JP2012096222A - Filtering apparatus and filtering method - Google Patents

Filtering apparatus and filtering method Download PDF

Info

Publication number
JP2012096222A
JP2012096222A JP2011218872A JP2011218872A JP2012096222A JP 2012096222 A JP2012096222 A JP 2012096222A JP 2011218872 A JP2011218872 A JP 2011218872A JP 2011218872 A JP2011218872 A JP 2011218872A JP 2012096222 A JP2012096222 A JP 2012096222A
Authority
JP
Japan
Prior art keywords
filtration
filter medium
fiber
water
fiber filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011218872A
Other languages
Japanese (ja)
Inventor
Kazuaki Shimamura
和彰 島村
Masahide Suzuki
正英 鈴木
Takanori Nishii
啓典 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011218872A priority Critical patent/JP2012096222A/en
Publication of JP2012096222A publication Critical patent/JP2012096222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filtering apparatus and a filtering method by which the fray of a fiber can be prevented and a high removal rate of suspended matter can be stably and continuously obtained for a long time.SOLUTION: The filtering apparatus includes a filtration tower 1 which has a filtering layer 2 formed of a fiber filter medium inside and a treated water collecting device 3 below the layer, the introduction pipe A of raw water to be treated at the upper part of the tower, an air supply pipe D at the lower part of the tower and a treated water outflow pipe F erected from the device 3 to the upper part of the layer 2. In this filtering apparatus, the fiber filter medium has a structure where both end parts are welded. The fiber filter medium is formed of two aggregates of the fiber and of a complex thermoplastic fiber having a core-clad structure or is formed of an aggregate of the fiber and a thermoplastic fiber and is aligned in a fiber direction. Further a porous member 4 for preventing outflow of the filter medium can be provided at the upper part of the filtering layer 2 in the filtration tower 1 and a drain pipe C can be provided at the upper part of the filtration tower and a water flow pipe E can be provided at the lower part thereof.

Description

本発明は、下水、工場排水、用水などの懸濁粒子を含有する懸濁水の高速ろ過分離方法及び装置に関し、懸濁水(以下「原水」ともいう)中の懸濁粒子を高速度でろ過除去できる技術に関する。本発明は、特に下水処理施設に流入する下水の高速固液分離技術、又は有機性の懸濁粒子を含有する合流式下水道の雨天時越流水(CSOと略称される)、又は各種産業排水、用水処理として極めて好適な革新技術である。   The present invention relates to a high-speed filtration separation method and apparatus for suspended water containing suspended particles such as sewage, industrial wastewater, and irrigation water, and removes suspended particles in suspended water (hereinafter also referred to as “raw water”) at high speed. It relates to the technology that can. In particular, the present invention is a high-speed solid-liquid separation technique for sewage flowing into a sewage treatment facility, or a combined sewer rainwater overflow (abbreviated as CSO) containing organic suspended particles, or various industrial wastewater, It is an innovative technology that is extremely suitable for water treatment.

最近合流式下水道における雨天時越流水(CSO)の公共用水域への汚濁負荷が大きな問題になっている。また、下水処理施設に流入する下水は、まず最初沈殿池で沈殿分離されたのち、活性汚泥処理されるが、最初沈殿池におけるSSの除去率が悪いため、凝集剤を添加して凝集沈殿処理する例が北欧で普及している。しかし、この方法は、汚泥発生量が多く、凝集沈殿速度が小さく、大きな沈殿池を必要とする欠点がある。そのためCSO及び下水を極力コンパクトな設備で固液分離できる新技術が待望されている。
従来、アンスラサイト、砂、各種粒状固体(例えば粒状プラスチック)のビーズ系をろ材とするろ過法が検討されている。例えば、下水処理分野では、活性汚泥処理水のような比較的粒径の大きな懸濁物質が対象に、前述のアンスラサイト、砂などを用いてろ過を行うことが多い。この場合、排水の通水速度としては100〜500m/dで行うことが多い。
Recently, the pollution load on public water areas of rainwater overflow (CSO) in a combined sewer has become a major problem. In addition, the sewage flowing into the sewage treatment facility is first precipitated and separated in the sedimentation basin and then treated with activated sludge. However, since the SS removal rate in the first sedimentation basin is poor, a coagulant is added to the flocculation sedimentation treatment. An example of this is prevalent in Scandinavia. However, this method has a drawback that a large amount of sludge is generated, the coagulation sedimentation rate is small, and a large sedimentation basin is required. Therefore, a new technology capable of solid-liquid separation of CSO and sewage with as much compact equipment as possible is expected.
Conventionally, a filtration method using a bead system of anthracite, sand, and various granular solids (for example, granular plastic) as a filter medium has been studied. For example, in the sewage treatment field, filtration is often performed using the above-mentioned anthracite, sand, etc., for a suspended substance having a relatively large particle size such as activated sludge treated water. In this case, the drainage flow rate is often 100 to 500 m / d.

また、通水速度を上げるために、ろ材粒径を大きくして目詰まりを少なくする場合があるが、この場合、SSの除去率が悪化してしまうなどの問題点が生じた。特に、下水などが含む有機性SSは粘着力が強いので、これら下水などを対象としてSS除去率が高く、かつ目詰まりが少ないという相反する要求を満足できる技術が要望されている。
上記のビーズ系のろ材に代わる方法として、例えば、特公昭62−55885号公報や特開平10−305204号公報では、繊維長5〜50mmの有機繊維からなる短繊維をからみ合わせた多数の繊維塊をろ材にしてろ過する装置がある。このろ材を用いたろ過装置は、懸濁物質を含む排水を処理する際に、600m/d以上の高速でろ過を行うことができる。
Further, in order to increase the water flow rate, the filter medium particle size may be increased to reduce clogging, but in this case, problems such as deterioration of the SS removal rate have occurred. In particular, since organic SS contained in sewage and the like has a strong adhesive force, there is a demand for a technology that can satisfy the conflicting requirement that SS removal rate is high and clogging is small for sewage and the like.
As an alternative to the above-mentioned bead-based filter media, for example, in Japanese Patent Publication No. 62-55885 and Japanese Patent Laid-Open No. 10-305204, a large number of fiber masses in which short fibers made of organic fibers having a fiber length of 5 to 50 mm are entangled. There is a device that uses the filter as a filter medium. The filtration apparatus using this filter medium can perform filtration at a high speed of 600 m / d or more when treating wastewater containing suspended substances.

このような繊維ろ材にろ過過程で付着した懸濁物質をはがす、いわゆる逆洗する場合には、ろ過塔内に洗浄水と空気、又はいずれかを供給することで繊維ろ材から懸濁物質を剥離させる。従来、この逆洗工程では、繊維ろ材が激しい流動状態にさらされることで、繊維ろ材から短繊維がほつれ、ほつれた短繊維が流出することなどがあった。また、ひどい場合には、繊維ろ材の形状そのものが大きく崩れ、所望の処理性能を確保できない場合などもあった。
また、特開2004−89766号公報では、ろ過塔の内部に合成繊維糸フリンジ(ふさ毛)付き部材又は繊維束紐状部材を、上端を固定部材で固定して多数垂下させたろ過塔の下部から懸濁水を流入させて、上向流として通過させてろ過を行い、上部からろ過処理水を流出させる方法が記載されている。このろ材を用いたろ過塔では、下水などの懸濁水を目詰まりが少ない状態で、1440m/dという高速でろ過することができる。この場合、懸濁物質を付着した繊維部材の逆洗が容易ではなく、長時間運転すると、懸濁物質がひも状内部まで浸透し、洗浄効果が不十分となる場合があった。
When removing suspended substances adhering to the fiber filter medium during the filtration process, so-called backwashing, the suspended substances are separated from the fiber filter medium by supplying cleaning water and / or air into the filter tower. Let Conventionally, in the backwashing process, the fiber filter medium is exposed to a vigorous fluid state, so that the short fibers fray from the fiber filter medium, and the frayed short fibers flow out. In a severe case, the shape of the fiber filter material itself may be greatly collapsed, and desired processing performance may not be ensured.
In JP-A-2004-89766, a lower part of a filtration tower in which a member with a synthetic fiber yarn fringe (fuzzy hair) or a fiber bundle string-like member is fixed inside the filtration tower and a plurality of members are suspended by a fixing member. Suspension water is made to flow in from above, and it is made to pass as an upward flow, it filters, and the method of making the filtered water flow out from the upper part is described. In a filtration tower using this filter medium, suspended water such as sewage can be filtered at a high speed of 1440 m / d with little clogging. In this case, it is not easy to backwash the fiber member to which the suspended substance is adhered, and when the fiber member is operated for a long time, the suspended substance may penetrate into the inside of the string and the washing effect may be insufficient.

特公昭62−55885号公報Japanese Examined Patent Publication No. 62-55885 特開平10−305204号公報JP-A-10-305204 特開2004−89766号公報JP 2004-89766 A

本発明は、このような実情に鑑みてなされたものであり、簡単かつコンパクトな装置によって下水、各種廃水、用水など各種原水中の懸濁粒子を高速ろ過できる新技術を提供することを課題とする。特に、繊維ろ材から短繊維がほつれるのを防止することで、懸濁物質の高い除去率を安定的に得ることができ、更に高い除去率を長時間継続することができる高速ろ過装置とその装置を用いたろ過方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a new technology capable of high-speed filtration of suspended particles in various raw waters such as sewage, various wastewaters, and irrigation water by a simple and compact device. To do. In particular, by preventing the short fibers from fraying from the fiber filter medium, it is possible to stably obtain a high removal rate of suspended solids, and a high-speed filtration device capable of continuing a higher removal rate for a long time and its It aims at providing the filtration method using an apparatus.

