部を構成している。
In FIG. 6, this device has an effective diameter of 0.4 mm in the main body 21.
A sand layer 22 filled with 25 cm of sand of 5 mm (uniformity factor 1.5) is provided, a lower water collection device 23 is provided at the bottom of the sand layer 22, and a lower water collection device 23 is provided 1.2 m above the sand layer 22. Level sensor 2 detects the water level to start washing
4 are provided. A raw water inflow pipe 25 is provided at the top of the device body 21, a filtrate water discharge pipe 26 is provided below the lower water collection device 23, and a backwash water discharge pipe 27 is provided between the sand layer 22 and the level sensor 24. , which constitutes the main part.

このように構成された装置において、原水流入管25か
ら流入した水は砂層22を通過してssが捕捉され、濾
過水排出管26から排出する。この際、原水中のSS濃
度が高いと、多量のSSが短時間に砂J122の表層部
に捕捉されてたまり、濾過抵抗が増加する。このため、
周期的に下部集水装置23から小きざみに空気を吹き込
み、砂層22表面にたまったSSを浮遊させることによ
って濾過抵抗の急激な上昇をおさえ、濾過が継続できる
ようになっている。このようにして濾過は継続されるが
、次第に濾過抵抗が増して水位が上昇し、この水位がレ
ベルセンサー24の高さに達すると、砂層22の逆洗を
開始するようになっている。
In the apparatus configured in this manner, water flowing in from the raw water inflow pipe 25 passes through the sand layer 22, ss is captured, and is discharged from the filtered water discharge pipe 26. At this time, if the SS concentration in the raw water is high, a large amount of SS will be captured and accumulated on the surface layer of the sand J122 in a short time, increasing the filtration resistance. For this reason,
By periodically blowing air in small increments from the lower water collecting device 23 and suspending the SS accumulated on the surface of the sand layer 22, a rapid increase in filtration resistance is suppressed and filtration can be continued. Although filtration continues in this manner, the filtration resistance gradually increases and the water level rises, and when this water level reaches the height of the level sensor 24, backwashing of the sand layer 22 is started.

この装置を使用し、下水処理場の最初沈殿池流出水を処
理した結果が第1表のごとく発表されている。ここで実
験結果のうち平均値だけを記載する。
The results of treating effluent from a primary sedimentation tank at a sewage treatment plant using this device are shown in Table 1. Here, only the average value of the experimental results will be described.

第1表 従来技術の濾過実験結果 第1表の結果のごとく、この装置によれば、最初沈殿池
流出水のようなSS濃度の高い水に対しても4時聞程度
の濾過継続が可能となっている。
Table 1 Results of filtration experiments using conventional technology As shown in Table 1, this device allows continuous filtration of water with a high SS concentration, such as effluent from a primary sedimentation tank, for about 4 hours. It has become.

そして、SS濃度の高い排水でも急速濾過によって処理
できることが実証され、次の処理工程である生物処理工
程のBOD負荷を大幅に低減できると云う効果がもたら
されている。
It has been demonstrated that even wastewater with a high SS concentration can be treated by rapid filtration, and the BOD load in the next treatment step, the biological treatment step, can be significantly reduced.

[発明が解決しようとする課題] 上記の従来技術はSSが高濃度の排水の濾過に粒状濾材
を適用できるようにした技術ではあるが、砂層の有する
欠点を本質的に解決したものではない。
[Problems to be Solved by the Invention] Although the above-mentioned prior art is a technology that enables the application of granular filter media to the filtration of wastewater with a high SS concentration, it does not essentially solve the drawbacks of the sand layer.

すなわち、砂層の通水抵抗の増加を抑制するために砂層
へ周期的に空気を吹き込んでも、長時間の濾過継続が可
能になるものではなく、満足すべき濾過時間の延長はな
されていない。従って、濾過の継続時間がなお短いため
に、ssの捕捉能力が小さく、さらに逆洗のための水を
多量に要するという問題があった。このため、さらに効
率のよい急速濾過装置の開発が望まれていた。
That is, even if air is periodically blown into the sand layer in order to suppress an increase in the water flow resistance of the sand layer, it does not make it possible to continue filtration for a long time, and the filtration time has not been extended satisfactorily. Therefore, since the duration of filtration is still short, there is a problem that the ss capture ability is small and a large amount of water is required for backwashing. Therefore, it has been desired to develop a more efficient rapid filtration device.

本発明は、上記の問題点を解決し、長時間の濾過が継続
できるSSの分離装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide an SS separation device that can continue filtration for a long time.

[課題を解決するための手段] 上記の目的を達成するために、本発明のssの分離装置
においては、装置本体内に少なくとも二つの濾層を備え
、排水が最初に通過する濾過初期の濾層(以下、初期浅
層と云う)には多数の耐水性繊維を不織に形成し且つ通
水時における空隙率が実質的に変化しない繊維濾材を充
填し、排水がM後に通過する濾過終期の濾層(以下、終
期1層と云う)には粒状濾材を充填している。
[Means for Solving the Problems] In order to achieve the above object, the ss separation device of the present invention includes at least two filter layers in the device main body, and a filter layer at the initial stage of filtration through which wastewater first passes. The layer (hereinafter referred to as the "initial shallow layer") is filled with a fiber filter material in which a large number of water-resistant fibers are formed in a non-woven manner and whose porosity does not substantially change during water flow, and the final stage of filtration is where wastewater passes through after M. The filter layer (hereinafter referred to as the final layer) is filled with granular filter media.

前記繊維濾材は、耐水性繊維をカールさせる等の曲げ加
工をして弾性体にし、この曲げ加工した繊維を不織に形
成したものである この繊維濾材を形成する耐水性繊維としてはプラスチッ
ク繊維、金属繊維等を使用する。
The fibrous filter medium is made by bending water-resistant fibers such as curling them to make them elastic, and forming the bent fibers into a non-woven material.The water-resistant fibers forming the fibrous filter medium include plastic fibers, Use metal fiber, etc.

