JP5319592B2 - Suspended water filtration method and filtration apparatus - Google Patents

Suspended water filtration method and filtration apparatus Download PDF

Info

Publication number
JP5319592B2
JP5319592B2 JP2010086157A JP2010086157A JP5319592B2 JP 5319592 B2 JP5319592 B2 JP 5319592B2 JP 2010086157 A JP2010086157 A JP 2010086157A JP 2010086157 A JP2010086157 A JP 2010086157A JP 5319592 B2 JP5319592 B2 JP 5319592B2
Authority
JP
Japan
Prior art keywords
filtration
water
fiber filter
filter medium
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010086157A
Other languages
Japanese (ja)
Other versions
JP2011212645A (en
Inventor
和彰 島村
正英 鈴木
純一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2010086157A priority Critical patent/JP5319592B2/en
Publication of JP2011212645A publication Critical patent/JP2011212645A/en
Application granted granted Critical
Publication of JP5319592B2 publication Critical patent/JP5319592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、下水、工場排水、用水などの懸濁粒子を含有する懸濁水の高速ろ過分離方法及び装置に関し、懸濁水(以下「原水」ともいう)中の懸濁粒子を高速度でろ過除去できる技術に関する。本発明は、特に下水処理施設に流入する下水の高速固液分離技術、又は有機性の懸濁粒子を含有する合流式下水道の雨天時越流水(CSOと略称される)、又は各種産業排水、用水処理として極めて好適な革新技術である。 The present invention relates to a high-speed filtration separation method and apparatus for suspended water containing suspended particles such as sewage, industrial wastewater, and irrigation water, and removes suspended particles in suspended water (hereinafter also referred to as “raw water”) at high speed. It relates to the technology that can. In particular, the present invention is a high-speed solid-liquid separation technique for sewage flowing into a sewage treatment facility, or a combined sewer rainwater overflow (abbreviated as CSO) containing organic suspended particles, or various industrial wastewater, It is an innovative technology that is extremely suitable for water treatment.

近年、合流式下水道における雨天時越流水(CSO)の公共用水域への汚濁負荷が、大きな問題になっている。また、下水処理施設に流入する下水は、まず最初沈殿池で沈殿分離されたのち活性汚泥処理されるが、最初沈殿池におけるSSの除去率が悪いため、凝集剤を添加して凝集沈殿処理する例が北欧で普及している。しかし、この方法は、汚泥発生量が多く、凝集沈殿速度が小さく、大きな沈殿池を必要とする欠点がある。そのため、CSO及び下水を、極力コンパクトな設備で固液分離できる新技術が待望されている。
従来、アンスラサイト、砂、各種粒状固体(例えば粒状プラスチック)をろ材とするろ過法が検討されている。例えば、下水処理分野では、活性汚泥処理水のような比較的粒径の大きな懸濁物質が対象に、前述のアンスラサイト、砂などを用いてろ過を行うことが多い。この場合、排水の通水速度としては、100〜500m/dで行うことが多い。
また、通水速度を上げるために、ろ材粒径を大きくして目詰まりを少なくする場合があるが、この場合、SSの除去率が悪化してしまうなどの矛盾点が生じた。特に、下水などが含む有機性SSは粘着力が強いので、これら下水などを対象として、SS除去率が高く、かつ目詰まりが少ないという相反する要求を満足できる技術が要望されている。
In recent years, the pollution load of rainwater overflowing water (CSO) in public water areas in a combined sewer has become a major problem. The sewage flowing into the sewage treatment facility is first precipitated and separated in the settling basin and then treated with activated sludge. However, since the SS removal rate in the first settling basin is poor, a coagulant is added and coagulated and settled. Examples are prevalent in Scandinavia. However, this method has a drawback that a large amount of sludge is generated, the coagulation sedimentation rate is small, and a large sedimentation basin is required. Therefore, a new technology that can separate CSO and sewage into a solid-liquid separation with as much compact equipment as possible is awaited.
Conventionally, filtration methods using anthracite, sand, and various granular solids (for example, granular plastic) as filter media have been studied. For example, in the sewage treatment field, filtration is often performed using the above-mentioned anthracite, sand, etc., for a suspended substance having a relatively large particle size such as activated sludge treated water. In this case, the drainage flow rate is often 100 to 500 m / d.
In addition, in order to increase the water flow rate, the filter medium particle size may be increased to reduce clogging, but in this case, inconsistencies such as deterioration of the SS removal rate have occurred. In particular, since organic SS contained in sewage and the like has a strong adhesive force, a technology capable of satisfying the conflicting requirement that the SS removal rate is high and clogging is low is desired for such sewage and the like.

前記のビーズ系のろ材に代わる方法として、例えば、特公昭62−55885号公報や特開平10−305204号公報では、繊維長5〜50mmの有機繊維からなる短繊維をからみ合わせた多数の繊維塊をろ材にしてろ過する装置がある。このろ材を用いたろ過装置は、懸濁物質を含む排水を処理する際に、600m/d以上の高速でろ過を行うことができる。
このような繊維ろ材において、ろ過過程で付着した懸濁物質をはがす、いわゆる逆洗する場合には、ろ過塔内に洗浄水と空気、又は、いずれかを供給することで繊維ろ材から懸濁物質を剥離させるが、繊維と懸濁物質の比重差が小さいために、繊維ろ材がろ過塔上部より流出したり、繊維ろ材と懸濁物質の分離が不十分になることがあった。また、逆洗のあと、繊維ろ材を自然沈降させてろ過を始めるが、このとき、ろ材が十分圧密していなく、充填率の低い状態で通水するために、懸濁物質の除去率が十分出ない場合があった。
As an alternative to the above-mentioned bead-based filter media, for example, in Japanese Patent Publication No. 62-55885 and Japanese Patent Laid-Open No. 10-305204, a large number of fiber masses in which short fibers made of organic fibers having a fiber length of 5 to 50 mm are entangled. There is a device that uses the filter as a filter medium. The filtration apparatus using this filter medium can perform filtration at a high speed of 600 m / d or more when treating wastewater containing suspended substances.
In such a fiber filter medium, in the case of so-called backwashing, which removes suspended substances adhering in the filtration process, the suspended substances are removed from the fiber filter medium by supplying washing water and air or either into the filter tower. However, since the difference in specific gravity between the fiber and the suspended substance is small, the fiber filter medium sometimes flows out from the upper part of the filtration tower, or separation of the fiber filter medium and the suspended substance may be insufficient. In addition, after the backwash, the fiber filter medium is naturally settled and filtration begins. At this time, the filter medium is not sufficiently compacted, and the suspended matter removal rate is sufficient to allow water to pass with a low filling rate. There was a case that did not come out.

また、繊維ろ材の洗浄方法として、繊維ろ材を流出させないように、洗浄工程において、一旦ろ過塔内に洗浄水を張り、通気によってろ過層を流動化させて、繊維ろ材から付着した懸濁物質を剥離し、その後、懸濁物質を含む洗浄排水をろ過塔底部から流出させる工程を繰り返す方法があった。しかし、この方法では、剥離した懸濁物質が再度繊維ろ材に付着し洗浄効果が低かったり、ろ過塔底部より排水する工程を繰り返すために洗浄時間が長いなどの課題があった。
また、特開2004−89766号公報では、ろ過塔の内部に合成繊維糸フリンジ(ふさ毛)付き状部材又は繊維束紐状部材を、上端を固定部材で固定して多数垂下させたろ過塔の下部から懸濁水を流入させて、上向流として通過させてろ過を行い、上部からろ過処理水を流出させる方法が記載されている。このろ材を用いたろ過塔では、下水などの懸濁水を目詰まりが少ない状態で、1440m/dという高速でろ過することができる。この場合でも、懸濁物質を付着した繊維部材の逆洗が容易ではなく、長時間運転すると、懸濁物質がひも状内部まで浸透し、洗浄効果が不十分となる場合があった。
In addition, as a method for washing the fiber filter medium, in order to prevent the fiber filter medium from flowing out, in the washing process, once the washing water is filled in the filtration tower, the filtration layer is fluidized by ventilation, and suspended substances adhering to the fiber filter medium are removed. There was a method of repeating the process of peeling and then allowing the washing waste water containing suspended substances to flow out from the bottom of the filtration tower. However, this method has problems such that the separated suspended substance adheres to the fiber filter medium again and the washing effect is low, or the washing time is long because the process of draining from the bottom of the filtration tower is repeated.
Japanese Patent Application Laid-Open No. 2004-89766 discloses a filter tower in which a synthetic fiber yarn fringe-like member or fiber bundle string-like member is fixed inside the filtration tower and the upper end is fixed by a fixing member to hang a large number. A method is described in which suspended water is introduced from the lower part, passed as an upward flow for filtration, and filtered water is discharged from the upper part. In a filtration tower using this filter medium, suspended water such as sewage can be filtered at a high speed of 1440 m / d with little clogging. Even in this case, it is not easy to backwash the fiber member to which the suspended substance is adhered, and when the fiber member is operated for a long time, the suspended substance may penetrate into the inside of the string and the washing effect may be insufficient.