上記課題を解決するために、本発明では、内部に繊維ろ材からなるろ過層と、その下部に処理水の集水装置とを有するろ過塔と、該ろ過塔の上部に処理されるべき被処理水の導入管Aと、該下部に空気を供給する供給管Dと、前記集水装置からろ過層上部以上に立ち上げられた処理水流出管Fとを備えたろ過装置において、前記繊維ろ材は、両端部が溶着されている構造の繊維ろ材であることを特徴とするろ過装置としたものである。
前記ろ過装置において、繊維ろ材が、芯鞘構造の複合熱可塑性繊維、芯鞘構造の複合熱可塑性繊維と芯鞘構造の複合熱可塑性繊維との集合体、又は、芯鞘構造の複合熱可塑性繊維と熱可塑性繊維の集合体からなり、繊維方向に引き揃えられているものがよい。
In order to solve the above-mentioned problems, in the present invention, a filtration tower having a filtration layer made of a fiber filter medium inside, a water collecting device for treated water at the lower part thereof, and a treatment to be treated at the upper part of the filtration tower. In a filtration apparatus comprising a water introduction pipe A, a supply pipe D for supplying air to the lower part, and a treated water outflow pipe F raised above the filtration layer from the water collecting apparatus, the fiber filter medium is: The filtration device is characterized by being a fiber filter medium having a structure in which both ends are welded.
In the filtration apparatus, the fiber filter medium is a core-sheath composite thermoplastic fiber, a core-sheath composite thermoplastic fiber and a core-sheath composite thermoplastic fiber, or a core-sheath composite thermoplastic fiber. And a thermoplastic fiber aggregate, and those aligned in the fiber direction are preferable.

前記ろ過装置において、前記ろ過塔内のろ過層上部には、前記繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さいな目開きを有する多孔部材を、水面に対して水平から垂直の任意の角度でろ材の流出阻止用として設置し、前記ろ過塔上部にろ材の洗浄水を排水する排水管Cと、該下部にろ材を洗浄する洗浄水を上向流で通水する通水管Eとを備えることができ、また、前記ろ過塔内の集水装置内又は前記処理水流出管Fには、前記ろ過層内の液を排水する排出管Gを備えることができ、さらに、前記ろ過塔下部に、空気を供給する供給管Dとは別に、流量調整可能な空気の供給管D’を備えることができる。   In the filtration apparatus, a porous member having an opening smaller than the shortest length of the diameter of the fiber filter medium or the length of the linear portion is horizontally disposed on the upper part of the filtration layer in the filtration tower with respect to the water surface. Installed at any angle perpendicular to the drainage pipe C for draining the filter medium washing water to the upper part of the filtration tower and the washing water for washing the filter medium to the lower part through the upward flow. A drainage pipe G for draining the liquid in the filtration layer can be provided in the water collecting device in the filtration tower or the treated water outflow pipe F. In addition to the supply pipe D for supplying air, an air supply pipe D ′ whose flow rate can be adjusted can be provided at the lower part of the filtration tower.

また、本発明では、懸濁物質を含有する被処理水を、前記のろ過装置に通して、被処理水中の懸濁物質をろ過することを特徴とするろ過方法としたものである。
前記ろ過方法において、ろ過性能が低下すると、ろ過塔下部に備えた空気を供給する供給管Dから空気を供給して、ろ過槽内の繊維ろ材を揺動させて繊維ろ材に付着した固形物を剥離する洗浄工程を行うことができる。
また、前記ろ過方法において、排出管Gを備えたろ過装置を用いて、ろ過性能が低下すると、ろ過塔内の繊維ろ材に付着した固形物を剥離する洗浄工程と、前記洗浄工程の後に、前記排出管Gからろ過層内のろ材とろ材の空隙にある液を全量又は一部を排水することでろ材を圧密させる圧密工程とを実施するのがよく、前記洗浄工程は、ろ過塔内に空気を供給して繊維ろ材を揺動させて行うことができる。
さらに、前記ろ過方法において、別に設けた流量調整可能な空気の供給管D’を備えたろ過装置を用いて、ろ過性能が低下したときに行う洗浄工程を、空気の供給管Dと空気の供給管D’から供給する空気の量に流量差を発生させることでろ過層の繊維ろ材に旋回流を起こしつつ行うことができる。
Moreover, in this invention, it is set as the filtration method characterized by passing the to-be-processed water containing a suspended substance through the said filtration apparatus, and filtering the suspended substance in to-be-processed water.
In the filtration method, when the filtration performance is lowered, air is supplied from a supply pipe D that supplies air at the lower part of the filtration tower, and the solid matter attached to the fiber filter medium is swung by the fiber filter medium in the filter tank. A cleaning step for peeling off can be performed.
Moreover, in the said filtration method, when filtration performance falls using the filtration apparatus provided with the discharge pipe G, after the washing | cleaning process which peels the solid substance adhering to the fiber filter medium in a filtration tower, and the said washing | cleaning process, It is preferable to carry out a consolidation step of consolidating the filter medium by draining all or part of the liquid in the filter medium in the filter layer and the filter medium from the discharge pipe G. Can be performed by swinging the fiber filter medium.
Further, in the filtration method, using a filtration device provided with an air supply pipe D ′ having a separately adjustable flow rate, a cleaning process performed when the filtration performance deteriorates is performed. By generating a flow rate difference in the amount of air supplied from the pipe D ′, it can be performed while causing a swirling flow in the fiber filter medium of the filtration layer.

本発明の実施により、上部に処理されるべき原水の導入管Aと、ろ過塔内に扁平矩形状の繊維ろ材と、下部に処理水の集水装置と空気を供給する供給管D、集水装置から少なくともろ過層上部以上に立ち上げられた処理水流出管Fを備えたろ過塔において、前記繊維ろ材が、芯鞘構造の複合熱可塑性繊維と熱可塑性繊維との集合体からなり、繊維方向に引き揃えられており、また繊維ろ材の両端部が溶着されている扁平矩形状の繊維ろ材を用いることで、繊維ろ材から短繊維がほつれることなく、懸濁物質の高い除去率を安定的に得ることができ、更に高い除去率を高速で長時間継続することができた。   By carrying out the present invention, raw water introduction pipe A to be treated at the upper part, flat rectangular fiber filter medium in the filtration tower, treated water collector and air at the lower part, supply pipe D for supplying air, water collection In a filtration tower provided with a treated water outflow pipe F raised at least above the filtration layer from the apparatus, the fiber filter medium is composed of an aggregate of core-sheathed composite thermoplastic fibers and thermoplastic fibers, and the fiber direction In addition, by using a flat rectangular fiber filter medium with both ends of the fiber filter medium welded, high removal rate of suspended solids can be stabilized without fraying short fibers from the fiber filter medium. And a higher removal rate could be continued for a long time at a high speed.

本発明の装置の一例を示すフロー構成図。The flow block diagram which shows an example of the apparatus of this invention. 本発明の装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the apparatus of this invention. 本発明の装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the apparatus of this invention. 本発明で用いる繊維ろ材の一例を示す斜視構成図。The perspective block diagram which shows an example of the fiber filter medium used by this invention. 本発明で用いる繊維ろ材の他の例を示す斜視構成図。The perspective block diagram which shows the other example of the fiber filter medium used by this invention.

以下、本発明を図面を参照しながら詳細に説明する。
図1は、本発明のろ過装置の一例を示すフロー構成図である。
図1において、1はろ過塔、2は繊維ろ材からなるろ過層、3は集水装置、5は水位計であり、上部に処理されるべき原水の導入管Aと、下部に処理水の集水装置3と空気を供給する供給管D、集水装置3から少なくともろ過層2上部以上に立ち上げられた処理水流出管F(ヘッダ管ともいう)を備え、被処理水(以下原水ともいう)中の懸濁物質をろ過する。
原水は、下水処理の二次処理水や最初沈殿池流出水、雨天時流出水、各種産業排水、用水処理等、懸濁物質を含む排水、用水であり、前段に凝集操作を行った処理水でもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flow configuration diagram showing an example of the filtration device of the present invention.
In FIG. 1, 1 is a filtration tower, 2 is a filtration layer made of a fiber filter medium, 3 is a water collecting device, 5 is a water level gauge, and an inlet pipe A for raw water to be treated at the upper part, and a collection of treated water at the lower part. A treated water outflow pipe F (also referred to as a header pipe) raised from the water apparatus 3 and a supply pipe D for supplying air and at least the upper part of the filtration layer 2 from the water collecting apparatus 3 is provided. ) The suspended solids in are filtered.
Raw water is secondary treated water for sewage treatment, first settling basin effluent, rainy effluent, various industrial wastewater, effluent treatment, etc. But you can.

ここで用いる繊維ろ材は、以下の工程を含む製造方法によって製造された繊維ろ材である。なお、繊維ろ材が1種類の芯鞘構造の複合熱可塑性繊維のみからなる場合は、以下の工程1は不要である。
(工程1) 芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維と芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維、又は、芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維と単一成分からなる熱可塑性繊維を混綿し混綿体とする混綿工程
(工程2) 芯鞘構造の複合熱可塑性繊維又は前記混綿体をロープ状のスライバーとするスライバー工程
(工程3) 該スライバーに熱風を吹き掛け、該スライバーの一部を溶着させた溶着部を形成する溶着工程
(工程4) 該溶着部を有するスライバーを溶着切断する切断工程
以下それぞれの工程の詳細を記す。
The fiber filter used here is a fiber filter manufactured by a manufacturing method including the following steps. In addition, when a fiber filter medium consists only of the composite thermoplastic fiber of one kind of core-sheath structure, the following process 1 is unnecessary.
(Step 1) Core-sheath composite thermoplastic fiber composed of a core-sheath structure composed of a core component and a sheath component, and a core-sheath composite thermoplastic fiber composed of a core component and a sheath component, or a core-sheath composed of a core component and a sheath component Blending step of blending a composite thermoplastic fiber having a structure and a thermoplastic fiber composed of a single component to form a blended cotton body (Step 2)
(Step 3) A welding step in which hot air is blown onto the sliver to form a welded portion where a part of the sliver is welded (step 4) A cutting step in which the sliver having the welded portion is welded and cut. Details of each step below Write.