粒状濾材としては、砂、アンスラサイト、合成樹脂粒、
活性炭、ゼオライト、各種セラミックス(中空にするな
ど嵩密度の小さいものが好ましい)等あるいはこれらを
組み合わせて使用する。
Granular filter media include sand, anthracite, synthetic resin particles,
Activated carbon, zeolite, various ceramics (preferably those with low bulk density such as hollow ones), or a combination of these are used.

[作用] 前述のように、粒状濾材である砂を充填した濾層にSS
濃度の高い排水を通水すると短時間のうちに濾層に目詰
まりが生じて濾過が継続できなくなってしまうが、SS
濃度が低い排水であれば長時間の濾過が継続できる。そ
して、SS濃度が非常に低い濾過水を得ることができる
6本発明はこのような粒状濾材の特性を活用するために
なされたものであり、機能の異なる少なくとも二つの濾
層を備えている。すなわち、濾層は、主として大きなS
Sを除去するのに適した繊維濾材を充填した濾層と、微
細なSSを除去するのに適した粒状濾材を充填しな濾層
の組み合わせによって構成されている。このため、繊維
濾材を充填した濾層で排水の粗濾過が行われるので、次
の粒状濾材を充填した濾層を通過する排水中のSSの濃
度は大幅に減少し、粒状濾材を充填した濾層の負荷が軽
減される。従って、粒状濾材を充填した濾層を備えてい
ても、長時間の濾過が継続でき、また濾過速度を上げる
こともできる。
[Function] As mentioned above, SS is applied to the filter layer filled with sand, which is a granular filter medium.
When high-concentration wastewater is passed through water, the filter layer becomes clogged in a short time and filtration cannot continue, but SS
If the concentration of wastewater is low, filtration can be continued for a long time. The present invention, which makes it possible to obtain filtered water with a very low SS concentration, has been made to take advantage of the characteristics of such a granular filter medium, and includes at least two filter layers with different functions. That is, the filter layer mainly contains large S
It is composed of a combination of a filter layer filled with a fibrous filter medium suitable for removing S and a filter layer not filled with a granular filter medium suitable for removing fine SS. For this reason, rough filtration of wastewater is performed in the filter layer filled with fibrous filter media, so the concentration of SS in the waste water that passes through the next filter layer filled with granular filter media decreases significantly. The load on the layer is reduced. Therefore, even with a filter layer filled with granular filter media, filtration can be continued for a long time and the filtration speed can be increased.

前記繊維濾材は、耐水性繊維を不織に形成したものであ
るので、空隙率は非常に大きく、従って通水抵抗が極め
て小さく、目詰まりがしにくい。
Since the fibrous filter medium is made of non-woven water-resistant fibers, it has a very large porosity, and therefore has very low resistance to water flow and is less likely to become clogged.

このため、主に大きなSSを除去する粗濾過段階の濾層
に充填するのに適した濾材である。
For this reason, it is a filter medium suitable for filling the filter layer of the coarse filtration stage, which mainly removes large SS.

前記粒状濾材は、濾過する排水中のSSの粒径分布や通
水抵抗の予定値あるいは濾過水中のSS濃度の予定値等
によって決められるものであるが、濾過水中のSS濃度
が予定値を確保できる範囲においてはできるだけ粒径の
大きいものを使用することが望ましい0通常の場合は5
問〜1龍程度が好ましい粒径である。粒径が11未満で
は微細なSSの除去率はよいが、圧損が大きく濾層の目
詰まりの度合いが大きいので好ましくなく、また5市を
超えると濾層の目詰まりの度合いは小さくなるが、微細
なSSの除去率が低下するようになる。
The granular filter medium is determined by the particle size distribution of SS in the wastewater to be filtered, the planned value of water flow resistance, or the planned value of the SS concentration in the filtrated water. It is desirable to use particles with as large a particle size as possible 0 Normally 5
The preferred particle size is approximately 1 to 1 mm. When the particle size is less than 11, the removal rate of fine SS is good, but it is not preferable because the pressure drop is large and the degree of clogging of the filter layer is large, and when it exceeds 5 cities, the degree of clogging of the filter layer becomes small, but The removal rate of fine SS decreases.

[実施例] 第2図は本発明において使用する繊維濾材を模式的に示
した説明図である。この繊維濾材2は多くの濾材選定実
験によって見いだされたものであり、曲げ加工された多
数の耐水性繊維であるプラスチック繊維3を結合剤で被
覆結合し、三次元の網目様の構造にして不織に形成した
ものである。
[Example] FIG. 2 is an explanatory diagram schematically showing a fiber filter medium used in the present invention. This fiber filter medium 2 was discovered through many filter medium selection experiments, and is made by coating and bonding a large number of bent plastic fibers 3, which are water-resistant fibers, with a binder to form a three-dimensional mesh-like structure. It is formed into a woven fabric.

繊維濾材2を構成する前記繊維3の径は100デニール
(約0.091龍)〜10000デニール(約0.91
mm)の範囲である。そして、繊維濾材2の空隙率は7
0%〜99.5%の範囲で選定する。
The diameter of the fibers 3 constituting the fiber filter medium 2 is between 100 denier (approximately 0.091 denier) and 10,000 denier (approximately 0.91 denier).
mm). The porosity of the fiber filter medium 2 is 7
Select in the range of 0% to 99.5%.

繊維濾材2を構成する前記繊維3の径及び繊維濾材2の
空隙率は濾材選定実験の結果により次のように決定した
The diameter of the fibers 3 constituting the fiber filter medium 2 and the porosity of the fiber filter medium 2 were determined as follows based on the results of a filter medium selection experiment.