更に、特開平9−234309号公報には、多数の繊維塊ろ材又はスポンジろ材からなるろ層を内部に有する充填型ろ過塔と、その充填型ろ過塔の上部よりろ過対象液を入れるろ過対象液導入手段と、前記充填型ろ過塔の下部よりろ過対象液を取り出すろ過対象液取出手段と、前記充填型ろ過塔の下部より洗浄用液を導入する洗浄用液導入手段と、前記充填型ろ過塔の上部より洗浄用液を取り出す洗浄用液取出手段と、ろ層の下方より空気を送り込む空気導入手段とを備えたろ過装置において、ろ層を液に浸漬した状態とし、次に前記液を充填型ろ過塔の下部より流出させることによって液位を徐々に下げて行き、その間、ろ層の下方より空気を送り込んでバブリングし、これによりろ材を揺動させつつ沈降させてろ層を圧縮するように、前記各手段の動作を制御するろ層圧縮動作制御手段を備えたことを特徴とするろ過装置が記載されている。ところが、上記の装置を用いても、繊維ろ材の密度が低い短繊維塊ろ材を用いた場合では、繊維塊ろ材が圧縮されず、固形物の除去率が低い場合があった。
特公昭62−55885号公報 特開平10−305204号公報 特開2004−89766号公報 特開平9−234309号公報
Furthermore, Japanese Patent Laid-Open No. 9-234309 discloses a packed filtration tower having a filter layer made of a large number of fiber mass filter media or sponge filter media inside, and a filtration target liquid into which the filtration target liquid is put from the top of the packed filter tower. Introducing means, means for extracting liquid to be filtered from the lower part of the packed filtration tower, cleaning liquid introducing means for introducing a cleaning liquid from the lower part of the packed filtration tower, and the packed filtration tower In a filtration device having a cleaning liquid take-out means for taking out the cleaning liquid from the upper part of the filter and an air introducing means for sending air from below the filter layer, the filter layer is immersed in the liquid and then filled with the liquid. The liquid level is gradually lowered by letting it flow out from the lower part of the filter tower, and during that time, air is sent from below the filter bed and bubbled, thereby causing the filter medium to settle while shaking to compress the filter bed. ,Previous Filtration device is described which is characterized in that it comprises a filtration layer compression operation control means for controlling the operation of each unit. However, even when the above apparatus is used, when the short fiber lump filter medium having a low density of the fiber filter medium is used, the fiber lump filter medium is not compressed and the solids removal rate may be low.
Japanese Examined Patent Publication No. 62-55885 JP-A-10-305204 JP 2004-89766 A JP-A-9-234309

本発明は、このような実情に鑑みてなされたものであり、簡単かつコンパクトな装置によって下水、各種廃水、用水など各種原水中の懸濁粒子を高速ろ過できる新技術を提供することを課題とする。特に、懸濁物質の高い除去率を安定的に得ることができ、更に高い除去率を長時間継続することができる高速ろ過方法とその方法に用いるろ過装置を提供することを課題とする。更に、洗浄工程を短縮した場合においても、良好な処理性能を得ることができるろ過方法とその方法に用いるろ過装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a new technology capable of high-speed filtration of suspended particles in various raw waters such as sewage, various wastewaters, and irrigation water by a simple and compact device. To do. In particular, it is an object of the present invention to provide a high-speed filtration method capable of stably obtaining a high removal rate of suspended solids and continuing a higher removal rate for a long time, and a filtration device used in the method. Furthermore, it is an object of the present invention to provide a filtration method capable of obtaining good treatment performance even when the cleaning step is shortened and a filtration device used in the method.

上記課題を解決するために、本発明では、短繊維自体の繊維長が5〜100mmの短繊維小塊状の繊維ろ材を充填したろ過塔を用いた懸濁水のろ過方法において、前記繊維ろ材は、密度が25kg/m以上であり、ろ過処理後に以下の3工程、
(1)前記ろ過塔底部より空気と洗浄水を供給すると共に、該ろ過塔上部より前記繊維ろ材から剥離した固形物を排出する、ろ過塔内の繊維ろ材に付着した固形物を剥離する洗浄工程、
(2)前記洗浄工程の後に、前記ろ過塔内の繊維ろ材全体が浸水した状態で、ろ過塔内の繊維ろ材を圧密させるために前記ろ過塔底部より空気を供給する空気による圧密工程、
(3)更に、前記空気による圧密工程の後に、前記ろ過塔底部からろ過塔内の繊維ろ材と繊維ろ材の空隙にある液を全量又は一部を排水することで繊維ろ材を圧密させる水による圧密工程、
を行うことを特徴とする懸濁水のろ過方法としたものである。
In order to solve the above-mentioned problems, in the present invention, in the filtration method of suspended water using a filtration tower packed with short fiber lumps of fiber filter medium having a short fiber length of 5 to 100 mm, the fiber filter medium includes: The density is 25 kg / m 3 or more, and the following three steps after filtration treatment:
(1) A washing step of peeling off the solid matter attached to the fiber filter medium in the filtration tower, supplying air and washing water from the bottom of the filtration tower and discharging the solid substance peeled off from the fiber filter medium from the top of the filtration tower. ,
(2) After the washing step, in a state where the entire fiber filter medium in the filtration tower is submerged, a consolidation process by air supplying air from the bottom of the filtration tower in order to consolidate the fiber filter medium in the filtration tower,
(3) Furthermore, after the step of compacting with air, compaction with water that compacts the fiber filter medium by draining all or part of the liquid in the gap between the fiber filter medium and the fiber filter medium in the filter tower from the bottom of the filter tower. Process,
This is a suspension water filtration method characterized by

また、本発明では、前記の懸濁水のろ過方法に用いるろ過装置であって、上部に、処理される原水の導入管と、洗浄水の排水管と、内部に密度が25kg/m以上の短繊維小塊状の繊維ろ材を充填したろ過層と、下部に、処理水の集水装置と、ろ過層に空気を供給する供給管と、前記ろ過層に上向流で通水する洗浄水の通水管と、前記集水装置からろ過層上部以上に立ち上げられた処理水流出管と、前記集水装置からろ過層内の全部又は一部の液を排水するための排出管、又は、前記集水装置からろ過層内の一部の液を排水するためのろ過層中間まで立上げられた管とを備えたろ過塔を有することを特徴とするろ過装置としたものである。 Further, the present invention provides a filtration apparatus for use in filtering method of the preceding Symbol aqueous suspension, the upper, the inlet pipe of the raw water to be treated, the drain pipe of the washing water, the density inside the 25 kg / m 3 or more A filtration layer filled with short fiber lumps of fiber filter material, a treated water collector at the bottom, a supply pipe for supplying air to the filtration layer, and wash water that flows upward through the filtration layer A drain pipe for draining all or part of the liquid in the filtration layer from the water collection device , or is obtained by a filtration device, characterized in that it comprises a filtration tower and an emissions pipe a part of the liquid was raised to filtration layer intermediate for draining of the filtration layer from the water collecting device.

前記ろ過装置において、ろ過塔上部には、前記繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さい目開きを有する前記繊維ろ材の流出阻止用多孔部材を、前記ろ過塔上部に設けた前記繊維ろ材の洗浄水の排水管の上流側に設置することができ、また、前記ろ過塔内のろ過層は、その一部又は全てが、上下面及び側面を前記流出阻止用多孔部材に囲まれて一体化することができる
In the filtration device, the filtration tower upper portion is provided with a porous member for preventing the outflow of the fiber filtration medium having an opening smaller than the shortest length of the diameter of the fiber filtration medium or the length of the linear portion. The filtration layer in the filtration tower can be installed at a part or all of the upper and lower surfaces and side surfaces of the perforation for preventing outflow. It can be integrated by being surrounded by members .

本発明の実施により、密度が25kg/m以上の短繊維小塊状の繊維ろ材を用いること、圧密工程を設けることで、ろ過工程で繊維ろ材が十分高い密度となっていることから、従来のただ単に、繊維ろ材を沈めた状態でろ過した方法に比べ、原水中の懸濁物質の除去率が高くなり、繊維ろ材を用いたろ過装置の処理性能を大幅に、しかも安定的に上昇させることができる。また、繊維ろ材の流出を懸念することなく、高速で通水、通気を実施することができ、洗浄時間が圧縮できると共に、洗浄効率があがり、続くろ過工程でのろ過性能が良好となる。 By carrying out the present invention, a fiber filter medium having a density of 25 kg / m 3 or more is used, and by providing a consolidation process, the fiber filter medium has a sufficiently high density in the filtration process. However, the removal rate of suspended solids in the raw water will be higher than the method of filtering with the fiber filter medium submerged, and the processing performance of the filtration device using the fiber filter medium will be increased significantly and stably. Can do. Further, water and aeration can be carried out at a high speed without worrying about the outflow of the fiber filter medium, the washing time can be compressed, the washing efficiency is improved, and the filtration performance in the subsequent filtration step is improved.

以下、本発明を図面を参照しながら詳細に説明する。
図1は、本発明を実施するためのフロー構成図の一例である。
図1では、ろ過塔1は、上部に処理されるべき原水の導入管4と、ろ過塔内に短繊維小塊状の繊維ろ材を充填したろ過層2と、下部に、処理水の集水装置3と、空気を供給する供給管6と、集水装置3から少なくともろ過層2上部以上に立ち上げられた処理水流出管5(ヘッダ管ともいう)とを備え、また集水装置3内の液を排水する排出管7を備え、排出管7には弁12が具備されると共に、集水装置3内に水位計13を設置し、水位計13の指示値に応じて弁12の開閉を制御する機構を設けている。なお、必要がなければ水位計13の設置は不要である。ここで特に重要なのは、繊維ろ材の密度が25kg/m以上であることである。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an example of a flow configuration diagram for carrying out the present invention.
In FIG. 1, a filtration tower 1 includes a raw water introduction pipe 4 to be treated at the upper part, a filtration layer 2 filled with short fiber lump-like fiber filter medium in the filtration tower, and a treated water collector at the lower part. 3, a supply pipe 6 for supplying air, and a treated water outflow pipe 5 (also referred to as a header pipe) raised from the water collection device 3 to at least the upper part of the filtration layer 2. A drain pipe 7 for draining the liquid is provided. The drain pipe 7 is provided with a valve 12, and a water level meter 13 is installed in the water collecting device 3, and the valve 12 is opened and closed according to the indicated value of the water level meter 13. A control mechanism is provided. If there is no need, installation of the water level gauge 13 is unnecessary. Particularly important here is that the density of the fiber filter medium is 25 kg / m 3 or more.