(混綿工程)
混綿工程において、複合熱可塑性繊維は、芯鞘型複合繊維であり、芯成分と鞘成分とからなる芯鞘構造を有している。
芯成分の材質としては、ポリエステル繊維、ポリアミド繊維、ビニロン繊維、ポリオレフィン繊維等が用いられる。これらは単独で用いても複数を混合して用いてもよい。これらの中でも、芯成分の材質は汎用性及び強度の観点からポリエステル繊維を用いることが好ましい。
また、鞘成分の材質としては、ポリエステルと脂肪族化合物との共重合体、ポリエチレン、ポリプロピレン等が用いられる。これらは単独で用いても複数を混合して用いてもよい。これらの中でも、鞘成分の材質は、芯成分の材質がポリエステル繊維を使用している場合、同一成分を含有させる方が、強度が優れるため、ポリエステルと脂肪族化合物との共重合体を用いることが好ましい。
複合熱可塑性繊維の繊度は、1〜50dtexであることが好ましい。複合熱可塑性繊維の繊度が1dtex未満であると、繊度が、上記範囲内にある場合と比較して、繊維間の空隙が小さくなりすぎ、繊度が50dtexを超えると、繊維間の空隙が大きくなりすぎて、共に懸濁粒子を補足できなくなる恐れがある。
(Mixed cotton process)
In the blending step, the composite thermoplastic fiber is a core-sheath type composite fiber, and has a core-sheath structure composed of a core component and a sheath component.
As the material of the core component, polyester fiber, polyamide fiber, vinylon fiber, polyolefin fiber, or the like is used. These may be used alone or in combination. Among these, it is preferable to use a polyester fiber as the material of the core component from the viewpoint of versatility and strength.
As the material for the sheath component, a copolymer of polyester and an aliphatic compound, polyethylene, polypropylene, or the like is used. These may be used alone or in combination. Among these, when the core component is made of polyester fiber, the sheath component is made of a polyester fiber and a copolymer of an aliphatic compound because the strength is better when the same component is used. Is preferred.
The fineness of the composite thermoplastic fiber is preferably 1 to 50 dtex. When the fineness of the composite thermoplastic fiber is less than 1 dtex, the gap between the fibers becomes too small compared to the case where the fineness is within the above range, and when the fineness exceeds 50 dtex, the gap between the fibers becomes large. Too much may not be able to capture the suspended particles together.

芯成分に対する鞘成分の比率は、芯成分:鞘成分が1:0.5〜1であることが好ましい。鞘成分の比率が0.5未満であると、繊度が上記範囲内にある場合と比較して、バインダーとしての接着力が不十分となり、鞘成分の比率が1を超えると、繊度が上記範囲内にある場合と比較して、溶着しにくくなる。
ここで、鞘成分は、芯成分よりも融点が低いものが用いることが好ましい。この場合、繊維ろ材の製造方法においては、鞘成分が溶着し接着剤の働きをする、いわゆるバインダー効果を発揮する。
鞘成分の融点は、80〜200℃であることが好ましく、芯成分の融点は、160〜250℃であることが好ましい。この場合、複合熱可塑性繊維によるバインダー効果を確実に発揮させることができる。
また、鞘成分と芯成分の融点の差は、30℃以上であることが好ましい。融点の差が、30℃未満であると、融点の差が上記範囲内にある場合と比較して、芯成分と鞘成分とが共に溶着してしまい、複合熱可塑性繊維が形状を維持できなくなる場合がある。
The ratio of the sheath component to the core component is preferably 1: 0.5 to 1 in the core component: sheath component. When the ratio of the sheath component is less than 0.5, the adhesive strength as a binder becomes insufficient as compared with the case where the fineness is within the above range, and when the ratio of the sheath component exceeds 1, the fineness is within the above range. Compared with the case where it exists in, it becomes difficult to weld.
Here, it is preferable to use a sheath component having a melting point lower than that of the core component. In this case, in the manufacturing method of the fiber filter medium, a so-called binder effect is exhibited in which the sheath component is welded and functions as an adhesive.
The melting point of the sheath component is preferably 80 to 200 ° C, and the melting point of the core component is preferably 160 to 250 ° C. In this case, the binder effect by the composite thermoplastic fiber can be surely exhibited.
Moreover, it is preferable that the difference of melting | fusing point of a sheath component and a core component is 30 degreeC or more. When the difference in melting point is less than 30 ° C., the core component and the sheath component are welded together as compared with the case where the difference in melting point is within the above range, and the composite thermoplastic fiber cannot maintain its shape. There is a case.

また、混綿工程において、単一成分からなる熱可塑性繊維の材質としては、ポリエステル繊維、ポリアミド繊維、ビニロン繊維、ポリオレフィン繊維等が用いられる。これらの中でも、前記熱可塑性繊維の材質は汎用性、強度、及び水に沈みやすいといった観点から、ポリエステル繊維であることが好ましい。
単一成分からなる熱可塑性繊維の繊度は、1〜50dtexであることが好ましい。前記熱可塑性繊維の繊度が1dtex未満であると、繊度が、上記範囲内にある場合と比較して、繊維間の空隙が小さくなりすぎ、繊度が50dtexを超えると、繊維間の空隙が大きくなりすぎて、共に懸濁粒子を補足できなくなる恐れがある。
また、その融点は、複合熱可塑性繊維の鞘成分の融点よりも高いほうが好ましく、且つ160〜250℃であることが好ましい。この場合、複合熱可塑性繊維によるバインダー効果を発揮させても繊維ろ材の形状を維持することができる。
In the blending process, polyester fiber, polyamide fiber, vinylon fiber, polyolefin fiber, or the like is used as the material of the thermoplastic fiber composed of a single component. Among these, the material of the thermoplastic fiber is preferably a polyester fiber from the viewpoints of versatility, strength, and easy sinking in water.
The fineness of the thermoplastic fiber composed of a single component is preferably 1 to 50 dtex. When the fineness of the thermoplastic fiber is less than 1 dtex, the gap between the fibers becomes too small compared to the case where the fineness is within the above range, and when the fineness exceeds 50 dtex, the gap between the fibers becomes large. Too much may not be able to capture the suspended particles together.
Further, the melting point is preferably higher than the melting point of the sheath component of the composite thermoplastic fiber, and is preferably 160 to 250 ° C. In this case, the shape of the fiber filter medium can be maintained even if the binder effect by the composite thermoplastic fiber is exhibited.

混綿工程においては、複合熱可塑性繊維の綿状物同士、又は、複合熱可塑性繊維の綿状物と単一熱可塑性繊維の綿状物とを混合する。
単一熱可塑性繊維の線状物と混合するときの混合割合は、複合熱可塑性繊維1質量部に対し、単一熱可塑性繊維が1.5〜4質量部であることが好ましい。単一熱可塑性繊維の混合割合が1.5質量部未満であると、混合割合が上記範囲内にある場合と比較して、繊維ろ材の強度が不十分となる恐れがあり、単一熱可塑性繊維の混合割合が4質量部を超えると、混合割合が上記範囲内にある場合と比較して、複合熱可塑性繊維のバインダー効果が不十分となる恐れがある。
混綿工程においては、複数の繊維を混合させることで、繊維ろ材の表面の毛羽の長さや量を調整することが可能となる。これにより、得られる繊維ろ材は、懸濁粒子を効率良く捕集できるようになる。
In the blending step, the composite thermoplastic fiber cotton-like materials, or the composite thermoplastic fiber cotton-like material and the single thermoplastic fiber cotton-like material are mixed.
As for the mixing ratio when mixing with the linear material of a single thermoplastic fiber, it is preferable that a single thermoplastic fiber is 1.5-4 mass parts with respect to 1 mass part of composite thermoplastic fibers. If the mixing ratio of the single thermoplastic fiber is less than 1.5 parts by mass, the strength of the fiber filter medium may be insufficient compared to the case where the mixing ratio is within the above range, and the single thermoplastic fiber When the mixing ratio of the fibers exceeds 4 parts by mass, the binder effect of the composite thermoplastic fiber may be insufficient as compared with the case where the mixing ratio is in the above range.
In the blending step, the length and amount of fluff on the surface of the fiber filter medium can be adjusted by mixing a plurality of fibers. Thereby, the obtained fiber filter medium can collect suspended particles efficiently.