前記繊維3の径についは、充填した繊維濾材2は通水中
に圧縮されて減容されることがあれば、空隙率が減少し
て濾過性能が変わるので好ましくない。このため、前記
繊維3は、通水時に繊維濾材2が実質的に圧縮されない
だけの強度を有する必要があり、この条件に適合する前
記繊維3の径は約100デニール以上が必要となる。し
かし、前記繊維3があまり太くなると、濾材単位容積当
たりの有効表面積が減少し、濾過効率が悪化する。この
ように、濾過効率との関係を考慮すると前記繊維3の径
は10000デニール以下であるのが望ましい。
Regarding the diameter of the fibers 3, if the filled fiber filter medium 2 is compressed and reduced in volume during water passage, the porosity will decrease and the filtration performance will change, which is not preferable. For this reason, the fibers 3 need to have enough strength to prevent the fiber filter medium 2 from being substantially compressed during water passage, and the diameter of the fibers 3 that meets this condition needs to be about 100 deniers or more. However, if the fibers 3 become too thick, the effective surface area per unit volume of the filter medium decreases, and the filtration efficiency deteriorates. Thus, in consideration of the relationship with filtration efficiency, it is desirable that the diameter of the fibers 3 be 10,000 deniers or less.

繊維濾材2の空隙率は、通水中に短時間で通水抵抗が急
上昇することなく、且つSSの除去率が良好であること
を前提にして決定した。繊維濾材2の空隙率が70%未
満では、通水後数時間で通水抵抗が急激に増加するので
本発明の目的に沿うことができず、空隙率が99.5%
を超えるとSSの除去率が不十分となり濾材としての機
能が不足する。従って繊維濾材2の好適な空隙率は70
%〜99.5%である。
The porosity of the fibrous filter medium 2 was determined on the premise that the water flow resistance would not suddenly increase in a short period of time during water flow and that the SS removal rate would be good. If the porosity of the fiber filter medium 2 is less than 70%, the water flow resistance will increase rapidly after several hours after water flow, so the purpose of the present invention cannot be achieved, and if the porosity is 99.5%.
If it exceeds this, the removal rate of SS will be insufficient and the function as a filter medium will be insufficient. Therefore, the preferred porosity of the fiber filter medium 2 is 70.
% to 99.5%.

次に、上記繊維濾材の性能試験を行った結果について説
明する。
Next, the results of a performance test of the above-mentioned fiber filter medium will be explained.

第3図は本発明で使用する繊維濾材の性能試験を実施し
た装置の説明図である。内径10c+++、高さ2,5
mのアクリル樹脂製で竪型の装置本体1内には、第2図
に示した繊維濾材が敷き詰められて必要高さに充填され
、浅層15が形成されている。9は排水を供給する排水
流入管、10は逆洗水供給管と兼用の濾過水排出管、1
1は逆洗時に使用する空気吹き込み管、12は逆洗水排
出管、13は逆洗水集金管である。
FIG. 3 is an explanatory diagram of an apparatus in which a performance test of the fiber filter medium used in the present invention was carried out. Inner diameter 10c+++, height 2.5
In the vertical device body 1 made of acrylic resin, the fiber filter medium shown in FIG. 2 is spread and filled to a required height to form a shallow layer 15. 9 is a wastewater inflow pipe that supplies wastewater; 10 is a filtered water discharge pipe that also serves as a backwash water supply pipe; 1
1 is an air blowing pipe used during backwashing, 12 is a backwash water discharge pipe, and 13 is a backwash water collection pipe.

この装置は、排水流入管9から濾過速度に合わせた流量
の排水を供給し、逆洗水供給管兼濾過水排出管11から
排水供給流量と同じ流量で濾過水を排出する。そして、
長時間濾過を継続して圧損がある限度に達した時点で浅
層15の逆洗を行う。
This device supplies wastewater from a wastewater inflow pipe 9 at a flow rate that matches the filtration speed, and discharges filtrate from a backwash water supply pipe/filtrate discharge pipe 11 at a flow rate that is the same as the wastewater supply flow rate. and,
When filtration continues for a long time and the pressure drop reaches a certain limit, the shallow layer 15 is backwashed.

逆洗は、装置本体1内に排水を滞留させたまま濾過を中
断し、空気吹き込み管11から空気の吹き込んで濾材に
付着したSSを剥離させ、滞留する排水中に懸濁させる
。空気の吹き込みを所定時間実施後、SSを含んだ水を
排出する。逆洗が1回では不十分の場合には、逆洗水を
浅層15の上端付近まで張り込んだ後、上記1回目の操
作を繰り返す。
In backwashing, filtration is interrupted while the wastewater remains in the device main body 1, and air is blown from the air blowing pipe 11 to peel off the SS attached to the filter medium and suspend it in the accumulated wastewater. After blowing air for a predetermined period of time, the water containing SS is discharged. If one time of backwashing is insufficient, after filling the backwash water to near the upper end of the shallow layer 15, repeat the above-mentioned first operation.

(濾材性能試験1) 供試水としては、下水処理場の最初沈殿池の流出水を通
水した。浅層の条件は第2表に示すように、濾材の材質
、繊維の径及び空隙率を変えた。
(Filter Media Performance Test 1) As the test water, runoff water from the first sedimentation tank of a sewage treatment plant was passed through. As shown in Table 2, the conditions of the shallow layer were varied by changing the material of the filter medium, the diameter of the fibers, and the porosity.

第2表 浅層の条件 (濾材性能試験1)この濾過実験
で得た多数の測定値を平均値にまとめ、実験No、 1
の結果を第3表に、実験N[L 2の結果を第4表に、
実験N[L 3の結果を第5表に示す。
Table 2 Shallow layer conditions (Filtering medium performance test 1) A large number of measured values obtained in this filtration experiment were summarized into an average value, and Experiment No. 1
The results of experiment N [L 2 are shown in Table 4,
The results of experiment N[L 3 are shown in Table 5.

各表中、濾過継続時間は各実験において実施した連続濾
過時間を示し、最終圧損は濾過実験終了直前の圧損を示
す。
In each table, the filtration duration time indicates the continuous filtration time performed in each experiment, and the final pressure drop indicates the pressure drop immediately before the end of the filtration experiment.