原水は、下水処理の二次処理水や最初沈殿池流出水、雨天時流出水、各種産業排水、用水処理等、懸濁物質を含む排水、用水であり、前段に凝集操作を行った処理水でもよい。
本発明に用いる短繊維小塊状の繊維ろ材について述べる。本発明で使用する短繊維は、短繊維自体の繊維長が5〜100mmであり、成分がポリエチレンテレフタレートなどのポリエステル系、ナイロン6、ナイロン66などのポリアミド系、ポリビニルアルコール系などで、真比重が1以上のものである。その短繊維をレジンポンド、サーマルポンド、ニードルパンチ、エアレイド、スパンレース、スパンボンド、メルトブロン、フラッシュスピン、スティッチポンドなどの製造方法を用いて、短繊維間を結合して原反とする。原反は、厚さが数mm〜数十mm、幅が1m〜3m、長さが数m〜数千mのシート状のものもあれば、直径が数mm〜数十mm、長さが数m〜数千mの棒状となっているものもある。本発明でいう小塊状とは、その原反を、一辺の長さや直径が1mm〜50mmの任意の大きさにカットし、小さな塊状にした状態のものを示す。本発明では、この小さな塊状にした状態のものを短繊維小塊状の繊維ろ材、或いはただ単に繊維ろ材という。本発明で使用する短繊維小塊状の繊維ろ材の密度は、絶対乾燥状態で25kg/m3以上であり、また、その形状は球体でも立方体や長方体、円柱状など任意の形をとることができる。
Raw water is secondary treated water for sewage treatment, first settling basin effluent, rainy effluent, various industrial wastewater, effluent treatment, etc. But you can.
The short fiber lump-like fiber filter medium used in the present invention will be described. The short fiber used in the present invention has a fiber length of 5 to 100 mm, the component is a polyester type such as polyethylene terephthalate, a polyamide type such as nylon 6 and nylon 66, a polyvinyl alcohol type, etc., and has a true specific gravity. One or more. The short fibers are bonded to each other using a manufacturing method such as resin pond, thermal pond, needle punch, air laid, spun lace, spun bond, melt bron, flash spin, stitch pond, and the like to form a raw fabric. The raw fabric may be a sheet having a thickness of several mm to several tens of mm, a width of 1 m to 3 m, and a length of several m to several thousand m, or a diameter of several mm to several tens of mm and a length of Some have a rod shape of several meters to several thousand meters. The term “small block” as used in the present invention refers to a state in which the original fabric is cut into an arbitrary size having a side length or diameter of 1 mm to 50 mm to form a small block. In the present invention, this small lump is referred to as a short fiber lump-like fiber filter medium, or simply a fiber filter medium. The density of the short fiber lump-like fiber filter used in the present invention is 25 kg / m 3 or more in an absolute dry state, and the shape thereof may be any shape such as a sphere, a cube, a cuboid, or a column. it can.

集水装置は、砂利を敷き詰めたものから、有孔ブロック型、ホイラー型、ストレーナ型、ポーラスボトム型、多孔管型など任意のものを選択することができるが、特に、有孔ブロック型は、ブロックが軽く施工が容易であるので、繊維ろ材の集水装置としては好ましい。
集水装置には、ろ過塔内の水位を検出するセンサ13と、繊維ろ材を圧縮するために設けられたろ過塔内の水を排水する排出管7、及び排出管7に弁12が設けられている。センサ13は、任意のものを用いることができ、超音波式レベル計やガイドパルス式、圧力、差圧式、フロート式、レーザ式など用いることができるが、ここでは特に施工が容易な圧力式を例にとって説明する。
原水は、導入管4を通して連続的に通水され、ろ過塔内に充填された繊維ろ材によってろ過される。ろ過工程のおける通水速度は、従来の砂ろ過層を用いたろ過よりも装置をコンパクトにするという観点と、通水速度が速い場合に原水中の懸濁物質がショートパスして処理水と共に流出してしまうのを抑制するために、500〜2000m/dが好ましい。また、このときろ過層の高さは、逆洗頻度を1日に1〜5回にすることや、ろ過層上部のフリーボード部が極端に高くならないように設計するため、300〜2000mm程度が好ましい。
The water collecting device can be selected from those with gravel spread, perforated block type, wheeler type, strainer type, porous bottom type, porous tube type, etc. Since the block is light and easy to construct, it is preferable as a water collecting device for fiber filter media.
The water collecting device is provided with a sensor 13 for detecting the water level in the filtration tower, a discharge pipe 7 for draining water in the filtration tower provided for compressing the fiber filter medium, and a valve 12 in the discharge pipe 7. ing. An arbitrary sensor 13 can be used, and an ultrasonic level meter, a guide pulse type, a pressure, a differential pressure type, a float type, a laser type, and the like can be used. Let's take an example.
The raw water is continuously passed through the introduction pipe 4 and filtered by a fiber filter medium packed in the filtration tower. The water flow rate in the filtration process is more compact than the conventional filtration using a sand filtration layer, and when the water flow rate is high, suspended substances in the raw water are short-passed together with the treated water. In order to suppress the outflow, 500 to 2000 m / d is preferable. In addition, the height of the filtration layer at this time is designed so that the frequency of backwashing is 1 to 5 times a day, and the free board part on the upper part of the filtration layer is designed not to be extremely high. preferable.

ある程度の量の原水をろ過した繊維ろ材は、その内部や表面が懸濁物質に覆われているので、定期的、或いはろ過抵抗の上昇を検出して、洗浄される。洗浄は、ろ過塔下部から空気を供給し、繊維ろ材から懸濁物質を剥離する。通気速度や通気時間は、概ね、繊維ろ材に付着した懸濁物質が剥離する速度と時間をとり、通気速度0.1〜5.0m/min、通気時間3〜30minで実施される。
繊維ろ材から剥離した懸濁物質を含む洗浄後の廃水は、導入管4から原水を供給しながら、排出管7又は処理水流出管5を通して系外に排出することで、再生された繊維ろ材を再度使用する(洗浄工程)。また、別途、洗浄水の供給管をろ過塔上部や下部から供給して(図示せず)、洗浄廃水を排出管7又は処理水流出管5から排出してもよい。洗浄水には、下水二次処理水や工業用水、雨水、ろ過原水など任意の液を用いることができる。
The fiber filter medium obtained by filtering a certain amount of raw water is washed periodically, or by detecting an increase in filtration resistance, because the inside and surface thereof are covered with suspended solids. In the washing, air is supplied from the lower part of the filtration tower, and the suspended substances are peeled off from the fiber filter medium. The aeration speed and the aeration time are generally carried out at an aeration speed of 0.1 to 5.0 m / min and an aeration time of 3 to 30 min.
Waste water after washing containing suspended solids separated from the fiber filter medium is discharged out of the system through the discharge pipe 7 or the treated water outflow pipe 5 while supplying raw water from the introduction pipe 4, so that the regenerated fiber filter medium is recovered. Use again (cleaning process). Separately, a cleaning water supply pipe may be supplied from the upper or lower part of the filtration tower (not shown), and the cleaning waste water may be discharged from the discharge pipe 7 or the treated water outflow pipe 5. As the washing water, any liquid such as sewage secondary treated water, industrial water, rain water, or raw filter water can be used.

本発明では、洗浄工程の後に、水中に沈んだ繊維ろ材をより高密度に充填するために、集水装置3に設置された排出管7からろ過塔内の液を一部又は全量を排水する水による圧縮工程を設ける。繊維ろ材自体内の空隙は95%以上と高く、水中で水分を含んだ状態でも、繊維ろ材の見かけ比重は1.1前後であり、従来のただ単に、繊維ろ材を水中に自然沈降させた状態では、水分を含む繊維ろ材(比重約1.1)と水(比重約1)の比重差が小さいがために、繊維ろ材同士が密に充填しているとは言えず、繊維ろ材と繊維ろ材の隙間(空隙ともいう)が大きかった。しかし、本発明の構造を持ったろ過方法及び装置において、ろ過塔内の液の一部又は全量を排水することで、水分を含む繊維ろ材(比重約1.1)と空気の密度さ(比重約0.001)が大きくなるため、繊維ろ材は自重によって、空隙を埋めるように圧密していく。   In the present invention, after the washing step, a part or all of the liquid in the filtration tower is drained from the discharge pipe 7 installed in the water collecting device 3 in order to fill the fiber filter material submerged in water with higher density. A water compression step is provided. The void in the fiber filter medium itself is as high as 95% or more, and even when it contains moisture in water, the apparent specific gravity of the fiber filter medium is around 1.1, so that the conventional fiber filter medium is simply allowed to settle naturally in water. Then, since the difference in specific gravity between the water-containing fiber filter medium (specific gravity of about 1.1) and water (specific gravity of about 1) is small, it cannot be said that the fiber filter medium is closely packed. The gap (also referred to as a void) was large. However, in the filtration method and apparatus having the structure of the present invention, by draining a part or all of the liquid in the filtration tower, the fiber filter medium containing moisture (specific gravity about 1.1) and the density of air (specific gravity) Since about 0.001) becomes large, the fiber filter medium is consolidated to fill the voids by its own weight.