(スライバー工程)
スライバー工程は、混綿工程で得られた混綿体又は複合熱可塑性繊維を、ロープ状のスライバーにする工程である。この工程は、前記混綿体又は繊維を紡績用カード機にかけ薄い平面状のウェブとした後、練条機を通してドラフトし、ロープ状のスライバーにする工程である。
ここで、スライバーとは、撚りをかけないロープ状にした繊維の束をいう。
スライバー工程においては、混綿体又は繊維をドラフトして延伸しロープ状のスライバーとすることで、繊維方向が引き揃えられる。これにより、スライバーの引張り強度が向上するという利点がある。
また、ロープ状のスライバーの直径は5〜20mmの範囲であることが好ましい。直径が5mm未満であると、繊維ろ材の幅が狭くなりろ過装置からろ材が流出しやすくなる欠点があり、直径が20mmを超えると、繊維ろ材自体が大きくなることで比表面積が減少し、水中の懸濁物質を捕捉するために必要な表面積が小さくなる欠点がある。
(Sliver process)
A sliver process is a process of making the blend cotton body or composite thermoplastic fiber obtained at the blend cotton process into a rope-like sliver. This step is a step in which the blended cotton body or fiber is applied to a spinning card machine to form a thin flat web, and then drafted through a drawing machine to form a rope-like sliver.
Here, the sliver refers to a bundle of fibers in a rope shape that is not twisted.
In the sliver process, the fiber direction is aligned by drafting and stretching a blended cotton body or fiber to form a rope-like sliver. Thereby, there exists an advantage that the tensile strength of a sliver improves.
The diameter of the rope-shaped sliver is preferably in the range of 5 to 20 mm. If the diameter is less than 5 mm, the width of the fiber filter medium becomes narrow and the filter medium tends to flow out of the filtration device. If the diameter exceeds 20 mm, the fiber filter medium itself becomes larger, reducing the specific surface area, There is a disadvantage that the surface area required for capturing the suspended solids is reduced.

(溶着工程)
溶着工程は、スライバーに熱風を吹き掛け、スライバー内の一部の繊維同士を溶着させた溶着スライバーとする工程である。
溶着スライバーは、一部にスライバーの繊維同士を溶着させた溶着部が形成されている。これにより、得られる繊維ろ材は、ほつれが防止されると共に、長期間、摩耗に耐えうる耐久性を有することになる。「一部」とは定量的な表現をできるものではないが、溶着は芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維と単一成分からなる熱可塑性繊維の格子点で行われ、格子点が多いほどほつれにくくなる。
また、通水時には水圧で繊維の間隙が埋められ、逆洗時には繊維の間隙が離れ効率良く懸濁粒子を脱離させることが可能となる。
かかる溶着工程において、熱風の温度は120〜180℃であることが好ましい。
(Welding process)
The welding step is a step of forming a welding sliver in which hot air is blown onto the sliver to weld some fibers in the sliver.
The welded sliver has a welded part in which the fibers of the sliver are welded in part. Thereby, the obtained fiber filter medium is prevented from fraying and has durability capable of withstanding abrasion for a long period of time. Although “partial” cannot be expressed quantitatively, welding is performed at the lattice points of a composite thermoplastic fiber having a core-sheath structure consisting of a core component and a sheath component and a thermoplastic fiber consisting of a single component. As the number of lattice points increases, fraying becomes difficult.
Further, the gap between the fibers is filled with water pressure when water is passed, and the gap between the fibers is separated during backwashing, so that the suspended particles can be efficiently detached.
In the welding step, the temperature of the hot air is preferably 120 to 180 ° C.

(切断工程)
切断工程は、溶着スライバーを連続的に溶着切断することにより全長が5〜20mmの扁平矩形状の繊維ろ材とする工程である。溶着切断の方法としては、熱刃による方法、超音波の振動による超音波切断、レーザによる切断が挙げられる。先ず、熱刃による方法を記す。
切断工程においては、溶着スライバーを長手方向に進行させると共に、十分に加熱された熱刃昇降移動させることにより、連続的に溶着スライバーが切断され、個々の扁平矩形状の繊維ろ材となる。繊維ろ材は、左右の縁が溶着されているので、カットによるほつれの発生が抑制される。
溶着切断において、熱刃の温度は700℃以上であることが好ましい。この場合、溶着スライバーを瞬時にカットすると共に、溶着スライバーの縁を確実に溶着することができる。
こうして扁平矩形状の繊維ろ材が得られる。
(Cutting process)
The cutting step is a step of forming a flat rectangular fiber filter medium having a total length of 5 to 20 mm by continuously welding and cutting the welding sliver. Examples of the welding cutting method include a method using a hot blade, ultrasonic cutting using ultrasonic vibration, and laser cutting. First, a method using a hot blade will be described.
In the cutting step, the welding sliver is advanced in the longitudinal direction and is moved up and down by a sufficiently heated hot blade, whereby the welding sliver is continuously cut to obtain individual flat rectangular fiber filter media. Since the left and right edges of the fiber filter medium are welded, the occurrence of fraying due to cutting is suppressed.
In welding cutting, the temperature of the hot blade is preferably 700 ° C. or higher. In this case, the welding sliver can be cut instantaneously and the edge of the welding sliver can be reliably welded.
In this way, a flat rectangular fiber filter medium is obtained.

図4は、本発明で用いる繊維ろ材を示す概略斜視図である。
図4において、6は切断溶着部、7は一部溶着部、8は繊維である。
図4に示すように、本発明で用いる繊維ろ材は、芯鞘構造の複合熱可塑性繊維と熱可塑性繊維との集合体からなり、繊維方向に引き揃えられ且つ一部の繊維同士が溶着されており、全体的に中心部がやや膨らんだ扁平矩形状となっている。
また、扁平矩形状の繊維ろ材は、長手方向に複数の繊維が引き揃えられた束となっている。
ここで、各1本の短繊維は、繊維ろ材の長手方向の全長よりも大きいことが好ましい。これにより、繊維が引き抜かれることが抑制される。
また、繊維ろ材において、長手方向に垂直に切断した両端部は、溶着切断により溶着固化されている。また、多数の溶着部が散在した状態となっている。
したがって、繊維ろ材は、ほつれが防止されると共に、長期間、摩耗に耐えうる耐久性を有することになる。
FIG. 4 is a schematic perspective view showing a fiber filter used in the present invention.
In FIG. 4, 6 is a cut welding part, 7 is a part welding part, 8 is a fiber.
As shown in FIG. 4, the fiber filter used in the present invention is composed of an aggregate of a core-sheath composite thermoplastic fiber and a thermoplastic fiber, and is aligned in the fiber direction and a part of the fibers are welded together. As a whole, the center portion is a flat rectangular shape slightly swelled.
The flat rectangular fiber filter medium is a bundle in which a plurality of fibers are aligned in the longitudinal direction.
Here, each one short fiber is preferably larger than the total length in the longitudinal direction of the fiber filter medium. Thereby, it is suppressed that a fiber is pulled out.
Moreover, in the fiber filter medium, both ends cut perpendicularly to the longitudinal direction are welded and solidified by welding cutting. In addition, a large number of welds are scattered.
Therefore, the fiber filter medium is prevented from fraying and has durability capable of withstanding abrasion for a long period of time.

次に、レーザによる切断方法を記す。
図5に示す繊維ろ材は、レーザによってスライバー状の繊維を切断すると共に、切断面を融着させる方法によって製造した繊維ろ材である。図5においても図4同様に、6は切断溶着部、7は一部溶着部、8は繊維である。レーザを用いた切断方法では、切断面がロープ状のスライバーのままで溶着されている関係で、繊維がほつれにくく、長期にわたり繊維ろ材の使用が可能となる。
Next, a laser cutting method will be described.
The fiber filter medium shown in FIG. 5 is a fiber filter medium manufactured by a method of cutting a sliver-like fiber with a laser and fusing the cut surface. Also in FIG. 5, 6 is a cut welding part, 7 is a part welding part, 8 is a fiber similarly to FIG. In the cutting method using a laser, the fibers are hardly frayed because the cut surface is welded with a rope-like sliver, and a fiber filter medium can be used over a long period of time.

集水装置3は、砂利を敷き詰めたものから、有孔ブロック型、ホイラー型、ストレーナ型、ポーラスボトム型、多孔管型など任意のものを選択することができるが、特に、有孔ブロック型は、ブロックが軽く施工が容易であるので、繊維ろ材の集水装置としては好ましい。
原水は、導入管Aを通して連続的に通水され、ろ過塔内に充填された繊維ろ材によってろ過される。ろ過された処理水は、処理水流出管Fを通して系外に排出される。ろ過工程のおける通水速度は、従来の砂ろ過層を用いたろ過よりも装置をコンパクトにするという観点と、通水速度が速い場合に原水中の懸濁物質がショートパスして処理水と共に流出してしまうのを抑制するために、500〜2000m/dが好ましい。また、このとき繊維ろ材の充填高さとしては、逆洗頻度を高めないこと、繊維ろ材層上部のフリーボード部を極端に高くならないように設計するため300〜2000mm程度が好ましい。
The water collecting device 3 can be of any type, such as a perforated block type, a wheeler type, a strainer type, a porous bottom type, a perforated tube type, etc. Since the block is light and easy to construct, it is preferable as a water collecting device for fiber filter media.
The raw water is continuously passed through the introduction pipe A, and is filtered by a fiber filter medium packed in the filtration tower. The filtered treated water is discharged out of the system through the treated water outflow pipe F. The water flow rate in the filtration process is more compact than the conventional filtration using a sand filtration layer, and when the water flow rate is high, suspended substances in the raw water are short-passed together with the treated water. In order to suppress the outflow, 500 to 2000 m / d is preferable. At this time, the filling height of the fiber filter medium is preferably about 300 to 2000 mm in order not to increase the frequency of backwashing and to design the free board part above the fiber filter medium layer not to be extremely high.