第3表 濾過実験結果 (濾材性能試験1−実験No、
 1 )第4表 濾過実験結果 (濾材性能試験1−実験No、2) 第5表 濾過実験結果 (濾材性能試験1−実験No、
 3 )第3表(実験NIL 1 、濾材材質がポリ塩
化ビニリデン、繊維径が500デニール、空隙率が93
%)において、この実験に使用した濾材は、濾過速度を
約200m/日まで上げても、濾過継続15時間後の圧
損は僅か41cmH2Oであり、且っSS除去率も90
%以上が確保している。
Table 3 Filtration experiment results (Filtering material performance test 1-Experiment No.
1) Table 4 Filtration Experiment Results (Filter Media Performance Test 1-Experiment No. 2) Table 5 Filtration Experiment Results (Filter Media Performance Test 1-Experiment No.,
3) Table 3 (Experiment NIL 1, filter material is polyvinylidene chloride, fiber diameter is 500 denier, porosity is 93
%), the filter medium used in this experiment had a pressure drop of only 41 cmH2O after 15 hours of continuous filtration even when the filtration speed was increased to about 200 m/day, and the SS removal rate was also 90 m/day.
More than % are secured.

第4表(実験No、2、濾材材質がポリ塩化ビニリデン
、繊維径が4000デニール、空隙率が98%)におい
て、この実験に使用した濾材は、実験NIL1(第3表
)のものよりもSSの除去率は若干劣るが、最終圧損が
著しく低く、濾過継続時間をさらに長くできる。
In Table 4 (Experiment No. 2, filter material is polyvinylidene chloride, fiber diameter is 4000 denier, porosity is 98%), the filter material used in this experiment has a higher SS than that of Experiment NIL1 (Table 3). Although the removal rate is slightly lower, the final pressure drop is significantly lower and the filtration duration can be extended even further.

第5表(実験阻3、濾材材質がステンレス鋼、繊維径が
0.60mm、空隙率が98%)において、濾材の材質
をステンレス鋼に変えても、繊維径及び空隙率が同様で
ある実験Na2(第4表)の濾材の場合とほぼ同じ良好
の値が得られた。
In Table 5 (Experiment 3, filter material is stainless steel, fiber diameter is 0.60 mm, porosity is 98%), even if the filter material is changed to stainless steel, the fiber diameter and porosity are the same. Approximately the same good values as in the case of the filter medium of Na2 (Table 4) were obtained.

次に上記の濾過実験後、濾層の逆洗を行い、濾材洗浄の
難易、濾過実験におけるSSの捕捉量、逆洗時の必要水
量を調べた結果を第6表及び第7表に示す、第6表には
実験Na 1の濾過実験後の逆洗結果を示し、第7表に
は実験N[L 2の濾過実験後の逆洗結果を示す、各表
中、SS捕捉量は逆洗排水中のSS濃度とその排出量か
ら求めた値であり、逆洗排水量比とは濾過処理をした全
排水量に対する逆洗時に使用した水量の比である。
Next, after the above filtration experiment, the filter layer was backwashed, and the results of investigating the difficulty of cleaning the filter medium, the amount of SS captured in the filtration experiment, and the amount of water required during backwashing are shown in Tables 6 and 7. Table 6 shows the backwashing results after the filtration experiment of Experiment Na 1, and Table 7 shows the backwashing results after the filtration experiment of Experiment N [L 2. In each table, the amount of SS captured is This is a value determined from the SS concentration in wastewater and its discharge amount, and the backwash wastewater amount ratio is the ratio of the amount of water used during backwashing to the total amount of wastewater subjected to filtration treatment.

第6表 逆洗結果(濾材性能試験1−実験No、1)第
7表 逆洗結果(濾材性能試験1−実験No、 2 >
第6表(実験N[L 1、繊維径500デニール、空隙
率93%)では、1回目の逆洗排水中のSSは7800
〜11350mg/Jlと非常に高く、2回目では21
30mg/ρ以下と大幅に減少しており、濾材に付着し
たSSは逆洗によって容易に剥離することを示している
。また、SS捕捉量は6 、4〜9 、2kg/m”で
SSの捕捉能力が非常に大きく、逆洗排水量比は0.0
11〜0.013で逆洗時の水の使用量は非常に少なく
て済む。
Table 6 Backwashing results (Filtering medium performance test 1 - Experiment No. 1) Table 7 Backwashing results (Filtering medium performance test 1 - Experiment No. 2 >
In Table 6 (Experiment N [L 1, fiber diameter 500 denier, porosity 93%), the SS in the first backwash wastewater was 7800.
~11350mg/Jl, which is very high, and the second time it was 21
The amount decreased significantly to 30 mg/ρ or less, indicating that SS attached to the filter medium can be easily peeled off by backwashing. In addition, the SS capture capacity is very large at 6, 4 to 9, 2 kg/m'', and the backwash drainage ratio is 0.0.
11 to 0.013, the amount of water used during backwashing can be extremely small.

第7表(実験N(L 2、繊維径4000デニール、空
隙率98%)においても、捕捉量は6.7〜9.1kg
/m2、逆洗排水量比は0.008〜0.011であり
、実験N(LL(第6表)の場合と同様に良好の結果を
得た。
In Table 7 (Experiment N (L 2, fiber diameter 4000 denier, porosity 98%), the captured amount was 6.7 to 9.1 kg.
/m2, and the backwash drainage volume ratio was 0.008 to 0.011, and good results were obtained as in the case of Experiment N (LL (Table 6)).

〈濾材性能試験2) 次に圧損の経時変化及び濾過速度に対する圧損の変化を
調べた結果について説明する。これらの実験においては
、第3図の装置のほかに、アンスラサイト60cm、砂
40σを充填して濾層を形成させた装置も用意し、並列
にして2基の装置に同一の排水を通水して粒状濾材との
比較を行った。
<Filter Media Performance Test 2> Next, the results of examining changes in pressure loss over time and changes in pressure loss with respect to filtration rate will be explained. In these experiments, in addition to the device shown in Figure 3, we also prepared a device that was filled with 60cm of anthracite and 40σ of sand to form a filter layer, and the same wastewater was passed through the two devices in parallel. A comparison was made with a granular filter medium.