このとき、特に重要なのは、密度が25kg/m以上の短繊維小塊状の繊維ろ材を採用することである。表1は、繊維ろ材の密度と圧密率の関係を示す。圧密率は、繊維ろ材をただ単に沈降させたときの静置高さを100とし、圧密工程によって減少したろ過層の高さの割合を示しており、圧密率が高いほど繊維ろ材が密に詰まっている状態を示している。表1より、繊維ろ材の密度が10kg/mでは、圧密率がゼロであり、密度が25kg/mでは圧密が増加傾向にあり、密度100kg/mで約30%で一定となった。繊維ろ材の密度が10kg/m以下では、繊維ろ材の保水率が低く、排水管Gを通して排水したときに繊維ろ材内部の水も水切りされてしまい、水分をほとんど含まない繊維ろ材となる。その結果、水分を含まない繊維ろ材は、水分を含んだ繊維ろ材よりも空気中での比重差が小さくなり、前述の圧縮工程で十分な圧縮をすることができない。このことから、繊維ろ材の密度は保水率と関係し、圧縮率を決定するきわめて重要な因子であり、特に繊維ろ材の密度が25kg/m以上のとき効果が発揮できる。 At this time, it is particularly important to use a short fiber lump-like fiber filter medium having a density of 25 kg / m 3 or more. Table 1 shows the relationship between the density of the fiber filter medium and the consolidation rate. The consolidation ratio indicates the ratio of the height of the filtration layer decreased by the consolidation process when the standing height when the fiber filter medium is simply settled is 100, and the higher the consolidation ratio, the denser the fiber filter medium becomes. It shows the state. From Table 1, when the density of the fiber filter medium is 10 kg / m 3 , the consolidation ratio is zero, and when the density is 25 kg / m 3 , the consolidation tends to increase, and the density is constant at about 30% at the density of 100 kg / m 3 . . When the density of the fiber filter medium is 10 kg / m 3 or less, the water retention rate of the fiber filter medium is low, and when the water is drained through the drain pipe G, the water inside the fiber filter medium is drained, resulting in a fiber filter medium containing almost no moisture. As a result, the fiber filter medium that does not contain moisture has a smaller specific gravity difference in air than the fiber filter medium that contains moisture, and cannot be sufficiently compressed in the compression step described above. From this, the density of the fiber filter media is related to the water retention rate and is an extremely important factor for determining the compression rate, and the effect can be exhibited particularly when the density of the fiber filter media is 25 kg / m 3 or more.

Figure 0005319592
Figure 0005319592

続いて、ろ過を再開すると、ろ過塔内の繊維ろ材は十分に圧密され、空隙が少なくなっていることから、被処理水中の懸濁物質の捕捉が良好で、懸濁物質の除去率が高い。従来のただ単に繊維ろ材を沈降させて充填したときよりも、水抜きを行い圧密した状態でろ過した方が、空隙が少なくなるためにろ過性能は高くなる。無論、ろ過の際、高密度に充填した繊維ろ材は膨張することはない。ところで、ろ過塔が大きくなればなるほど、排水時間が長く、またその時間もその都度まちまちとなり、ばらつきが大きくなる。場合によっては、十分に水抜きをしない状態、つまり高密度になっていない状態で、ろ過を開始するなどし、所定のろ過性能を満足できない場合がある。場合によっては、集水装置に設置されたろ過塔内のレベル計、ここでは圧力式のレベル計によって、ろ過塔内のレベルを連続的に検出し、所定のレベル以下になったのを確認してから、排出管7に設置した弁12を閉めてもよい。このようにすることで、常にろ過塔内の繊維ろ材を高密度な状態を保つことができ、良好な処理水質を得ることができる。   Subsequently, when the filtration is resumed, the fiber filter medium in the filtration tower is sufficiently consolidated and the voids are reduced, so that the suspended matter in the water to be treated is well captured and the suspended matter removal rate is high. . Compared to the conventional method of simply sinking and filling the fiber filter medium, the filtration performance becomes higher when the water is drained and filtered in the compacted state because the voids are reduced. Of course, the fiber filter medium packed with high density does not expand during filtration. By the way, the larger the filtration tower, the longer the drainage time, and the time varies from time to time. In some cases, the filtration may be started in a state where water is not sufficiently drained, that is, in a state where the density is not high, and a predetermined filtration performance may not be satisfied. In some cases, the level inside the filtration tower installed in the water collector, here the pressure type level gauge, continuously detects the level inside the filtration tower and confirms that it is below the specified level. Then, the valve 12 installed in the discharge pipe 7 may be closed. By doing in this way, the fiber filter medium in a filtration tower can always be maintained in a high-density state, and good treated water quality can be obtained.

図1の装置において、洗浄工程と水による圧密工程の間に、空気による圧密工程を設けることもできる。空気による圧密工程は、洗浄工程の後に設けられ、少なくともろ過層以上に液が満たされている状態で、空気供給管から空気を供給して、繊維ろ材を圧密する工程である。空気が供給されたろ過層は、ろ過層内の液の見掛け比重が空気が保持されていない状態よりも軽くなるので、繊維ろ材と見掛け比重が軽くなった液の比重差が大きくなり、ろ過層底部の繊維ろ材は圧密することができる。一方で、ろ過層の中部より上の繊維ろ材は、空気の作用により流動化し圧密はされない。
本発明では、前記空気による圧密工程が終わった後、前述した水による圧密工程を実施する。水による圧密工程は、ろ過塔底部からろ過層内の液体を排出する工程であり、このようにすることで、空気による圧密工程で圧密されなかったろ過層上方の繊維ろ材を圧密することができ、層全体が圧密することができる。
In the apparatus of FIG. 1, an air compaction process can be provided between the cleaning process and the water compaction process. The air compaction step is a step that is provided after the cleaning step, and supplies the air from the air supply pipe in a state where at least the filtration layer is filled with the liquid to consolidate the fiber filter medium. In the filtration layer supplied with air, the apparent specific gravity of the liquid in the filtration layer becomes lighter than in the state where air is not retained, so the difference in specific gravity between the fiber filter medium and the liquid with a reduced apparent specific gravity becomes large, and the filtration layer The bottom fiber filter media can be consolidated. On the other hand, the fiber filter material above the middle part of the filtration layer is fluidized by the action of air and is not consolidated.
In the present invention, after the air compaction process is completed, the water compaction process described above is performed. The water compaction step is a step of discharging the liquid in the filtration layer from the bottom of the filtration tower, and in this way, the fiber filter medium above the filtration layer that has not been compacted in the air compaction step can be consolidated. , The whole layer can be consolidated.

図2は、本発明を実施するための他の例のフロー構成図であり、上部に、処理されるべき原水の導入管4と、洗浄水の排水管9、ろ過塔内に短繊小維塊状の繊維ろ材を充填したろ過層2、ろ過塔下部に、処理水の集水装置3と、空気を供給する供給管6と、上向流で通水する洗浄水の通水管8と、集水装置3から少なくともろ過層上部以上に立ち上げられた処理水流出管5とを備え、また集水装置3内の液を排水する排出管7を備えたろ過塔1において、排出管7には弁12が具備され、ろ過層2内の繊維ろ材の効率的な逆洗方法として、洗浄水を上向流で通水すると共に、空気の供給によって繊維ろ材に付着した懸濁物質の除去を容易にするものである。この場合も、繊維ろ材の密度が25kg/m以上とする。なお、必要に応じて、集水装置内に水位計13を設置し、水位計13の指示値に応じて弁12の開閉を制御する機構を設けてもよい。 FIG. 2 is a flow configuration diagram of another example for carrying out the present invention. In the upper part, an inlet pipe 4 for raw water to be treated, a drain pipe 9 for washing water, and a short fiber in the filtration tower. A filtration layer 2 filled with a lump-like fiber filter material, a treated water collection device 3, a supply pipe 6 for supplying air, a wash water flow pipe 8 for flowing in an upward flow, and a collection pipe at the lower part of the filtration tower. In the filtration tower 1, which includes a treated water outflow pipe 5 raised from the water device 3 to at least the upper part of the filtration layer and a drain pipe 7 for draining the liquid in the water collection device 3, Equipped with a valve 12, as an efficient backwashing method for the fiber filter media in the filtration layer 2, the wash water is passed in an upward flow, and the suspended substances attached to the fiber filter media can be easily removed by supplying air. It is to make. Also in this case, the density of the fiber filter medium is set to 25 kg / m 3 or more. If necessary, a water level meter 13 may be installed in the water collecting device, and a mechanism for controlling the opening and closing of the valve 12 according to the indicated value of the water level meter 13 may be provided.

原水は、導入管4を通して連続的に通水され、ろ過塔内に充填された繊維ろ材によってろ過される。ある程度の量の原水をろ過した繊維ろ材は、その内部や表面が懸濁物質に覆われているので、定期的、或いはろ過抵抗の上昇を検出して、洗浄工程に入る。洗浄は、ろ過塔下部から洗浄水の通水管8を通して洗浄水を供すると共に、空気供給管6を通して空気を供給する。洗浄水の上昇流速は、繊維ろ材の沈降速度等、膨張率等を勘案して決定されるが、概ね0.1〜5.0m/minの速度で通水される。また、通気速度も繊維ろ材に付着した懸濁物質が剥離する速度をとり、概ね0.1〜5.0m/minの速度で通気される。通水と通気は、同時又はどちらか一方、若しくはその組み合わせで実施され、連続的に実施しても、間欠的に実施しても、交互に実施してもよく、速度を早速くしたり遅くしたりするなどの変化を与えてもよい。特に、通水と通気を同時に行う場合は、懸濁物質の剥離と流出を同時に行うことができるので効率的である。剥離した懸濁物質を含む洗浄水は、ろ過塔上部に設置された洗浄水の排水管9を通して流出される。一定の時間の洗浄、若しくは、洗浄水中に含有される懸濁物質濃度を検出し、その検出値に応じて洗浄工程は終了となる。洗浄時間は、繊維ろ材に付着した懸濁物質が剥離する時間をとり、概ね3〜30minで実施される。   The raw water is continuously passed through the introduction pipe 4 and filtered by a fiber filter medium packed in the filtration tower. The fiber filter medium obtained by filtering a certain amount of raw water has its inside and surface covered with suspended solids, and therefore enters the washing process periodically or by detecting an increase in filtration resistance. In the cleaning, cleaning water is supplied from the lower part of the filtration tower through the cleaning water flow pipe 8 and air is supplied through the air supply pipe 6. The rising flow rate of the washing water is determined in consideration of the rate of expansion of the fiber filter medium and the like, and the expansion rate and the like. Further, the aeration speed is a speed at which the suspended substances adhering to the fiber filter material are peeled off, and the air is aerated at a speed of about 0.1 to 5.0 m / min. The water flow and the air flow are performed at the same time, or either, or a combination thereof, and may be performed continuously, intermittently, or alternately, and the speed may be increased or decreased. You may give changes such as. In particular, when water flow and ventilation are performed at the same time, it is efficient because the suspended substance can be peeled and discharged simultaneously. The wash water containing the separated suspended matter flows out through the drain pipe 9 of the wash water installed in the upper part of the filtration tower. Washing for a certain period of time or the concentration of suspended solids contained in the washing water is detected, and the washing process ends according to the detected value. The washing time takes a time for the suspended substances attached to the fiber filter material to peel off, and is generally performed for 3 to 30 minutes.