ある程度の量の原水をろ過した繊維ろ材は、その内部や表面が懸濁物質に覆われているので、定期的、或いはろ過抵抗の上昇を検出して、洗浄される。洗浄は、ろ過塔下部から空気を供給し、繊維ろ材から懸濁物質を剥離する。通気速度や通気時間は、概ね、繊維ろ材に付着した懸濁物質が剥離する速度と時間をとり、通気速度0.1〜5.0m/min、通気時間3〜30minで実施される。
繊維ろ材から剥離した懸濁物質を含む洗浄後の廃水は、導入管Aから原水を供給しながら、排出管G又は処理水流出管Fを通して系外に排出することで、再生された繊維ろ材を再度使用する(洗浄工程)。また、別途、洗浄水の供給管をろ過塔上部や下部から供給して(図示せず)、洗浄廃水を排出管G又は処理水流出管Fから排出してもよい。洗浄水には、下水二次処理水や工業用水、雨水、ろ過原水など任意の液を用いることができる。
The fiber filter medium obtained by filtering a certain amount of raw water is washed periodically, or by detecting an increase in filtration resistance, because the inside and surface thereof are covered with suspended solids. In the washing, air is supplied from the lower part of the filtration tower, and the suspended substances are peeled off from the fiber filter medium. The aeration speed and the aeration time are generally carried out at an aeration speed of 0.1 to 5.0 m / min and an aeration time of 3 to 30 min.
Waste water after washing containing suspended solids separated from the fiber filter medium is discharged out of the system through the discharge pipe G or the treated water outflow pipe F while supplying raw water from the introduction pipe A, so that the regenerated fiber filter medium is recovered. Use again (cleaning process). Separately, a cleaning water supply pipe may be supplied from the upper or lower portion of the filtration tower (not shown), and the cleaning waste water may be discharged from the discharge pipe G or the treated water outflow pipe F. As the washing water, any liquid such as sewage secondary treated water, industrial water, rain water, or raw filter water can be used.

ろ過性能を向上させるために、洗浄工程の後に、水中に沈んだ繊維ろ材をより高密度に充填するために、集水装置3に設置された排出管Gからろ過塔内の液を一部又は全量を排水する圧縮工程Bを設けるとよい。繊維ろ材内の空隙は95%以上と高く、水中で水分を含んだ状態でも繊維ろ材の見かけ比重は1.1前後であり、従来のただ単に、繊維ろ材を水中に自然沈降させた状態では、水分を含む繊維(比重約1.1)と水(比重約1)の比重差が小さいがために繊維ろ材同士が密に充填しているとは言えず、繊維ろ材と繊維ろ材の隙間(空隙ともいう)が大きかった。しかし、本発明の構造を持ったろ過方法及び装置において、ろ過層2内の液の一部又は全量を排水することで、水に濡れた繊維ろ材(比重約1.1)と空気の密度差(比重約0.001)が大きくなるため、繊維ろ材は自重によって、空隙を埋めるように高密度化していく。
続いてろ過を再開すると、ろ過層2内の繊維ろ材は十分に圧密され、空隙が少なくなっていることから、被処理水中の懸濁物質の捕捉が良好で、懸濁物質の除去率が高い。従来のただ単に繊維ろ材を沈降させて充填したときよりも、水抜きを行い高密度化した状態でろ過した方が、空隙が少なくなるためにろ過性能は高くなる。無論、ろ過の際、高密度に充填したろ材は膨張することはない。
In order to improve the filtration performance, a part of the liquid in the filtration tower is discharged from the discharge pipe G installed in the water collecting device 3 in order to pack the fiber filter material submerged in water with higher density after the washing step. It is good to provide the compression process B which drains the whole quantity. The voids in the fiber filter medium are as high as 95% or more, and the apparent specific gravity of the fiber filter medium is about 1.1 even in the state of containing water in water. In the conventional state where the fiber filter medium is simply allowed to settle naturally in water, Since the difference in specific gravity between water-containing fibers (specific gravity of about 1.1) and water (specific gravity of about 1) is small, it cannot be said that the fiber filter media are closely packed, and the gap between the fiber filter media and the fiber filter media (voids) (Also called) was big. However, in the filtration method and apparatus having the structure of the present invention, a part or all of the liquid in the filtration layer 2 is drained, so that the fiber filter medium wet with water (specific gravity about 1.1) and the air density difference. Since (specific gravity about 0.001) becomes large, the fiber filter medium is densified so as to fill the voids by its own weight.
Subsequently, when the filtration is resumed, the fiber filter medium in the filtration layer 2 is sufficiently consolidated and the voids are reduced, so that the suspended matter in the treated water is well captured and the suspended matter removal rate is high. . Compared to the conventional method of simply sinking and filling the fiber filter medium, the filtration performance becomes higher when the water is drained and filtered in a high density state because the voids are reduced. Of course, at the time of filtration, the filter medium packed with high density does not expand.

図2に示すろ過装置は、図1のろ過装置に繊維ろ材の流出防止用の多孔部材4を設置している。繊維ろ材の逆洗工程における通水や通気過程では、繊維ろ材が洗浄水の排水管Cから流出する懸念がある。特に通気過程では、繊維ろ材から懸濁物質を多く剥離しようすると通気速度が高くなり、この場合、空気の上昇流速にのって繊維ろ材が排水管Cから流出してしまう場合があった。そのため、繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さいな目開きを有する、ろ材の流出阻止用多孔部材4を、水面に対して水平から垂直の任意の角度で設置する。流出防止用の多孔部材は、ステンレス製の各種織方による網を用いたストレーナや、ウエッジワイヤ、バースクリーンなど各種の部材を用いることができるが、少なくとも目開きは、繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さくする。取り付け角度は、ろ過槽水面に水平に設置し、ろ過槽全面を覆うようなかたちでもよいし、洗浄水の排出管付近に垂直方向あるは水平に対して任意の角度で設置してもよい。なお、ろ材の流出阻止用多孔部材4の設置位置は、少なくとも排水管Cよりも下方とする。   The filtration device shown in FIG. 2 is provided with a porous member 4 for preventing the outflow of the fiber filter medium in the filtration device of FIG. There is a concern that the fiber filter medium may flow out from the drain pipe C of the cleaning water during the water flow or ventilation process in the back washing process of the fiber filter medium. In particular, in the aeration process, if a large amount of suspended matter is peeled off from the fiber filter medium, the aeration speed increases. In this case, the fiber filter medium may flow out of the drain pipe C due to the rising air flow rate. Therefore, the filter medium outflow prevention porous member 4 having an opening smaller than the shortest length among the diameter of the fiber filter medium or the length of the straight line portion is installed at an arbitrary angle from the horizontal to the water surface. To do. As the porous member for preventing outflow, various members such as a strainer using a mesh made of various stainless steel weaves, a wedge wire, and a bar screen can be used. At least the opening is a diameter of a fiber filter medium or a straight line. It is made smaller than the shortest length among the lengths of the parts. The attachment angle may be such that it is installed horizontally on the surface of the filtration tank and covers the entire surface of the filtration tank, or it may be installed at an arbitrary angle with respect to the horizontal or vertical direction in the vicinity of the discharge pipe of the washing water. The installation position of the filter medium outflow prevention porous member 4 is at least lower than the drain pipe C.

いずれにしても、繊維ろ材が洗浄水の水流におされて多孔部材にへばりつくのを防止するために、多孔部材の水に接触している面積当たりの洗浄水の流速(水面積負荷ともいう)が10〜200m/hとなるような多孔部材4を設置する。10m/h以下の水面積負荷の多孔部材では、過剰な設備であり、イニシャルコストが高く、200m/h以上の水面積負荷では繊維ろ材が多孔部材にへばりつく。特に、逆洗工程で洗浄水の通水速度を可変で運転する場合は、前記の水面積負荷の範囲となるように洗浄水の供給速度を制御する機構を設けると良い。
図2に示す装置では、繊維ろ材の流出を懸念することなく、高速で通水、通気を実施することができ、従来に比べて大幅に洗浄時間が圧縮できると共に、洗浄効率があがり、続くろ過工程でのろ過性能が良好となる。
上記に示す図1、図2に示す装置を用いて、上記のろ過工程と逆洗工程を繰り返しても、本発明では、短繊維塊からなる繊維ろ材が、繊維方向に引き揃えられ、且つ一部又は両端の繊維同士が溶着されていることから、繊維ろ材から短繊維がほつれにくい形態となっており、長期安定したろ過の性能を達成することができる。
In any case, the flow rate of the cleaning water per area in contact with the water of the porous member (also referred to as a water area load) in order to prevent the fiber filter medium from flowing into the cleaning water and sticking to the porous member. The porous member 4 is set so that the pressure becomes 10 to 200 m / h. A porous member with a water area load of 10 m / h or less is an excessive facility and has a high initial cost, and the fiber filter material is stuck to the porous member at a water area load of 200 m / h or more. In particular, when the washing water flow rate is varied in the backwashing step, it is preferable to provide a mechanism for controlling the supply rate of the washing water so that the water area load is within the above range.
In the apparatus shown in FIG. 2, water and aeration can be carried out at a high speed without worrying about the outflow of the fiber filter medium, and the washing time can be greatly reduced as compared with the conventional case, and the washing efficiency is improved, followed by filtration. The filtration performance in the process becomes good.
Even if the above-described filtration step and backwashing step are repeated using the apparatus shown in FIG. 1 and FIG. 2 described above, in the present invention, the fiber filter medium composed of short fiber clusters is aligned in the fiber direction and Since the fibers at the part or both ends are welded to each other, short fibers are hardly frayed from the fiber filter medium, and stable filtration performance can be achieved for a long time.