なお、粒状濾材を充填した実験は、先に説明した従来技
術のように周期的に濾層に空気を吹き込むことはせず、
単に濾材性能比較のために行った。
In addition, in the experiment in which the granular filter medium was filled, air was not periodically blown into the filter layer as in the prior art described above.
This was done simply to compare filter media performance.

経時変化の実験条件は濾過速度を120m/日で行った
。この結果を第4図及び第5図に示す。
The experimental conditions for changes over time were a filtration rate of 120 m/day. The results are shown in FIGS. 4 and 5.

第4図は濾過の経過時間に対する圧損の変化を示した図
であり、本発明の繊維濾材は1400分く約24時間)
経過しても、圧損は約30ΩH20程度であり、更に長
時間の濾過が継続できることを示している。
FIG. 4 is a diagram showing the change in pressure drop with respect to the elapsed time of filtration, and the fiber filter medium of the present invention is 1400 minutes long (approximately 24 hours).
Even after the lapse of time, the pressure loss was about 30ΩH20, indicating that filtration could be continued for an even longer time.

第5図は濾過速度と圧損の関係を示した図である。この
実験は濾過開始後5時間における圧損を測定したもので
あるが、本発明の繊維濾材は濾過速度を200m/日ま
で上げても圧損は30cmH2O程度であり、更に濾過
速度を上げることができる。
FIG. 5 is a diagram showing the relationship between filtration rate and pressure loss. In this experiment, the pressure drop was measured 5 hours after the start of filtration, but with the fiber filter medium of the present invention, even if the filtration speed was increased to 200 m/day, the pressure drop was about 30 cmH2O, and the filtration speed could be further increased.

上記の結果のごとく、本発明において使用する繊維濾材
は、圧損が極めて小さく、従って濾過継続時間が非常に
長く、且つSSの除去率もよく、比較的粒径の大きいS
S除去用に好適な濾材であることが確認された。
As shown in the above results, the fiber filter medium used in the present invention has an extremely small pressure drop, a very long filtration time, a good SS removal rate, and a relatively large particle size S
It was confirmed that this filter material is suitable for S removal.

次に、上述の繊維濾材を組み入れた本発明の実施例につ
いて説明する。
Next, an embodiment of the present invention incorporating the above-described fibrous filter medium will be described.

第1図は本発明の一実施例を模式的に示した断面図であ
る。竪型の装置本体1内には二つの異なった濾層を備え
ており、上部には第2図に示した切離濾材を充填した初
期濾層4が配置され、その下部には粒状濾材を充填した
終期1層5が配置されている。終期浅層5は多孔板6に
よって担持されており、初期濾層4は実質的に通水抵抗
が殆どない1層保持材7によって担持され、その上端は
濾材固定材8によって浮き上がらないように固定されて
いる。初期濾層4に充填する繊維濾材の径、空隙率及び
終期浅層5に充填する粒状濾材の径は、処理する排水中
のSS濃度及び粒径分布並びに濾過水の要求水質によっ
て決定する。また、初期濾層4及び終期浅層5のそれぞ
れの充填高さも上記の条件によって適宜状める。そして
、装置本体1には各種の配管が接続されており、その上
方には排水流入管8が、底部には逆洗水供給管と兼用の
濾過水排出管10が、また底部には終期浅層5の下方に
挿入された空気吹き込み管11が、初期濾層4の上端付
近の装置本体1の外周には逆洗水集合管13に接続され
た1本または複数本の逆洗水排出管12がそれぞれ取り
付けられている。また、終期浅層5の下方には格子状等
の形状の分配器14を備え、逆洗時に吹き込んだ空気が
濾層の全面に分散するようになっている。
FIG. 1 is a sectional view schematically showing an embodiment of the present invention. The vertical device main body 1 is equipped with two different filter layers, with the initial filter layer 4 filled with the separated filter medium shown in FIG. A filled terminal stage 1 layer 5 is arranged. The final stage shallow layer 5 is supported by a perforated plate 6, and the initial filter layer 4 is supported by a one-layer holding material 7 that has virtually no resistance to water flow, and its upper end is fixed by a filter material fixing material 8 so as not to lift up. has been done. The diameter and porosity of the fibrous filter medium to be filled in the initial filter layer 4 and the diameter of the granular filter medium to be filled in the final shallow layer 5 are determined by the SS concentration and particle size distribution in the wastewater to be treated and the required water quality of the filtrate water. Further, the filling height of each of the initial filter layer 4 and the final shallow layer 5 is determined as appropriate according to the above conditions. Various types of piping are connected to the device main body 1, with a drainage inflow pipe 8 at the top, a filtrate discharge pipe 10 that also serves as a backwash water supply pipe, and a terminal shallow water discharge pipe 10 at the bottom. An air blowing pipe 11 inserted below the layer 5 is connected to the outer periphery of the device main body 1 near the upper end of the initial filter layer 4, and one or more backwash water discharge pipes connected to a backwash water collection pipe 13 are installed. 12 are attached to each. Further, a distributor 14 in the shape of a grid or the like is provided below the final stage shallow layer 5, so that the air blown during backwashing is dispersed over the entire surface of the filter layer.

なお、本実施例においては初期濾層4に充填する繊維濾
材は、同じ空隙率のものでもよいが、排水の通過順序に
従って順次空隙率の大きさを小さくしてもよい。このよ
うに、初期流M4を空隙率の異なる繊維濾材を組み合わ
せて構成させれば、大粒径のSSから比較的小粒径のS
Sまでを除去することができ、粒状濾材を充填した終期
浅層5の負荷を一層低減できる。また、初期濾層4と終
期浅層5の間に初期濾層4に充填したものより空隙率の
小さい繊維濾材を充填した中間の濾層を設けてもよい。
In this embodiment, the fiber filter media filled in the initial filter layer 4 may have the same porosity, but the porosity may be sequentially decreased according to the order in which the waste water passes through. In this way, if the initial flow M4 is configured by combining fiber filter media with different porosity, it will be possible to change the flow from SS with a large particle size to S with a relatively small particle size.
S can be removed, and the load on the final stage shallow layer 5 filled with granular filter media can be further reduced. Further, an intermediate filter layer filled with a fiber filter medium having a smaller porosity than that filled in the initial filter layer 4 may be provided between the initial filter layer 4 and the final shallow layer 5.