洗浄工程の後は、繊維ろ材の空気による圧密工程又は水による圧密工程に入る。通水や通気を停止すると、液中で膨張或いは流動していた繊維ろ材は沈降するが、ただ単に沈降させたのみでは前述したように、繊維ろ材の密度は十分でない。本発明によれば、水中に沈んだ繊維ろ材をより高密度に充填するために、空気による圧密工程又は水による圧密工程を実施する。なお、空気による圧密工程を実施した場合は、その後水による圧密工程を実施する。ここでも、繊維ろ材の密度は25kg/m以上なので、保水性がよく、繊維ろ材は良好に圧密される。
以上のように、図2に示すろ過装置は、懸濁物質を付着した繊維ろ材から懸濁物質を効率的に剥離、分離することが可能であり、またろ過中、常にろ過塔内の繊維ろ材を高密度な状態を保つことができ、良好な処理水質を得ることができる。また、繊維ろ材の密度が25kg/m以上であることから保水性がよく、繊維ろ材が十分高い密度となったろ過塔は、従来のただ単に、繊維ろ材を沈めた状態でろ過した方法に比べ、ろ過性能は高くなる。
After the washing step, the fiber filtration medium enters a consolidation step with air or a consolidation step with water. When the water flow or aeration is stopped, the fiber filter medium that has been expanded or fluidized in the liquid settles, but the density of the fiber filter medium is not sufficient by simply allowing the fiber filter medium to settle as described above. According to the present invention, in order to fill the fiber filter material submerged in water with a higher density, a compaction step with air or a compaction step with water is performed. In addition, when the compaction process by air is implemented, the compaction process by water is implemented after that. Also here, the density of the fiber filter medium is 25 kg / m 3 or more, so the water retention is good and the fiber filter medium is well consolidated.
As described above, the filtration device shown in FIG. 2 is capable of efficiently separating and separating the suspended material from the fiber filter material to which the suspended material is adhered, and always during the filtration, the fiber filter medium in the filtration tower. Can be kept in a high density state, and a good quality of treated water can be obtained. In addition, since the density of the fiber filter medium is 25 kg / m 3 or more, the water retention is good, and the filter tower in which the fiber filter medium has a sufficiently high density is simply a conventional method of filtering with the fiber filter medium submerged. In comparison, the filtration performance is high.

図3は、本発明を実施するための他の例のフロー構成図であり、図2のろ過装置に繊維ろ材の流出防止用の多孔部材10を設置している。繊維ろ材の逆洗工程における通水や通気過程では、繊維ろ材が洗浄水の排水管9から流出する懸念がある。特に通気過程では、繊維ろ材から懸濁物質を多く剥離しようすると通気速度が高くなり、この場合、空気の上昇流速にのって繊維ろ材が排水管9から流出してしまう場合があった。そのため、本発明では、繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さいな目開きを有する、繊維ろ材の流出阻止用多孔部材10を、排水管9から繊維ろ材が流出しないように水面に対して水平から垂直の任意の角度で設置する。流出防止用の多孔部材は、ステンレス製の各種の織方による網を用いたストレーナや、ウエッジワイヤ、バースクリーンなど各種の部材を用いることができるが、少なくとも目開きは、繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さくする。取り付け角度は、ろ過塔槽水面に水平に設置し、ろ過塔槽全面を覆うようなかたちでもよいし、洗浄水の排水管9付近に垂直方向あるは水平に対して任意の角度で設置してもよい。   FIG. 3 is a flow configuration diagram of another example for carrying out the present invention, and the porous member 10 for preventing the outflow of the fiber filter medium is installed in the filtration device of FIG. There is a concern that the fiber filter medium may flow out of the drain pipe 9 of the cleaning water during the water flow or ventilation process in the back washing process of the fiber filter medium. In particular, in the aeration process, if a large amount of suspended matter is peeled off from the fiber filter medium, the aeration speed increases. In this case, the fiber filter medium may flow out of the drain pipe 9 due to the rising air velocity. Therefore, in the present invention, the fiber filter medium flows out of the drain pipe 9 in the fiber filter medium outflow prevention porous member 10 having an opening smaller than the shortest length among the diameter of the fiber filter medium or the length of the straight line portion. Do not install the unit at any angle from horizontal to vertical with respect to the water surface. As the porous member for preventing outflow, various members such as a strainer using a mesh made of various stainless steel weaves, a wedge wire, a bar screen, etc. can be used, but at least the opening is the diameter of the fiber filter medium, or It is made smaller than the shortest length among the lengths of the straight portions. The mounting angle may be such that it is installed horizontally on the surface of the filtration tower and covers the entire surface of the filtration tower, or it is installed near the drain pipe 9 of the washing water in the vertical direction or at an arbitrary angle relative to the horizontal. Also good.

いずれにしても、繊維ろ材が、洗浄水の水流におされて多孔部材にへばりつくのを防止するために、多孔部材の水に接触している面積当たりの洗浄水の流速(水面積負荷ともいう)が10〜200m/hとなるような多孔部材を設置する。10m/h以下の水面積負荷の多孔部材では、過剰な設備であり、イニシャルコストが高く、200m/h以上の水面積負荷では、繊維ろ材が多孔部材にへばりつく。特に、逆洗工程で洗浄水の通水速度を可変で運転する場合は、前記の水面積負荷の範囲となるように洗浄水の供給速度を制御する機構を設けると良い。
本発明では、繊維ろ材の流出を懸念することなく、高速で通水、通気を実施することができ、従来に比べて大幅に洗浄時間が圧縮できると共に、洗浄効率があがり、続くろ過工程でのろ過性能が良好となる。無論、繊維ろ材が十分高い密度となっていることから、従来のただ単に、繊維ろ材を沈めた状態でろ過した方法に比べ、ろ過性能は高くなる。
In any case, the flow rate of the cleaning water per area in contact with the water of the porous member (also referred to as water area load) in order to prevent the fiber filter medium from being stuck to the porous member due to the flow of the cleaning water. ) Is provided with a porous member so as to be 10 to 200 m / h. A porous member with a water area load of 10 m / h or less is an excessive facility and has a high initial cost, and at a water area load of 200 m / h or more, the fiber filter material sticks to the porous member. In particular, when the washing water flow rate is varied in the backwashing step, it is preferable to provide a mechanism for controlling the supply rate of the washing water so that the water area load is within the above range.
In the present invention, water flow and aeration can be carried out at high speed without worrying about the outflow of the fiber filter medium, and the washing time can be greatly reduced as compared with the conventional case, and the washing efficiency is improved. Filtration performance is good. Of course, since the fiber filter medium has a sufficiently high density, the filtration performance becomes higher compared to the conventional method in which the filter medium is simply filtered with the fiber filter medium submerged.

図4は、本発明を実施するための他の例のフロー構成図であり、ろ過塔内の繊維ろ材の一部又は全てが、上下面及び側面が前記流出阻止用多孔部材10に囲まれた様態をしているろ過装置である。繊維ろ材の寿命は3〜10年程度であり、耐用年数を超えた繊維ろ材は、定期的或いは所定のろ過性能が得られなくなった時点で交換する。従来、ろ過塔槽内から繊維ろ材を排出する作業は大変な労力がかかり、交換にかかる費用は膨大となっていた。また、繊維ろ材を大型のろ過池に充填する際にも、その労力は膨大であった。本発明では、繊維ろ材の上下面及び側面が前記流出阻止用多孔部材に囲まれて一体化されており(以下囲いをコンテナともいう)、予め工場等でコンテナ内に繊維ろ材を所定量充填し、それをろ過池に吊り下ろす。また、繊維ろ材を交換する際にも、コンテナを引き上げるだけでよいので、交換にかかる労力は約1/2に低減される。コンテナの大きさは任意の大きさを取ることができるが、概ね一辺が0.5〜3mの直方体や立方体、また、袋状のものでもよい。これらのコンテナを数個ろ過池に設置する。   FIG. 4 is a flow configuration diagram of another example for carrying out the present invention, in which part or all of the fiber filter medium in the filtration tower is surrounded by the porous member 10 for preventing outflow on the upper and lower surfaces. It is the filtration apparatus which is in the form. The life of the fiber filter medium is about 3 to 10 years, and the fiber filter medium that has exceeded the service life is replaced periodically or when a predetermined filtration performance cannot be obtained. Conventionally, the work of discharging the fiber filter medium from the inside of the filtration tower tank takes a lot of labor, and the cost for replacement has been enormous. In addition, when filling a fiber filter medium into a large filter basin, the labor was enormous. In the present invention, the upper and lower surfaces and side surfaces of the fiber filter medium are integrated by being surrounded by the porous member for preventing outflow (hereinafter, the enclosure is also referred to as a container), and a predetermined amount of the fiber filter medium is previously filled in the container at a factory or the like. , Hang it on the filter pond. In addition, when replacing the fiber filter medium, it is only necessary to pull up the container, so that the labor required for the replacement is reduced to about ½. The size of the container can be any size, but it may be a rectangular parallelepiped or cube having a side of approximately 0.5 to 3 m, or a bag. Several of these containers will be installed in the filtration basin.

コンテナは、繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さいな目開きを有する多孔部材なので、ろ過塔内に設置されたコンテナはそのままの状態でろ過できる。コンテナ内の繊維ろ材の充填量は任意の量を充填することができるが、逆洗工程における通水、通気による繊維ろ材の流動をよくするために、少なくとも上部50cm程度は自由空間があるのが好ましい。
無論、逆洗工程の終了時には、空気による圧密工程と水による圧密工程、又は水による圧密工程を実施し、繊維ろ材を圧密する。
Since the container is a porous member having an opening smaller than the shortest length of the diameter of the fiber filter medium or the length of the straight line portion, the container installed in the filtration tower can be filtered as it is. The filling amount of the fiber filter medium in the container can be filled in an arbitrary amount, but in order to improve the flow of the fiber filter medium due to water flow and aeration in the backwashing process, there is at least an upper space of about 50 cm. preferable.
Of course, at the end of the backwashing process, a compaction process with air and a compaction process with water, or a compaction process with water are performed to compact the fiber filter medium.