図3に示す装置は、前記ろ過塔下部に空気を供給する供給管Dとは別に、流量調整可能な空気の供給管D’が設置されている。なお、供給管D’は、供給管Dから分岐されていても良いし、別途ブロアに設置されていても良い。供給管Dと供給D’から供給される空気量は流量差を生じるように制御可能である。若しくは、空気を供給管Dと供給管D’の交互に供給しても良い。逆洗時、それぞれの供給管から供給される流量差を起こすことで、ろ過層内の繊維ろ材の旋回流を起こすことが可能であり、少ない空気量で繊維ろ材の洗浄を行なうことができる。通気速度や通気時間は、概ね、繊維ろ材に付着した懸濁物質が剥離する速度と時間をとり、通気速度0〜5.0m/min、通気時間3〜30minで実施される。   The apparatus shown in FIG. 3 is provided with an air supply pipe D 'whose flow rate can be adjusted separately from the supply pipe D for supplying air to the lower part of the filtration tower. The supply pipe D ′ may be branched from the supply pipe D, or may be separately installed in the blower. The amount of air supplied from the supply pipe D and the supply D ′ can be controlled to produce a flow rate difference. Alternatively, air may be alternately supplied from the supply pipe D and the supply pipe D ′. At the time of backwashing, by causing a difference in flow rate supplied from each supply pipe, it is possible to cause a swirling flow of the fiber filter medium in the filtration layer, and the fiber filter medium can be washed with a small amount of air. The aeration speed and the aeration time are generally determined by taking the speed and time at which the suspended substance attached to the fiber filter material is peeled off, and the aeration speed is 0 to 5.0 m / min and the aeration time is 3 to 30 min.

以下、本発明を実施例により、具体的に説明する。
実施例1
図2に示すφ160mmのろ過装置を用いて、繊維ろ材(密度90kg/m)を用いたろ過を行った。繊維ろ材は、以下の工程よって製造したものを用いた。
(混綿工程)融点が230℃の芯成分及び融点が110℃の鞘成分からなる塊状の複合ポリエステル繊維(4.4dtex)を30質量部と、融点が230℃の単一成分からなる塊状のポリエステル繊維(20dtex)を70質量部とを混綿し混綿体を得た。
(スライバー工程)次いで、混綿体を紡績用カード機、練条機に通し、スライバー(質量100g/m、直径10mm)とした。
(溶着工程)次いで、スライバーに、150℃の熱風を吹き掛けることにより、鞘成分を溶着させて、複合ポリエステル繊維と単一成分からなるポリエステル繊維とを一体化させ、冷却することにより棒状の溶着スライバーを得た。なお、かかる溶着スライバーは、表面に羽毛状、ループ状の毛羽を有していた。
(切断工程)その後、溶着スライバーを、約800℃の熱刃で全長7mmとなるようにカットし、本発明の繊維ろ材を得た。なお、カット面の端部においては、繊維同士が融着されていた。
繊維ろ材の真比重1.38であり、長さ10mm、幅7mmである。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
Filtration using a fiber filter medium (density 90 kg / m 3 ) was performed using a φ160 mm filtration device shown in FIG. What was manufactured by the following processes was used for the fiber filter medium.
(Mixed cotton process) 30 parts by mass of a bulky composite polyester fiber (4.4 dtex) composed of a core component having a melting point of 230 ° C and a sheath component having a melting point of 110 ° C, and a bulky polyester comprising a single component having a melting point of 230 ° C A cotton blend was obtained by blending 70 parts by mass of fiber (20 dtex).
(Sliver process) Next, the blended cotton body was passed through a spinning card machine and a drawing machine to obtain a sliver (mass 100 g / m, diameter 10 mm).
(Welding step) Next, the sheath component is welded by blowing hot air at 150 ° C. on the sliver, the composite polyester fiber and the polyester fiber composed of a single component are integrated, and cooled to form a rod-like weld. I got a sliver. Such a welding sliver had feathers and loops on the surface.
(Cutting step) Thereafter, the welding sliver was cut to a total length of 7 mm with a hot blade at about 800 ° C. to obtain the fiber filter medium of the present invention. It should be noted that the fibers were fused at the end of the cut surface.
The true specific gravity of the fiber filter medium is 1.38, the length is 10 mm, and the width is 7 mm.

予めろ過塔内には、繊維ろ材を20L分(見掛け容積)充填した。
原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時間ごとに逆洗工程を実施した。逆洗方法は、空気供給管Dから空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材からSSを剥離した。その後、洗浄水の通水管Eから洗浄水を供給し、洗浄水の排出管CよりSSを含む洗浄水を排出させた。通気速度は1.5m/min、通水速度は1.0m/minとした。以上の逆洗工程を5回繰り返し、ろ過を再開した。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは4mg/Lであった。また、繊維ろ材は、使用時とほぼ同じ形状を有しており、繊維ろ材から短繊維がほつれた形跡は見られなかった。
The filter tower was previously filled with 20 L of fiber filter material (apparent volume).
The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 hours. In the backwashing method, air was supplied from the air supply pipe D, the fiber filter medium to which SS was attached was shaken, and the SS was peeled off from the fiber filter medium. Thereafter, the cleaning water was supplied from the cleaning water flow pipe E, and the cleaning water containing SS was discharged from the cleaning water discharge pipe C. The aeration rate was 1.5 m / min and the water flow rate was 1.0 m / min. The above backwashing process was repeated 5 times to resume filtration.
The filtration performance after about 6 months was 4 mg / L for the SS of the treated water with respect to the SS concentration of 10 mg / L for the raw water. Further, the fiber filter medium had almost the same shape as that in use, and there was no evidence of short fibers frayed from the fiber filter medium.

実施例2
図2に示すφ160mmのろ過装置を用いて、繊維ろ材(密度90kg/m)を用いたろ過を行った。繊維ろ材は、実施例1同様とした。
予めろ過塔内には、繊維ろ材を20L分(見掛け容積)充填した。
原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時間ごとに逆洗工程を実施した。逆洗方法は、空気供給管Dから空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材からSSを剥離した。その後、洗浄水の通水管Eから洗浄水を供給し、洗浄水の排出管CよりSSを含む洗浄水を排出させた。通気速度は1.5m/min(0.03m/min)、通水速度は1.0m/minとした。以上の逆洗工程を5回繰り返した後、排出管Gより弁Yを開くことでろ過塔内の洗浄水を排水し、集水装置内の水位が400mmとなったのを圧力式の水位計が検知したら、弁Yを閉める信号を出した(圧密工程)。その後、ろ過を再開した。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは2mg/Lであり、良好な処理性能を得ることができた。また、繊維ろ材は、使用時とほぼ同じ形状を有しており、繊維ろ材から短繊維がほつれた形跡は見られなかった。実施例1に比べ、ろ過性能が向上したのは、圧密工程を設けることで、繊維ろ材が密に充填されたためである。
Example 2
Filtration using a fiber filter medium (density 90 kg / m 3 ) was performed using a φ160 mm filtration device shown in FIG. The fiber filter medium was the same as in Example 1.
The filter tower was previously filled with 20 L of fiber filter material (apparent volume).
The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 hours. In the backwashing method, air was supplied from the air supply pipe D, the fiber filter medium to which SS was attached was shaken, and the SS was peeled off from the fiber filter medium. Thereafter, the cleaning water was supplied from the cleaning water flow pipe E, and the cleaning water containing SS was discharged from the cleaning water discharge pipe C. The ventilation speed was 1.5 m / min (0.03 m 3 / min), and the water flow speed was 1.0 m / min. After repeating the above backwashing process five times, the wash water in the filtration tower is drained by opening the valve Y from the discharge pipe G, and the water level in the water collecting device is 400 mm. Was detected, a signal for closing the valve Y was issued (consolidation process). Thereafter, filtration was resumed.
As for the filtration performance after about 6 months, the SS concentration of the treated water was 2 mg / L with respect to the SS concentration of the raw water of 10 mg / L, and a good treatment performance could be obtained. Further, the fiber filter medium had almost the same shape as that in use, and there was no evidence of short fibers frayed from the fiber filter medium. The reason why the filtration performance was improved as compared with Example 1 was that the fiber filter medium was densely packed by providing the consolidation step.

実施例3
図3に示すφ160mmのろ過装置を用いて、繊維ろ材(密度90kg/m)を用いたろ過を行った。繊維ろ材は、実施例2同様とした。実施例2との違いは、空気の供給管を分岐し、それぞれ1/2ずつの供給量で空気の供給量が可能なことであり、その他の条件は実施例2と同じである。
予めろ過塔内には、繊維ろ材を20L分(見掛け容積)充填した。
原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時間ごとに逆洗工程を実施した。逆洗方法は、空気供給管D及び供給管D’から空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材からSSを剥離した。その後、洗浄水の通水管Eから洗浄水を供給し、洗浄水の排出管CよりSSを含む洗浄水を排出させた。通気速度は0.75m/min(0.015m3/min)、通水速度は1.0m/minとし、供給管Dと供給管D’を交互運転とすることで繊維ろ材を旋回流を起こすことで洗浄した。以上の逆洗工程を5回繰り返した後、排出管Gより弁Yを開くことでろ過塔内の洗浄水を排水し、集水装置内の水位が400mmとなったのを圧力式の水位計が検知したら、弁Yを閉める信号を出した(圧密工程)。その後、ろ過を再開した。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは2mg/Lであり、実施例2同様に良好な処理性能を得ることができた。また、繊維ろ材は、使用時とほぼ同じ形状を有しており、繊維ろ材から短繊維がほつれた形跡は見られなかった。実施例2に比べ、洗浄時繊維ろ材に旋回流を起こして洗浄したことで、少ない空気量で効果的に洗浄をすることができた。
Example 3
Filtration using a fiber filter medium (density 90 kg / m 3 ) was performed using a φ160 mm filtration device shown in FIG. The fiber filter medium was the same as in Example 2. The difference from the second embodiment is that the air supply pipe is branched, and the supply amount of air can be reduced by a half of each supply amount. The other conditions are the same as those of the second embodiment.
The filter tower was previously filled with 20 L of fiber filter material (apparent volume).
The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 hours. In the backwashing method, air was supplied from the air supply pipe D and the supply pipe D ′, the fiber filter medium to which SS adhered was shaken, and the SS was peeled off from the fiber filter medium. Thereafter, the cleaning water was supplied from the cleaning water flow pipe E, and the cleaning water containing SS was discharged from the cleaning water discharge pipe C. Aeration speed is set to 0.75 m / min (0.015 m3 / min), a water flow speed is set to 1.0 m / min, and the supply pipe D and the supply pipe D ′ are operated alternately to cause a swirling flow of the fiber filter medium. Washed with. After repeating the above backwashing process five times, the wash water in the filtration tower is drained by opening the valve Y from the discharge pipe G, and the water level in the water collecting device is 400 mm. Was detected, a signal for closing the valve Y was issued (consolidation process). Thereafter, filtration was resumed.
As for the filtration performance after about 6 months, the SS of the treated water was 2 mg / L with respect to the SS concentration of the raw water of 10 mg / L, and good treatment performance could be obtained as in Example 2. Further, the fiber filter medium had almost the same shape as that in use, and there was no evidence of short fibers frayed from the fiber filter medium. Compared to Example 2, it was possible to effectively wash with a small amount of air by washing the fiber filter medium with a swirling flow during washing.