この装置の濾過操作について説明する。濾過の開始に先
立ち、各配管の弁を閉にしたのち、排水流入管9から所
定流量の排水を流入させる。排水が初期濾層4の上端ま
で達した時点で、逆洗水供給管兼濾過水排出管10の弁
を開けて濾過水の排出を開始する。濾過水の流量は排水
流入流量と同じに設定する。排水は、初期濾層4で主に
粒径の大きいSSが除去され、微細なSSだけを含む排
水となって終期浅層5を通過する。終期浅層5を通過し
た排水は、微細なSSが除去されて低SS濃度の濾過水
となる。
The filtration operation of this device will be explained. Prior to the start of filtration, after closing the valves of each pipe, a predetermined flow rate of waste water is allowed to flow in from the waste water inflow pipe 9. When the wastewater reaches the upper end of the initial filter layer 4, the valve of the backwash water supply pipe/filtrate discharge pipe 10 is opened to start discharging the filtrate. The flow rate of filtrate water is set to be the same as the wastewater inflow flow rate. The wastewater mainly removes SS with large particle size in the initial filter layer 4, and passes through the final shallow layer 5 as wastewater containing only fine SS. The wastewater that has passed through the final stage shallow layer 5 has fine SS removed and becomes filtered water with a low SS concentration.

このようにして濾過は継続されるが、濾過が長時間に亙
ると圧損が徐々に上昇するので、圧損がある限度に達し
た時点で濾層の逆洗を行う。逆洗を行う場合、排水の供
給を止めて濾過を一時中断し、濾過水排出管の弁を閉じ
て空気吹き込み管11がら空気の吹き込みを行う、この
際、初期浅層4及び終期浅層5に充填された濾材に付着
していたSSは滞留する排水中に懸濁する。次いで、空
気の吹き込みを行いながら逆洗水供給管兼濾過水排出管
10から逆洗水を供給し、逆洗水排出管12から溢流さ
せる。所定時間溢流後、逆洗水の供給を止め、1回目の
逆洗が終了する。この1回目の逆洗でSSの大部分が除
去される。2回目の逆洗は、上記1回目の操作を繰り返
す。
Although filtration continues in this manner, as the filtration continues for a long time, the pressure loss gradually increases, so when the pressure loss reaches a certain limit, the filter layer is backwashed. When backwashing is performed, the supply of waste water is stopped, filtration is temporarily interrupted, the valve of the filtrate water discharge pipe is closed, and air is blown through the air blowing pipe 11. At this time, the initial shallow layer 4 and the final shallow layer 5 are The SS adhering to the filter media filled in the tank becomes suspended in the stagnant wastewater. Next, backwash water is supplied from the backwash water supply pipe/filtrate water discharge pipe 10 while blowing air, and is caused to overflow from the backwash water discharge pipe 12. After overflowing for a predetermined period of time, the supply of backwash water is stopped, and the first backwash is completed. This first backwashing removes most of the SS. For the second backwash, repeat the above-mentioned first operation.

(実施例1) 第1図の装置と同じ構成で、内径]、Ocm、高さ2.
5mのアクリル樹脂製の装置本体1内に、第8表に示し
た条件の濾層を設け、下水処理場の最初沈殿池流入水の
濾過実験を行った。なお、比較例として、実施例で使用
したものと同じ繊維濾材だけを200 cm充填した場
合の濾過実験も行つた。この結果を第9表に示す。
(Example 1) Same configuration as the device shown in FIG. 1, inner diameter], Ocm, height 2.
A filter layer with the conditions shown in Table 8 was provided in the 5 m long acrylic resin device main body 1, and a filtration experiment of inflow water from a primary settling tank of a sewage treatment plant was conducted. As a comparative example, a filtration experiment was also conducted in which 200 cm of the same fiber filter medium as that used in the example was filled. The results are shown in Table 9.

第8表 実施例1の条件 アンスラサイトは有効径4mm 第9表 濾過実験結果(実施例1) 第9表において、実施例の結果と比較例の結果を対比す
ると、粒径が20μ以上のSSの除去については大差が
なく共に良好であるが、粒径が20μ未満の微細なSS
の除去については、比較例では70%に達していないの
に対し、実施例においては90%が確保されている。そ
して、微細なSSの除去率の差が全体の除去率に影響し
、実施例の95%に対して比較例は90%にとどまって
いる。
Table 8 Conditions for Example 1 Anthracite has an effective diameter of 4 mm Table 9 Filtration experiment results (Example 1) In Table 9, when comparing the results of the example and the results of the comparative example, it is found that SS with a particle size of 20μ or more There is no big difference in the removal of SS, and both are good, but fine SS with a particle size of less than 20μ
Regarding the removal of , it did not reach 70% in the comparative example, but 90% was ensured in the example. The difference in the removal rate of fine SS affects the overall removal rate, which is 95% in the example and only 90% in the comparative example.

(実施例2) 実施例1と同−装置及び同−濾層条件で下水処理場の最
初沈殿池流入水の連続濾過実験を行った。また濾過実験
終了後、a層の逆洗試験を行った。この結果を第10表
及び第11表に示す。
(Example 2) A continuous filtration experiment was conducted using the same apparatus and the same filter layer conditions as in Example 1 for the influent water of the initial sedimentation tank of a sewage treatment plant. Further, after the filtration experiment was completed, a backwash test of the a-layer was conducted. The results are shown in Tables 10 and 11.

第10表 濾過実験結果(実施例2) 第11表 逆洗結果(実施例2) 第10表は連続濾過実験の結果である。この結果を第1
表に記載した従来技術の実験結果と比較すると、従来技
術では濾過速度76m/日における濾過継続4.2時間
後の圧損が1.2m(逆洗開始水位)であるのに対し、
本発明は濾過速度を180m/日に上げた場合にあって
も濾過継続48時間後の圧損は26ca+H20にすぎ
ない。
Table 10: Results of filtration experiments (Example 2) Table 11: Results of backwashing (Example 2) Table 10 shows the results of continuous filtration experiments. This result is the first
Comparing with the experimental results of the conventional technology listed in the table, in the conventional technology the pressure drop after 4.2 hours of continuous filtration at a filtration rate of 76 m/day is 1.2 m (water level at which backwashing starts).
In the present invention, even when the filtration speed is increased to 180 m/day, the pressure loss after 48 hours of continuous filtration is only 26 ca+H20.