図5は、本発明を実施するための他の例のフロー構成図であり、上部に、処理されるべき原水の導入管4と、洗浄水の排水管9と、ろ過塔内に短繊維小塊状の繊維を充填したろ過層2と、下部に、処理水の集水装置3と、空気を供給する供給管6と、上向流で通水する洗浄水の通水管8と、集水装置3から少なくともろ過層2上部以上に立ち上げられた処理水流出管5とを備え、また、ろ過層2内の一部の液体を排水するための中間排水管11を備えたろ過塔において、ろ過塔1内の繊維ろ材に付着した固形物を剥離する洗浄工程、前記洗浄工程の後に、ろ過塔内の繊維ろ材を圧密させるために、ろ過塔底部より空気を供給する圧密工程、更に、繊維ろ材を圧密させるために、空気による圧密工程の後に、ろ過塔底部に設けられた排水管12を通して、ろ過塔内の液の一部を排水する水による圧密工程を設けている。   FIG. 5 is a flow configuration diagram of another example for carrying out the present invention. In the upper part, an inlet pipe 4 for raw water to be treated, a drain pipe 9 for washing water, and a small amount of short fibers in a filter tower are shown. Filtration layer 2 filled with massive fibers, treated water collection device 3 at the bottom, supply tube 6 for supplying air, wash water flow tube 8 for upflow, and water collection device 3 and at least the upper part of the filtration layer 2 and the treated water outflow pipe 5, and a filtration tower having an intermediate drain pipe 11 for draining a part of the liquid in the filtration layer 2. A washing step for peeling off the solid matter adhering to the fiber filter medium in the tower 1, a consolidation process for supplying air from the bottom of the filtration tower in order to consolidate the fiber filter medium in the filtration tower after the washing process, and a fiber filter medium In order to consolidate the water, the drain pipe 12 provided at the bottom of the filtration tower after the air compaction step. Through, it is provided with a consolidation step by the water to drain some of the liquid in the filtration tower.

洗浄方法は、空気供給管6より空気を供給したり、洗浄水の通水管8を通して、二次処理水や工業用水、市水、ろ過原水など任意の洗浄水を用いて洗浄する。洗浄した洗浄廃水は、洗浄水の排水管9を通して排水する。洗浄水の上昇流速は、繊維ろ材の沈降速度等、膨張率等を勘案して決定されるが、概ね0.1〜5.0m/minの速度で通水される。また、通気速度も、繊維ろ材に付着した懸濁物質が剥離する速度をとり、概ね0.1〜5.0m/minの速度で通気される。通水と通気は、同時又はどちらか一方、若しくはその組み合わせで実施され、連続的に実施しても、間欠的に実施しても、交互に実施してもよく、速度を早くしたり遅くしたりするなどの変化を与えてもよい。特に、通水と通気を同時に行う場合は、懸濁物質の剥離と流出を同時に行うことができるので効率的である。洗浄時間は、繊維ろ材に付着した懸濁物質が剥離する時間をとり、概ね3〜30minで実施される。   In the cleaning method, air is supplied from the air supply pipe 6 or the cleaning water flow pipe 8 is used for cleaning using any cleaning water such as secondary treated water, industrial water, city water, or filtered raw water. The cleaned cleaning wastewater is drained through a drain pipe 9 for cleaning water. The rising flow rate of the washing water is determined in consideration of the rate of expansion of the fiber filter medium and the like, and the expansion rate and the like. Further, the aeration speed is a speed at which the suspended substances attached to the fiber filter material are peeled off, and the air is ventilated at a speed of about 0.1 to 5.0 m / min. The water flow and the air flow are performed at the same time, or either, or a combination thereof, and may be performed continuously, intermittently, or alternately, and the speed may be increased or decreased. You may give changes such as. In particular, when water flow and ventilation are performed at the same time, it is efficient because the suspended substance can be peeled and discharged simultaneously. The washing time takes a time for the suspended substances attached to the fiber filter material to peel off, and is generally performed for 3 to 30 minutes.

続く、空気による圧密工程では、前述したように操作を行う。空気による圧密工程では、ろ過層底部が圧密するので、後は水による圧密工程でろ過層底部以外を圧密すればよい。水による圧密工程では、ろ過塔底部に設けられた排水管13を通して、空気による圧密工程で圧密しなかったろ過層底部以外の部分の水位を低下させる。例えば、空気による圧密工程で圧密されたろ過層底部が、ろ過層全体の40%程度とすると、水による圧密工程で低下させる水位は、ろ過層全体の60%以上がよい。このようにすることで、空気による圧密工程ではろ過層底部を、水による圧密工程ではそれ以外の部分を圧密することで、両者を合わせれば層全体が圧密している状態となる。この効果としては、圧密工程における排水量を減少させることができる。   In the subsequent consolidation step with air, the operation is performed as described above. In the air compaction step, the bottom of the filtration layer is compacted, and thereafter, it is only necessary to consolidate other than the bottom of the filtration layer in the water compaction step. In the consolidation step with water, the water level in the portion other than the bottom of the filtration layer that has not been consolidated in the consolidation step with air is lowered through the drain pipe 13 provided at the bottom of the filtration tower. For example, if the bottom of the filtration layer consolidated in the air consolidation step is about 40% of the entire filtration layer, the water level lowered in the water consolidation step is preferably 60% or more of the entire filtration layer. By doing in this way, in the consolidation process by air, the bottom part of the filtration layer is consolidated, and in the consolidation process by water, the other part is consolidated, and if both are combined, the entire layer is consolidated. As this effect, the amount of drainage in the consolidation process can be reduced.

以下、本発明を実施例及び参考例により、具体的に説明する。
参考例1
図1に示すφ160mmのろ過装置を用いて、繊維ろ材(密度90kg/m)を用いたろ過を行った。繊維ろ材は、真比重1.38のポリエチレンテレフタレート(PET)であり、製造方法は、ニードルパンチ製法で熱処理を施し製造したフェルトを10mm角に切断した。予めろ過塔内には、繊維ろ材を20L分(見掛け容積)充填した。原水の供給を通水速度1000m/dで2時間行った後、洗浄工程に移行した。洗浄工程は、ろ過塔底部より空気を1.5m/minで通気し、約10min供給することで、繊維ろ材に付着した懸濁物質を剥離させた。次いで、原水を供給すると共に、処理水流出管5から剥離させた懸濁物質を排出した。懸濁物質の排出後の、液中の繊維ろ材の充填高さは1200mmであった(水位はろ過層の上面より100mm高い位置にあった)。次ぎの圧密工程では、ろ過塔内の液を排出管7を通して全量排水した。このとき、繊維ろ材の充填高さは900mmであり、繊維ろ材を圧密することができた。続いて、ろ過を開始したところ、30分後の、原水の懸濁物質(SSともいう)濃度10mg/Lに対して処理水のSSは2mg/L、SS除去率は80%であり良好な処理性能を得ることができた。
Hereinafter, the present invention will be specifically described with reference to Examples and Reference Examples.
Reference example 1
Filtration using a fiber filter medium (density 90 kg / m 3 ) was performed using a φ160 mm filtration device shown in FIG. The fiber filter material was polyethylene terephthalate (PET) having a true specific gravity of 1.38, and the manufacturing method was to cut a 10 mm square of the felt manufactured by heat treatment by the needle punch manufacturing method. The filter tower was previously filled with 20 L of fiber filter material (apparent volume). After supplying raw water at a water velocity of 1000 m / d for 2 hours, the process shifted to a washing step. In the washing step, air was aerated from the bottom of the filtration tower at a rate of 1.5 m / min and supplied for about 10 minutes to peel off the suspended substances attached to the fiber filter medium. Subsequently, the raw water was supplied, and the suspended substance separated from the treated water outflow pipe 5 was discharged. After discharging the suspended solids, the filling height of the fiber filter medium in the liquid was 1200 mm (the water level was 100 mm higher than the upper surface of the filtration layer). In the next consolidation step, all of the liquid in the filtration tower was drained through the discharge pipe 7. At this time, the filling height of the fiber filter medium was 900 mm, and the fiber filter medium could be consolidated. Subsequently, when filtration was started, the SS of the treated water was 2 mg / L and the SS removal rate was 80% with respect to the concentration of suspended solids (also referred to as SS) of 10 mg / L after 30 minutes. Processing performance could be obtained.

参考例2
この参考例は、繊維ろ材(ポリエチレンテレフタレート、10mm角、製造は参考例1と同様)の密度を40kg/mとしたこと以外参考例1と同じにした。圧密工程で、ろ過塔内の液を全量排出した後の繊維ろ材の充填高さは1000mmであった。ろ過を開始したところ、30分後の、原水のSS濃度10mg/Lに対して処理水のSSは4mg/L、SS除去率は60%であった。
Reference example 2
This Reference Example was the same as Reference Example 1 except that the density of the fiber filter medium (polyethylene terephthalate, 10 mm square, production was the same as Reference Example 1) was 40 kg / m 3 . In the consolidation step, the filling height of the fiber filter material after discharging the entire amount of the liquid in the filtration tower was 1000 mm. When filtration was started, 30 minutes later, the SS of the treated water was 4 mg / L and the SS removal rate was 60% with respect to the SS concentration of raw water of 10 mg / L.