実施例4
図2に示すφ160mmのろ過装置を用いて、繊維ろ材(密度90kg/m)を用いたろ過を行った。繊維ろ材は以下のようにして製造した。
(混綿工程)芯鞘構造の複合ポリエステル繊維(4.4dtex)を80質量部と、芯鞘構造の複合ポリエステル繊維(6.6dtex)を20質量部とを混綿し混綿体を得た。
(スライバー工程)次いで、混綿体を紡績用カード機、練条機に通し、スライバー(質量100g/m、直径10mm)とした。
(溶着工程)次いで、スライバーに、150℃の熱風を吹き掛けることにより、鞘成分を溶着させて、2種の複合ポリエステル繊維を一体化させ、冷却することにより棒状の溶着スライバーを得た。なお、かかる溶着スライバーは、表面に羽毛状、ループ状の毛羽を有していた。
(切断工程)その後、溶着スライバーを、レーザカットで全長7mmとなるようにカットし、本発明の繊維ろ材を得た。なお、カット面の端部においては、繊維同士が融着されていた。
繊維ろ材の真比重1.38であり、長さ7mm、直径φ7mmである。
Example 4
Filtration using a fiber filter medium (density 90 kg / m 3 ) was performed using a φ160 mm filtration device shown in FIG. The fiber filter medium was manufactured as follows.
(Mixed cotton process) 80 mass parts of composite polyester fibers (4.4 dtex) with a core-sheath structure and 20 mass parts of composite polyester fibers with a core-sheath structure (6.6 dtex) were mixed to obtain a blended cotton body.
(Sliver process) Next, the blended cotton body was passed through a spinning card machine and a drawing machine to obtain a sliver (mass 100 g / m, diameter 10 mm).
(Welding step) Next, the sheath component was welded by blowing hot air at 150 ° C. on the sliver to integrate the two types of composite polyester fibers, and the rod-shaped welded sliver was obtained by cooling. Such a welding sliver had feathers and loops on the surface.
(Cutting step) Thereafter, the welding sliver was cut by laser cutting so as to have a total length of 7 mm to obtain the fiber filter medium of the present invention. It should be noted that the fibers were fused at the end of the cut surface.
The true specific gravity of the fiber filter medium is 1.38, the length is 7 mm, and the diameter is 7 mm.

予めろ過塔内には、繊維ろ材を20L分(見掛け容積)充填した。
原水の通水量は20m/d、ろ過層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時間ごとに逆洗工程を実施した。逆洗方法は、空気供給管Dから空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材からSSを剥離した。その後、洗浄水の通水管Eから洗浄水を供給し、洗浄水の排出管CよりSSを含む洗浄水を排出させた。通気速度は1.5m/min(0.03m/min)、通水速度は1.0m/minとした。以上の逆洗工程を5回繰り返した後、排出管Gより弁Yを開くことでろ過塔内の洗浄水を排水し、集水装置内の水位が400mmとなったのを圧力式の水位計が検知したら、弁Yを閉める信号を出した(圧密工程)。その後、ろ過を再開した。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは2mg/Lであり、良好な処理性能を得ることができた。また、繊維ろ材は、使用時とほぼ同じ形状を有しており、繊維ろ材から短繊維がほつれた形跡は見られなかった。実施例1に比べ、ろ過性能が向上したのは、圧密工程を設けることで、繊維ろ材が密に充填されたためである。
The filter tower was previously filled with 20 L of fiber filter material (apparent volume).
The flow rate of the raw water was 20 m 3 / d, the flow rate in the filtration layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 hours. In the backwashing method, air was supplied from the air supply pipe D, the fiber filter medium to which SS was attached was shaken, and the SS was peeled off from the fiber filter medium. Thereafter, the cleaning water was supplied from the cleaning water flow pipe E, and the cleaning water containing SS was discharged from the cleaning water discharge pipe C. The ventilation speed was 1.5 m / min (0.03 m 3 / min), and the water flow speed was 1.0 m / min. After repeating the above backwashing process five times, the wash water in the filtration tower is drained by opening the valve Y from the discharge pipe G, and the water level in the water collecting device is 400 mm. Was detected, a signal for closing the valve Y was issued (consolidation process). Thereafter, filtration was resumed.
As for the filtration performance after about 6 months, the SS concentration of the treated water was 2 mg / L with respect to the SS concentration of the raw water of 10 mg / L, and a good treatment performance could be obtained. Further, the fiber filter medium had almost the same shape as that in use, and there was no evidence of short fibers frayed from the fiber filter medium. The reason why the filtration performance was improved as compared with Example 1 was that the fiber filter medium was densely packed by providing the consolidation step.

比較例1
この例は、実施例1の比較例であり、繊維ろ材を製造するときの切断工程でカット面を融着させていない以外は実施例1と同じとした。ろ過装置、ろ過方法、逆洗方法も実施例1と同様である。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは5mg/Lであり、実施例1にくらべ低下した。繊維ろ材を確認すると、ろ材の両端が少しほつれ、使用時に比べ、全体的に大きくなっていた。そのため、繊維ろ材と繊維ろ材の空隙が大きくなり、懸濁物質が処理水にリークしやすくなったと推測される。
Comparative Example 1
This example is a comparative example of Example 1, and was the same as Example 1 except that the cut surface was not fused in the cutting step when manufacturing the fiber filter medium. The filtration device, the filtration method, and the backwashing method are the same as in Example 1.
The filtration performance after about 6 months was 5 mg / L of the treated water with respect to the SS concentration of the raw water of 10 mg / L, which was lower than that of Example 1. When the fiber filter medium was confirmed, both ends of the filter medium frayed a little, and it was larger as a whole than at the time of use. Therefore, it is presumed that the gap between the fiber filter medium and the fiber filter medium is increased, and the suspended substance is likely to leak into the treated water.

比較例2
この例は、実施例2の比較例であり、繊維ろ材を製造するときの切断工程でカット面を融着させていない以外は実施例2と同じとした。ろ過装置、ろ過方法、逆洗方法も実施例2と同様である。
約6ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは3mg/Lであり、実施例2にくらべ低下した。繊維ろ材を確認すると、ろ材の両端が少しほつれ、使用時に比べ、全体的に大きくなっていた。そのため、繊維ろ材と繊維ろ材の空隙が大きくなり、懸濁物質が処理水にリークしやすくなったと推測される。
Comparative Example 2
This example is a comparative example of Example 2, and was the same as Example 2 except that the cut surface was not fused in the cutting step when manufacturing the fiber filter medium. The filtration device, the filtration method, and the backwashing method are the same as in Example 2.
The filtration performance after about 6 months was 3 mg / L for the treated water with respect to the SS concentration of 10 mg / L for the raw water, which was lower than that in Example 2. When the fiber filter medium was confirmed, both ends of the filter medium frayed a little, and it was larger as a whole than at the time of use. Therefore, it is presumed that the gap between the fiber filter medium and the fiber filter medium is increased, and the suspended substance is likely to leak into the treated water.

1:ろ過塔、2:繊維ろ材を充填したろ過層、3:集水装置、4:多孔部材、5:水位計、6:切断溶着部、7:一部溶着部、8:繊維、A:原水の導入管、C:洗浄水の排水管、D、D’:空気供給管、E:洗浄水の通水管、F:処理水流出管、G:排出管、Y:弁   1: Filtration tower, 2: Filtration layer filled with fiber filter medium, 3: Water collecting device, 4: Porous member, 5: Water level gauge, 6: Cut welded part, 7: Partial welded part, 8: Fiber, A: Raw water introduction pipe, C: Wash water drain pipe, D, D ': Air supply pipe, E: Wash water flow pipe, F: Treated water outflow pipe, G: Discharge pipe, Y: Valve

Claims (10)