また、SSの除去率は従来技術の75%に対し93%〜
95%、さらに濾過水中のSSは従来技術の19mg/
、Rに対し5 mg / 1以下である。このように、
本発明の装置の濾過特性は極めて優れている。そして、
圧損が小さくて長時間の濾過が継続でき、且つSSの除
去率がよいと云う特性を有しているのは、繊維濾材を充
填した初期波層が大部分のSSを除去し、粒状濾材を充
填した終期浅層の負荷を著しく軽減しているためである
ことが判る。
In addition, the removal rate of SS is 93% compared to 75% of conventional technology.
95%, and the SS in the filtered water is 19mg/
, 5 mg/1 or less for R. in this way,
The filtration properties of the device according to the invention are very good. and,
It has the characteristics of low pressure drop, continuous filtration for a long time, and high SS removal rate, because the initial wave layer filled with fiber filter media removes most of the SS, and the granular filter media It can be seen that this is because the load on the final shallow layer that was filled is significantly reduced.

第11表は連続濾過実験後の逆洗結果である。Table 11 shows the backwash results after continuous filtration experiments.

この結果を第1表に示した従来技術の実験結果と比較す
ると、SSの捕捉量は従来技術の0.95kg / m
”に対し18〜20 kg / +n”で約20倍であ
り、また逆洗排水量比は従来技術の0.13に対し0.
011で約1/12であり、濾過効率は極めて良好であ
る。なお、上記の値は圧損が25〜30cmH2O程度
の低い段階で逆洗を実施した場合の結果であり、従来技
術と同様に、圧損1.2mで逆洗を開始すれば、従来技
術との差はさらに大きくなる。
Comparing this result with the experimental results of the conventional technology shown in Table 1, the amount of SS trapped is 0.95 kg/m of the conventional technology.
"18 to 20 kg/+n", which is about 20 times greater, and the backwash drainage volume ratio is 0.13 compared to the conventional technology's 0.13.
011, which is about 1/12, and the filtration efficiency is extremely good. Note that the above values are the results when backwashing is performed at a low stage of pressure drop of about 25 to 30 cm H2O.If backwashing is started at a pressure drop of 1.2 m, as in the conventional technology, there will be a difference with the conventional technology. becomes even larger.

なお、本発明の実施態様は上記の実施例に限定されるも
のではなく、例えば、繊維濾材を構成する繊維の材質は
ポリ塩化ビニリデン、ステンレス鋼に限らす°、ポリエ
チレン、ポリプロピレン等のプラスチック、あるいは他
の金属であってもよく、また初期波層は第1図に示した
ような立方体や直方体に成型された濾材を敷き詰めるよ
うにして形成させるだけでなく、適度の大きさの立方体
や球状に成型した濾材を充填してもよい。また繊維濾材
を籠状の容器に詰め、このバックを複数充填して濾層を
形成するか、あるいは−っの濾層を一体に形成させても
よい。
Note that the embodiments of the present invention are not limited to the above-mentioned examples; for example, the material of the fibers constituting the fiber filter medium is limited to polyvinylidene chloride, stainless steel, plastics such as polyethylene and polypropylene, or Other metals may also be used, and the initial wave layer can be formed not only by laying out filter media formed into cubes or rectangular parallelepipeds as shown in Figure 1, but also by forming filter media into cubes or spheres of appropriate size. It may also be filled with a molded filter medium. Alternatively, the fiber filter medium may be packed in a basket-like container, and a plurality of bags may be filled to form a filter layer, or two filter layers may be formed integrally.

[発明の効果〕 本発明の装置は、粒径の大きなSSを除去するのに適し
た繊維濾材を充填した初期波層と、微細なSSを除去す
るのに適した粒状濾材を充填した終期濾層とを組み合わ
せて備えているので、排水中のSSの大部分は繊維濾材
を充填した初期波層で除去され、粒状濾材を充填した終
期濾層の負荷が大幅に軽減される。このため、粒状濾材
を充填した終期濾層は長時間目詰まりが生ずることがな
く、高い濾過速度で長時間の濾過を行うことができると
共に低SS濃度の濾過水を得ることができる。
[Effects of the Invention] The device of the present invention has an initial wave layer filled with a fibrous filter medium suitable for removing SS with a large particle size, and a final wave layer filled with a granular filter medium suitable for removing fine SS. Since most of the SS in the waste water is removed by the initial wave layer filled with fibrous filter media, the load on the final filter layer filled with granular filter media is significantly reduced. Therefore, the final filter layer filled with the granular filter medium does not become clogged for a long time, and filtration can be performed at a high filtration rate for a long time, and filtered water with a low SS concentration can be obtained.