参考例3
この参考例は、繊維ろ材(ポリエチレンテレフタレート、10mm角、製造は参考例1と同様)の密度を25kg/mとしたこと以外参考例1と同じにした。圧密工程で、ろ過塔内の液を全量排出した後の繊維ろ材の充填高さは1050mmであった。ろ過を開始したところ、30分後の、原水のSS濃度10mg/Lに対して処理水のSSは5mg/L、SS除去率は50%であった。
Reference example 3
This Reference Example was the same as Reference Example 1 except that the density of the fiber filter medium (polyethylene terephthalate, 10 mm square, production was the same as Reference Example 1) was 25 kg / m 3 . The filling height of the fiber filter material after discharging the entire amount of the liquid in the filtration tower in the consolidation step was 1050 mm. When filtration was started, the SS of the treated water was 5 mg / L and the SS removal rate was 50% with respect to the SS concentration of 10 mg / L of the raw water 30 minutes later.

比較例1
この比較例は、参考例1の比較例である。繊維ろ材(ポリエチレンテレフタレート、10mm角、製造は参考例1と同様)の密度を8kg/mとしたこと以外参考例1と同じにした。圧密工程で、ろ過塔内の液を全量排出しても、繊維ろ材の充填高さは1200mmであり、ほとんど圧密効果は無かった。続いて、ろ過を開始したところ、30分後の、原水のSS濃度10mg/Lに対して処理水のSSは6mg/L、SS除去率は40%であり、処理性能が参考例1に比べ低かった。この理由としては、ろ過層が十分圧密しておらず、空隙が多くSSがリークしやすい状態であったと考察できる。
Comparative Example 1
This comparative example is a comparative example of Reference Example 1. The same as Reference Example 1 except that the density of the fiber filter medium (polyethylene terephthalate, 10 mm square, production is the same as in Reference Example 1) was 8 kg / m 3 . Even when the entire amount of the liquid in the filtration tower was discharged in the consolidation step, the filling height of the fiber filter medium was 1200 mm, and there was almost no consolidation effect. Subsequently, was started filtration, after 30 minutes, SS in the treated water with respect to SS concentration 10 mg / L of raw water is 6 mg / L, SS removal rate of 40%, performance is compared with the reference example 1 It was low. The reason for this can be considered that the filtration layer is not sufficiently consolidated, and there are many voids and SS is likely to leak.

実施例
実施例は、図1の実施例である。参考例1に、空気による圧密工程を設けた装置で実施した。参考例1と同様な洗浄工程のあと、空気による圧密工程では、空気を2m/minで供給することでろ過層底部の繊維ろ材を圧密した。次いで水による圧密工程では、ろ過塔底部よりろ過層内の液を全量排水した。洗浄工程終了時の繊維ろ材の充填高さは1200mm、空気による圧密工程終了時は1050mm、水による圧密工程終了時は900mmであり、圧密の効果が確認できた。続いてろ過を開始したところ、30分後の、原水の懸濁物質(SSともいう)濃度10mg/Lに対して処理水のSSは2mg/Lであり良好な処理性能を得ることができた。なお、水による圧密工程の排水量は20Lであった。
Example 1
Example 1 is an example of FIG. It was carried out in an apparatus provided with a consolidation process with air in Reference Example 1. After the cleaning step similar to that in Reference Example 1, in the compaction step with air, the fiber filter medium at the bottom of the filtration layer was compacted by supplying air at 2 m / min. Next, in the consolidation step with water, the entire amount of the liquid in the filtration layer was drained from the bottom of the filtration tower. The filling height of the fiber filter medium at the end of the washing process was 1200 mm, 1050 mm at the end of the air compaction process, and 900 mm at the end of the water compaction process, confirming the effect of consolidation. Subsequently, when filtration was started, the SS of the treated water was 2 mg / L with respect to the concentration of suspended solids (also referred to as SS) 10 mg / L after 30 minutes, and good treatment performance could be obtained. . In addition, the amount of drainage of the consolidation process with water was 20L.

実施例
実施例は、図5のろ過装置を用いた実施例である。実施例に、水による圧密工程の排水を中間排水管11を用いたこと以外実施例と同様である。洗浄工程は、洗浄水を洗浄水の通水管8から1m/minで通水すると共に、空気供給管6より空気を1.5m/minで10min洗浄した。洗浄廃水は、洗浄水の排水管9を通して排水した。洗浄工程のあと、空気による圧密工程では、空気を2m/minで供給することでろ過層底部の繊維ろ材を圧密した。次いで、水による圧密工程では、中間排水管11からろ過層中部までの排水を行うことで、ろ過層中部以上の繊維ろ材の圧密を行った。排水量は10Lであり、実施例に比べて半分の排水量であった。続いてろ過を開始したところ、30分後の、原水の懸濁物質(SSともいう)濃度10mg/Lに対して処理水のSSは2mg/Lであり良好な処理性能を得ることができた。
Example 2
Example 2 is an example using the filtration device of FIG. Example 1 is the same as in Example 1 except that the drainage consolidation step using an intermediate drainage pipe 11 with water. In the washing step, washing water was passed through the washing water passage pipe 8 at 1 m / min and air was washed from the air supply pipe 6 at 1.5 m / min for 10 minutes. The washing waste water was drained through a drain pipe 9 for washing water. In the consolidation step with air after the washing step, the fiber filter medium at the bottom of the filtration layer was consolidated by supplying air at 2 m / min. Next, in the compaction step with water, the fiber filter medium in the middle of the filtration layer was consolidated by draining from the intermediate drain pipe 11 to the middle of the filtration layer. The amount of drainage was 10 L, which was half that of Example 1 . Subsequently, when filtration was started, the SS of the treated water was 2 mg / L with respect to the concentration of suspended solids (also referred to as SS) 10 mg / L after 30 minutes, and good treatment performance could be obtained. .

実施例
図2に示すろ過装置を用いてろ過試験を実施した。原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は処理水流出管5から連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、空気供給管6から空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材からSSを剥離した。その後、洗浄水の通水管8から洗浄水を供給し、洗浄水の排水管9よりSSを含む洗浄水を排出させた。通気速度は1.5m/min、通水速度は1.0m/minとした。以上の逆洗工程を5回繰り返した後、排出管7より弁12を開くことでろ過塔内の洗浄水を排水し、集水装置内の水位が400mmとなったのを圧力式の水位計13が検知したら、弁12を閉める信号を出した。さらに、その後、洗浄水の通水管8から洗浄水を供給し、繊維ろ材を浸漬させたのち、ろ過を再開した。なお、逆洗時の通水終了後の繊維ろ材の充填高さは1200mm、ろ過再開時の繊維ろ材の充填高さは900mmであった。また、逆洗時間は90分であり、排出管Cを通してろ材の流出が見られた。
1週間後のろ過性能は、原水のSS濃度10mg/Lに対して、処理水のSSは3mg/Lであった。
Example 3
A filtration test was performed using the filtration apparatus shown in FIG. The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe 5. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, air was supplied from the air supply pipe 6, the fiber filter medium to which SS adhered was shaken, and the SS was peeled off from the fiber filter medium. Thereafter, the cleaning water was supplied from the cleaning water flow pipe 8, and the cleaning water containing SS was discharged from the cleaning water drain pipe 9. The aeration rate was 1.5 m / min and the water flow rate was 1.0 m / min. After repeating the above backwashing process five times, the washing water in the filtration tower is drained by opening the valve 12 from the discharge pipe 7, and the water level in the water collecting device becomes 400 mm. When 13 was detected, a signal for closing the valve 12 was issued. Furthermore, after that, the washing water was supplied from the washing water flow pipe 8 to immerse the fiber filter medium, and then the filtration was resumed. In addition, the filling height of the fiber filter material after completion of water flow at the time of backwashing was 1200 mm, and the filling height of the fiber filter material at the time of resuming filtration was 900 mm. Further, the backwash time was 90 minutes, and outflow of the filter medium was seen through the discharge pipe C.
The filtration performance after 1 week was 3 mg / L for SS of treated water against SS concentration of 10 mg / L for raw water.

実施例
図3に示すろ過装置を用いて連続ろ過試験を実施した。繊維ろ材の流出阻止用の多孔部材10がある以外図2に示すろ過装置と同じである。なお、繊維ろ材流出阻止用の多孔部材10のスリット幅は5mmであった。原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は、処理水流出管5から連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、空気供給管6から空気を供給すると共に、洗浄水の通水管8から洗浄水を供給し、洗浄水の排水管9よりSSを含む洗浄水を排出させた。通気速度は1.5m/min、通水速度は1.0m/minとした。約8分逆洗を実施した後、排出管7より弁12を開くことでろ過塔内の洗浄水を排水し、集水装置内の水位が400mmとなったのを圧力式の水位計13が検知したら、弁12を閉める信号を出した。その後、ろ過を再開した。なお、逆洗時の通水終了後の繊維ろ材の充填高さは1200mm、ろ過再開時の繊維ろ材の充填高さは900mmであった。また、逆洗時間全体は15分、水抜き時間は4分であった。
1週間後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは2mg/Lであった。また、繊維ろ材の流出は全く無かった。実施例に比べて、逆洗時間が短くなり、洗浄効果が上がったことから水質が良好であった。
Example 4
A continuous filtration test was performed using the filtration apparatus shown in FIG. 2 is the same as the filtration apparatus shown in FIG. 2 except that there is a porous member 10 for preventing the outflow of the fiber filter medium. The slit width of the porous member 10 for preventing outflow of the fiber filter medium was 5 mm. The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe 5. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, air was supplied from the air supply pipe 6, cleaning water was supplied from the cleaning water flow pipe 8, and the cleaning water containing SS was discharged from the cleaning water drain pipe 9. The aeration rate was 1.5 m / min and the water flow rate was 1.0 m / min. After back washing for about 8 minutes, the valve 12 is opened from the discharge pipe 7 to drain the washing water in the filtration tower, and the water level in the water collecting device is 400 mm. When detected, a signal for closing the valve 12 was issued. Thereafter, filtration was resumed. In addition, the filling height of the fiber filter material after completion of water flow at the time of backwashing was 1200 mm, and the filling height of the fiber filter material at the time of resuming filtration was 900 mm. The total backwash time was 15 minutes, and the drainage time was 4 minutes.
The filtration performance after one week was 2 mg / L for the SS of the treated water with respect to the SS concentration of 10 mg / L for the raw water. Further, there was no outflow of fiber filter media. Compared to Example 3 , the backwash time was shortened and the cleaning effect was improved, so the water quality was good.