内部に繊維ろ材からなるろ過層と、その下部に処理水の集水装置とを有するろ過塔と、該ろ過塔の上部に処理されるべき被処理水の導入管Aと、該下部に空気を供給する供給管Dと、前記集水装置からろ過層上部以上に立ち上げられた処理水流出管Fとを備えたろ過装置において、前記繊維ろ材は、両端部が溶着されている構造の繊維ろ材であることを特徴とするろ過装置。   A filtration tower having a filtration layer made of a fiber filter inside, a water collecting device for treated water at the lower part thereof, an introduction pipe A for treated water to be treated at the upper part of the filtration tower, and air at the lower part In the filtration apparatus provided with the supply pipe D to be supplied and the treated water outflow pipe F raised above the filtration layer from the water collecting apparatus, the fiber filter medium has a structure in which both ends are welded. A filtration device characterized by being. 前記繊維ろ材が、芯鞘構造の複合熱可塑性繊維、芯鞘構造の複合熱可塑性繊維と芯鞘構造の複合熱可塑性繊維との集合体、又は、芯鞘構造の複合熱可塑性繊維と熱可塑性繊維との集合体からなり、繊維方向に引き揃えられていることを特徴とする請求項1記載のろ過装置。 The fiber filter medium is a core-sheath composite thermoplastic fiber, a core-sheath composite thermoplastic fiber and a core-sheath composite thermoplastic fiber, or a core-sheath composite thermoplastic fiber and a thermoplastic fiber. The filtration device according to claim 1, wherein the filtration device is aligned in the fiber direction. 前記ろ過塔内のろ過層上部には、前記繊維ろ材の直径、又は直線部の長さのうち最も短い長さよりも小さいな目開きを有する多孔部材を、水面に対して水平から垂直の任意の角度でろ材の流出阻止用として設置し、前記ろ過塔上部にろ材の洗浄水を排水する排水管Cと、該下部にろ材を洗浄する洗浄水を上向流で通水する通水管Eとを備えたことを特徴とする請求項1又は2記載のろ過装置。   In the upper part of the filtration layer in the filtration tower, a porous member having an opening smaller than the shortest length of the diameter of the fiber filter medium or the length of the straight line portion is arbitrary from horizontal to vertical with respect to the water surface. A drainage pipe C for draining the filter medium washing water at the upper part of the filter tower and a water pipe E for passing the wash water for washing the filter medium upward at the lower part. The filtration apparatus according to claim 1, wherein the filtration apparatus is provided. 前記ろ過塔内の集水装置内又は前記処理水流出管Fには、前記ろ過層内の液を排水する排出管Gを備えたことを特徴とする請求項1、2又は3記載のろ過装置。   The filtration apparatus according to claim 1, 2 or 3, wherein the water collecting apparatus in the filtration tower or the treated water outflow pipe F includes a discharge pipe G for draining the liquid in the filtration layer. . 前記ろ過塔下部に、空気を供給する供給管Dとは別に、流量調整可能な空気の供給管D’が設置されていることを特徴とする請求項1〜4のいずれか1項に記載のろ過装置。   5. The air supply pipe D ′ whose flow rate can be adjusted is installed in the lower part of the filtration tower, in addition to the supply pipe D that supplies air, according to claim 1. Filtration device. 懸濁物質を含有する被処理水を、請求項1〜5のいずれか1項に記載のろ過装置に通して、被処理水中の懸濁物質をろ過することを特徴とするろ過方法。   A filtration method comprising filtering water suspended in water to be treated by passing the water to be treated containing the suspended solids through the filtration device according to any one of claims 1 to 5. 前記ろ過方法において、ろ過性能が低下すると、ろ過塔下部に備えた空気を供給する供給管Dから空気を供給して、ろ過槽内の繊維ろ材を揺動させて繊維ろ材に付着した固形物を剥離する洗浄工程を行うことを特徴とする請求項6記載のろ過方法。   In the filtration method, when the filtration performance is lowered, air is supplied from a supply pipe D that supplies air at the lower part of the filtration tower, and the solid matter attached to the fiber filter medium is swung by the fiber filter medium in the filter tank. The filtration method according to claim 6, wherein a cleaning step for peeling is performed. 懸濁物質を含有する被処理水を請求項4記載のろ過装置に通水して、被処理水中の懸濁物質をろ過する方法において、ろ過性能が低下すると、ろ過塔内の繊維ろ材に付着した固形物を剥離する洗浄工程と、前記洗浄工程の後に、前記排出管Gからろ過層内のろ材とろ材の空隙にある液を全量又は一部を排水することでろ材を圧密させる圧密工程とを実施することを特徴とするろ過方法。   In the method of passing the water to be treated containing suspended solids through the filtration device according to claim 4 and filtering the suspended solids in the water to be treated, if the filtration performance is reduced, it adheres to the fiber filter medium in the filtration tower. A cleaning step of peeling off the solid matter, and a compacting step of consolidating the filter medium by draining all or part of the liquid in the filter medium in the filter layer and the filter medium from the discharge pipe G after the cleaning process, The filtration method characterized by implementing. 前記洗浄工程は、ろ過塔内に空気を供給して繊維ろ材を揺動させて行うことを特徴とする請求項8記載のろ過方法。   The filtration method according to claim 8, wherein the washing step is performed by supplying air into the filtration tower and swinging the fiber filter medium. 懸濁物質を含有する被処理水を請求項5記載のろ過装置に通水して、被処理水中の懸濁物質をろ過する方法において、ろ過性能が低下すると、固形物を剥離する洗浄工程をろ過塔下部に設置された空気を供給する供給管Dと供給管D’から供給する空気の量に流量差を発生させることで、ろ過層の繊維ろ材に旋回流を起こしつつ行うことを特徴とするろ過方法。   In the method of passing the to-be-treated water containing a suspended substance through the filtration device according to claim 5 and filtering the suspended substance in the to-be-treated water, when the filtration performance is reduced, a washing step for peeling off the solid matter is performed. It is characterized by performing a swirling flow in the fiber filter medium of the filtration layer by generating a flow rate difference in the amount of air supplied from the supply pipe D and the supply pipe D ′ for supplying air installed in the lower part of the filtration tower. Filtration method.
JP2011218872A 2010-10-04 2011-10-03 Filtering apparatus and filtering method Pending JP2012096222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218872A JP2012096222A (en) 2010-10-04 2011-10-03 Filtering apparatus and filtering method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010224702 2010-10-04
JP2010224702 2010-10-04
JP2011218872A JP2012096222A (en) 2010-10-04 2011-10-03 Filtering apparatus and filtering method

Publications (1)

Publication Number Publication Date
JP2012096222A true JP2012096222A (en) 2012-05-24

Family

ID=46388774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218872A Pending JP2012096222A (en) 2010-10-04 2011-10-03 Filtering apparatus and filtering method

Country Status (1)

Country Link
JP (1) JP2012096222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107875691A (en) * 2017-12-13 2018-04-06 宜兴市江华环保科技有限公司 A kind of high-efficiency fiber filter
CN108308100A (en) * 2018-04-02 2018-07-24 天津农学院 A kind of circulating water body device for cultivating penaeus monodon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811008A (en) * 1981-07-13 1983-01-21 Unitika Ltd Filter device
US5032261A (en) * 1988-05-24 1991-07-16 Dufresne-Henry, Inc. Compact biofilter for drinking water treatment
US5252231A (en) * 1990-12-21 1993-10-12 Institut National Des Sciences Appliquees De Toulouse Process and reactor for water treatment using a granular bed adapted to float during cleaning
JPH0595700U (en) * 1991-10-23 1993-12-27 荏原インフィルコ株式会社 Aerobic biological filtration equipment
JPH07163991A (en) * 1993-12-10 1995-06-27 Chisso Corp Fiber formed material and its production
JPH08337956A (en) * 1995-06-09 1996-12-24 Kureha Chem Ind Co Ltd Fiber aggregate structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811008A (en) * 1981-07-13 1983-01-21 Unitika Ltd Filter device
JPS6255885B2 (en) * 1981-07-13 1987-11-21 Unitika Ltd
US5032261A (en) * 1988-05-24 1991-07-16 Dufresne-Henry, Inc. Compact biofilter for drinking water treatment
US5252231A (en) * 1990-12-21 1993-10-12 Institut National Des Sciences Appliquees De Toulouse Process and reactor for water treatment using a granular bed adapted to float during cleaning
JPH0595700U (en) * 1991-10-23 1993-12-27 荏原インフィルコ株式会社 Aerobic biological filtration equipment
JPH07163991A (en) * 1993-12-10 1995-06-27 Chisso Corp Fiber formed material and its production
JPH08337956A (en) * 1995-06-09 1996-12-24 Kureha Chem Ind Co Ltd Fiber aggregate structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107875691A (en) * 2017-12-13 2018-04-06 宜兴市江华环保科技有限公司 A kind of high-efficiency fiber filter
CN108308100A (en) * 2018-04-02 2018-07-24 天津农学院 A kind of circulating water body device for cultivating penaeus monodon

Similar Documents

Publication Publication Date Title
TWI548443B (en) An unshaped filter layer and a filter device provided with the filter layer
JP5850793B2 (en) Suspended water filtration apparatus and method
JP5748338B2 (en) Suspended water filtration apparatus and method
JP5319592B2 (en) Suspended water filtration method and filtration apparatus
JP2012096222A (en) Filtering apparatus and filtering method
JP5844595B2 (en) Manufacturing method of fiber filter media
JP2004089766A (en) Ascending flow filtering method for suspension water and apparatus therefor
JP3815615B2 (en) High-speed filtration device using fiber filter media
TWI225802B (en) High-speed filtering device using fiber filter medium
JP4408765B2 (en) Fiber filter medium, filtration apparatus using the same, and filtration method
KR101938134B1 (en) Indefinite form filter medium layer and filter device provided with same
JPH05285478A (en) Apparatus for treating water containing suspended component
JP5742032B2 (en) Filtration device
JP2587981Y2 (en) Filter media and filtration equipment
JP2009022911A (en) Dredging wastewater purification system
CN106436426B (en) The method and device for removing facing paper plain boiled water blanket hair, recycling three sections of tailings titanium dioxides
JP4142395B2 (en) Filtration apparatus and filtration method
JP2004136197A (en) Method for washing filter medium
JP2009024111A (en) Coal dressing system
JP6450645B2 (en) Silt filtration device and silt filtration method
JP2009023265A (en) Molding machine for centrifugal molding of concrete
JPH10305204A (en) Cleaning method of fiber filter material
JP2009024109A (en) Coal dressing system
JP2009024110A (en) Coal dressing system
JP2009023884A (en) Aggregate manufacturing plant system for concrete product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825