この結果、粒径の大きい排水を処理する装置である下水
処理場の最初沈殿池あるいは回転円板、流動床等の固着
生物処理後の沈殿槽の代わりとして使用することができ
る。この場合の処理能力は飛躍的に向上する0例えば、
最初沈殿池の処理能力は一般に沈降速度が35m/日程
度に設計されているが、本発明の装置を使用すれば、2
00m/日程度の高い濾過速度で流入水の処理を行うこ
とができ、装置規模を大幅に小さくできる。さらに、最
初沈殿池の処理効率は、SSの除去率が約40%、SS
の除去に伴うBODの除去率が30%程度であるのに対
し、本発明の装置においてはSS除去率95%を確保す
ることができ、従ってBOD除去も大幅になり、次の生
物処理工程におけるBOD負荷が著しく減少する。
As a result, it can be used in place of the initial settling tank of a sewage treatment plant, which is a device for treating wastewater with large particle size, or the settling tank after sessile biological treatment such as a rotating disk or a fluidized bed. In this case, the processing power will improve dramatically.For example,
The processing capacity of the initial sedimentation tank is generally designed to have a sedimentation rate of about 35 m/day, but if the device of the present invention is used,
Inflow water can be treated at a high filtration rate of about 0.00 m/day, and the scale of the equipment can be significantly reduced. Furthermore, the treatment efficiency of the first sedimentation tank is approximately 40% SS removal rate;
While the removal rate of BOD associated with the removal of SS is about 30%, the device of the present invention can secure a SS removal rate of 95%, and therefore BOD removal is also significant, making it easier to use in the next biological treatment process. BOD load is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実8&例を模式的に示した断面図、
第2図は本発明において使用する繊維濾材を模式的に示
した説明図、第3図は本発明において使用する繊維濾材
の性能試験を実施した装置の説明図、第4図は本発明に
おいて使用する繊維濾材の圧損の経時変化を示す説明図
、第5図は本発明において使用する繊維濾材の濾過速度
と圧損の関係を示す説明図、第6図は従来技術の一例を
示す断面図である。 1・・・装置本体、2・・・繊維濾材、3・・・プラス
チック繊維、4・・・初期濾層、5・・・終期濾層。
FIG. 1 is a cross-sectional view schematically showing an example 8 of the present invention,
Fig. 2 is an explanatory diagram schematically showing the fiber filter medium used in the present invention, Fig. 3 is an explanatory diagram of the apparatus in which the performance test of the fiber filter medium used in the present invention was carried out, and Fig. 4 is an explanatory diagram showing the fiber filter medium used in the present invention. FIG. 5 is an explanatory diagram showing the relationship between the filtration speed and pressure drop of the fibrous filter medium used in the present invention, and FIG. 6 is a cross-sectional view showing an example of the prior art. . DESCRIPTION OF SYMBOLS 1... Apparatus body, 2... Fiber filter medium, 3... Plastic fiber, 4... Initial filter layer, 5... Final filter layer.

Claims (3)

【特許請求の範囲】[Claims] (1)濾層を通過させて排水中の懸濁性固形物を分離す
る装置において、装置本体内に少なくとも二つの濾層を
備え、排水が最初に通過する濾過初期の濾層には多数の
耐水性繊維を不織に形成し且つ通水時における空隙率が
実質的に変化しない繊維濾材が充填され、排水が最後に
通過する濾過終期の濾層には粒状濾材が充填されている
ことを特徴とする懸濁性固形物の分離装置。
(1) A device that separates suspended solids from wastewater by passing it through a filter layer, which has at least two filter layers inside the device body, and a large number of filter layers in the initial stage of filtration through which the wastewater first passes. It is filled with a fibrous filter material made of non-woven water-resistant fibers and whose porosity does not substantially change during water flow, and the filter layer at the final stage of filtration through which wastewater passes is filled with a granular filter material. Features: A device for separating suspended solids.
(2)繊維濾材を形成する耐水性繊維がプラスチック繊
維である請求項1記載の懸濁性固形物の分離装置。
(2) The apparatus for separating suspended solids according to claim 1, wherein the water-resistant fibers forming the fiber filter medium are plastic fibers.
(3)繊維濾材を形成する耐水性繊維が金属繊維である
請求項1記載の懸濁性固形物の分離装置。
(3) The apparatus for separating suspended solids according to claim 1, wherein the water-resistant fibers forming the fibrous filter medium are metal fibers.
JP26759388A 1988-10-24 1988-10-24 Filtration apparatus for suspended solid Pending JPH02115005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26759388A JPH02115005A (en) 1988-10-24 1988-10-24 Filtration apparatus for suspended solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26759388A JPH02115005A (en) 1988-10-24 1988-10-24 Filtration apparatus for suspended solid

Publications (1)

Publication Number Publication Date
JPH02115005A true JPH02115005A (en) 1990-04-27

Family

ID=17446903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26759388A Pending JPH02115005A (en) 1988-10-24 1988-10-24 Filtration apparatus for suspended solid

Country Status (1)

Country Link
JP (1) JPH02115005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000403A (en) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Filtration equipment and recycling method of filter medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297252A (en) * 1976-02-10 1977-08-15 Kubota Ltd Reduced-pressure distillating system for organic sludge treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297252A (en) * 1976-02-10 1977-08-15 Kubota Ltd Reduced-pressure distillating system for organic sludge treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000403A (en) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Filtration equipment and recycling method of filter medium

Similar Documents

Publication Publication Date Title
US4515691A (en) Filtration apparatus
US4162216A (en) Process for removal of suspended solids from liquid
JPH02115005A (en) Filtration apparatus for suspended solid
JP5319592B2 (en) Suspended water filtration method and filtration apparatus
JPH0299109A (en) Apparatus for separating suspended solids
JP3132118B2 (en) Suspended solids removal device
JPH06277407A (en) Device filtering suspension liquid
JP4203255B2 (en) Downflow filtration device and downflow filtration method
KR101938134B1 (en) Indefinite form filter medium layer and filter device provided with same
JPH01135511A (en) Apparatus for separating suspended solids
JPH02135103A (en) Method for filtering off suspended solid
JPH07112193A (en) Back washing method of biological filter bed
JP2009024111A (en) Coal dressing system
JPH0647526Y2 (en) Downflow clarification device
JP2005000736A (en) Filter apparatus and activated carbon adsorbing device
JPH10305204A (en) Cleaning method of fiber filter material
JP2004188265A (en) High-speed filtering arrangement using fibrous filter medium
JPH02131195A (en) Soil water treatment device
JPH02139009A (en) Filtering method for suspended solid
JPS6372310A (en) Clarifying and filtering method
CA1116536A (en) Process for removal of suspended solids from liquid
KR20210146150A (en) Effective pore adjustable filter and apparatus for treatment contaminated water using the same
JPS5845765Y2 (en) “Filtration” equipment for pond water, etc.
JPH02191595A (en) Sewage treating device
JPH0574602U (en) High-speed filtration device