実施例
図4に示すろ過装置を用いてろ過試験を実施した。繊維ろ材全体が、多孔部材10で囲まれている以外、参考例1と同じである。なお、繊維ろ材流出阻止用の多孔部材10のスリット幅は5mmであった。ろ過塔内に新規に繊維ろ材を充填する時間は、参考例1が10分であったのに対し、この実施例では3分であった。繊維ろ材の全部が多孔部材に囲まれているので、コンテナを浸水するだけでよく、作業時間が圧倒的に少なくてすんだ。なお、ろ過性能は参考例1と同様であった。
Example 5
A filtration test was performed using the filtration apparatus shown in FIG. Except that the entire fiber filter medium is surrounded by the porous member 10, it is the same as Reference Example 1. The slit width of the porous member 10 for preventing outflow of the fiber filter medium was 5 mm. The time for newly filling the filter medium in the filtration tower was 10 minutes in Reference Example 1, but 3 minutes in this Example. Since the entire fiber filter medium is surrounded by a porous member, it is only necessary to submerge the container, and the work time is overwhelmingly reduced. The filtration performance was the same as in Reference Example 1.

本発明を実施するための一例を示すフロー構成図The flow block diagram which shows an example for implementing this invention 本発明を実施するための他の例を示すフロー構成図The flow block diagram which shows the other example for implementing this invention 本発明を実施するための他の例を示すフロー構成図The flow block diagram which shows the other example for implementing this invention 本発明を実施するための他の例を示すフロー構成図The flow block diagram which shows the other example for implementing this invention 本発明を実施するための他の例を示すフロー構成図The flow block diagram which shows the other example for implementing this invention

1:ろ過塔、2:ろ過層、3:集水装置、4:原水の導入管、5:処理水流出管、6:空気供給管、7:排出管、8:洗浄水の通水管、9:洗浄水の排水管、10:流出阻止用多孔部材、11:立上げ排出管、12,14:弁、13:水位計   1: Filtration tower, 2: Filtration bed, 3: Water collecting device, 4: Raw water introduction pipe, 5: Treated water outflow pipe, 6: Air supply pipe, 7: Discharge pipe, 8: Wash water flow pipe, 9 : Drain pipe for washing water, 10: Porous member for preventing outflow, 11: Startup discharge pipe, 12, 14: Valve, 13: Water level gauge

Claims (4)

短繊維自体の繊維長が5〜100mmの短繊維小塊状の繊維ろ材を充填したろ過塔を用いた懸濁水のろ過方法において、前記繊維ろ材は、密度が25kg/m以上であり、ろ過処理後に以下の3工程を行うことを特徴とする懸濁水のろ過方法。
(1)前記ろ過塔底部より空気と洗浄水を供給すると共に、該ろ過塔上部より前記繊維ろ材から剥離した固形物を排出する、ろ過塔内の繊維ろ材に付着した固形物を剥離する洗浄工程、
(2)前記洗浄工程の後に、前記ろ過塔内の繊維ろ材全体が浸水した状態で、ろ過塔内の繊維ろ材を圧密させるために前記ろ過塔底部より空気を供給する空気による圧密工程、
(3)更に、前記空気による圧密工程の後に、前記ろ過塔底部からろ過塔内の繊維ろ材と繊維ろ材の空隙にある液を全量又は一部を排水することで繊維ろ材を圧密させる水による圧密工程。
In the method for filtering suspended water using a filtration tower packed with short fiber lumps of fiber filter medium having a short fiber length of 5 to 100 mm, the fiber filter medium has a density of 25 kg / m 3 or more, and is subjected to filtration treatment. A method for filtering suspended water, comprising performing the following three steps later.
(1) A washing step of peeling off the solid matter attached to the fiber filter medium in the filtration tower, supplying air and washing water from the bottom of the filtration tower and discharging the solid substance peeled off from the fiber filter medium from the top of the filtration tower. ,
(2) After the washing step, in a state where the entire fiber filter medium in the filtration tower is submerged, a consolidation process by air supplying air from the bottom of the filtration tower in order to consolidate the fiber filter medium in the filtration tower,
(3) Furthermore, after the step of compacting with air, compaction with water that compacts the fiber filter medium by draining all or part of the liquid in the gap between the fiber filter medium and the fiber filter medium in the filter tower from the bottom of the filter tower. Process.
請求項記載の懸濁水のろ過方法に用いるろ過装置であって、上部に、処理される原水の導入管と、洗浄水の排水管と、内部に密度が25kg/m以上の短繊維小塊状の繊維ろ材を充填したろ過層と、下部に、処理水の集水装置と、ろ過層に空気を供給する供給管と、前記ろ過層に上向流で通水する洗浄水の通水管と、前記集水装置からろ過層上部以上に立ち上げられた処理水流出管と、前記集水装置からろ過層内の全部又は一部の液を排水するための排出管、又は、前記集水装置からろ過層内の一部の液を排水するためのろ過層中間まで立上げられた管とを備えたろ過塔を有することを特徴とするろ過装置。 It is a filtration apparatus used for the filtration method of suspension water of Claim 1 , Comprising: At the upper part, the introduction pipe | tube of the raw | natural water processed, the drainage pipe | tube of a wash water, and the inside of a short fiber with a density of 25 kg / m < 3 > or more inside A filtration layer filled with massive fiber filter material, a treated water collecting device at the bottom, a supply pipe for supplying air to the filtration layer, and a wash water flow pipe for flowing upward through the filtration layer A treated water outflow pipe set up above the filtration layer from the water collection device, a discharge pipe for draining all or part of the liquid in the filtration layer from the water collection device , or the water collection device Kararo filtration apparatus characterized in that it comprises a filtration column and a part of the liquid emissions tubes is raised to the filtration layer intermediate for draining of the over layer. 前記ろ過塔上部には、前記繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さい目開きを有する前記繊維ろ材の流出阻止用多孔部材を、前記ろ過塔上部に設けた前記繊維ろ材の洗浄水の排水管の上流側に設置したことを特徴とする請求項記載のろ過装置。 In the upper part of the filtration tower, a porous member for preventing the outflow of the fiber filter medium having an opening smaller than the shortest length among the diameter of the fiber filter medium or the length of the straight part is provided in the upper part of the filtration tower. The filtration apparatus according to claim 2 , wherein the filtration apparatus is installed upstream of a drain pipe for washing water of the fiber filter medium. 前記ろ過塔内のろ過層は、その一部又は全てが、上下面及び側面を前記流出阻止用多孔部材に囲まれて一体化していることを特徴とする請求項記載のろ過装置。 4. The filtration apparatus according to claim 3 , wherein a part or all of the filtration layer in the filtration tower is integrated with the upper and lower surfaces and side surfaces surrounded by the outflow prevention porous member.
JP2010086157A 2010-04-02 2010-04-02 Suspended water filtration method and filtration apparatus Active JP5319592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086157A JP5319592B2 (en) 2010-04-02 2010-04-02 Suspended water filtration method and filtration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086157A JP5319592B2 (en) 2010-04-02 2010-04-02 Suspended water filtration method and filtration apparatus

Publications (2)

Publication Number Publication Date
JP2011212645A JP2011212645A (en) 2011-10-27
JP5319592B2 true JP5319592B2 (en) 2013-10-16

Family

ID=44942956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086157A Active JP5319592B2 (en) 2010-04-02 2010-04-02 Suspended water filtration method and filtration apparatus

Country Status (1)

Country Link
JP (1) JP5319592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054226B2 (en) * 2013-03-29 2016-12-27 三井造船株式会社 Draft measurement device and draft measurement method
JP6001486B2 (en) * 2013-03-29 2016-10-05 三井造船株式会社 Ship loading load calculation system and ship loading load calculation method
JP6889004B2 (en) * 2017-03-31 2021-06-18 帝人フロンティア株式会社 Water treatment filter media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785767B2 (en) * 1993-03-09 1995-09-20 栄一 吉田 Filtration device
JPH09234309A (en) * 1996-03-01 1997-09-09 Suido Kiko Kaisha Ltd Filter bed compression method, filtering method and filtering apparatus

Also Published As

Publication number Publication date
JP2011212645A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
CN105036298B (en) For the method and system filtered and cake layer is formed
CN105040804B (en) Separated rainwater drainage system tail end floating type filter device
JP5319592B2 (en) Suspended water filtration method and filtration apparatus
JP3698678B2 (en) Fine sand slow filtration equipment
JP5748338B2 (en) Suspended water filtration apparatus and method
JP2003080007A (en) Method and apparatus for flocculation and settling
JP3436947B2 (en) Suspension filtration equipment
JP6660730B2 (en) Solid recovery system and method of operating solid recovery system
JP3779634B2 (en) Long fiber filtration device
JP3895064B2 (en) Aggregation floc storage and collection device, aggregation filtration device, and aggregation floc capture and recovery method
JP2799376B2 (en) High-speed filter
JP4203255B2 (en) Downflow filtration device and downflow filtration method
JP2010131472A (en) Apparatus and method for concentrating backwash effluent in membrane filtration
JP3132118B2 (en) Suspended solids removal device
JP2014046307A (en) Sand filter and sand filtration processing method using the same
JP2012096222A (en) Filtering apparatus and filtering method
KR101938134B1 (en) Indefinite form filter medium layer and filter device provided with same
JPH10202281A (en) Waste water treating device
JP2004188265A (en) High-speed filtering arrangement using fibrous filter medium
JPH10305204A (en) Cleaning method of fiber filter material
JP4513390B2 (en) Moving bed filter
JP2003299909A (en) Ascending flow filter apparatus and ascending flow filter method
JPH0299109A (en) Apparatus for separating suspended solids
JPH0352607A (en) Water treatment device
JP4599876B2 (en) Moving bed filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250