JPH02135200A - Treatment of organic waste water and device therefor - Google Patents

Treatment of organic waste water and device therefor

Info

Publication number
JPH02135200A
JPH02135200A JP63287268A JP28726888A JPH02135200A JP H02135200 A JPH02135200 A JP H02135200A JP 63287268 A JP63287268 A JP 63287268A JP 28726888 A JP28726888 A JP 28726888A JP H02135200 A JPH02135200 A JP H02135200A
Authority
JP
Japan
Prior art keywords
filter
filtration
water
tank
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287268A
Other languages
Japanese (ja)
Inventor
Shinichi Endo
伸一 遠藤
Yoshinari Fujisawa
能成 藤沢
Hideji Takeuchi
竹内 秀二
Seiichi Kanamori
聖一 金森
Yuji Yoshii
吉井 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63287268A priority Critical patent/JPH02135200A/en
Publication of JPH02135200A publication Critical patent/JPH02135200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To reduce the treating time and to decrease the frequency of washings by passing org. waste water through a filter bed, and further injecting an oxygen-contg. gas. CONSTITUTION:The waste water 8 is passed through a screen, etc., and then introduced into a tank filter 2. Most of the suspended solids(SS) and SS-based oxygen demand (OD) are collected by a fibrous filter medium packed in the filter bed 1, and removed. The effluent water 22 from the tank filter 2 is sent to a biological-membrane tank filter 4, and fine SS, which has not been removed in the tank filter 2, is collected. The BOD component is biologically oxidized and decomposed by the oxygen in the air supplied from an air diffuser 10 and the microbes living in the filter bed 3, and the waste water is purified. By this method, the working rate of the filter is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、都市下水、産業排水などBOD成分、SS(
懸濁性固形物)を含有する有機性排水を生物膜濾過を組
み込んだ処理をする有機性排水の処理方法とその装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to BOD components such as urban sewage and industrial wastewater, SS (
The present invention relates to a method and apparatus for treating organic wastewater that incorporates biofilm filtration to treat organic wastewater containing (suspended solids).

[従来の技術] 生物膜濾過法は、粒状の濾材を充填した生物膜濾過床を
備え、濾過床の下部から空気を吹き込む散気手段が設け
られた槽内に、排水を流入させ、濾材の表面に着生して
いる好気性微生物の作用によって排水中のBOD成分を
生物学的に酸化分解する方法である。この方法は、濾過
床内での気液接触がよいために酸素溶解効率が高く、ま
た、BOD成分の除去と同時にSSを除去する機能をも
有している。しかし、この方法においては、特に高BO
D、高SSの排水を処理する場合には濾過床の目詰まり
が激しいなめ、頻繁に洗浄をに行わなければなす、その
都度除去操作を中断しなければならないと云う開門があ
る。
[Prior Art] In the biofilm filtration method, wastewater is made to flow into a tank equipped with a biofilm filtration bed filled with granular filter media and equipped with an aeration means that blows air from the bottom of the filtration bed. This method biologically oxidizes and decomposes BOD components in wastewater by the action of aerobic microorganisms that grow on the surface. This method has high oxygen dissolution efficiency due to good gas-liquid contact within the filter bed, and also has the function of removing SS at the same time as removing BOD components. However, in this method, especially high BO
D. When treating wastewater with high SS, the filter bed becomes severely clogged, requiring frequent cleaning, and the removal operation must be interrupted each time.

この濾過床の目詰まりを緩和させ、洗浄回数を減少させ
た技術が特開昭58−49492号公報に提案されてい
る。この技術は、生物処理機能とSSの捕捉機能を合わ
せ持つ生物膜処理工程を2段に分割し、排水中のSSと
BOD成分の除去を各段に分担させて処理するものであ
る。第4図はこの技術の説明図である。第4図において
、この技術の装置は、浸漬濾過床41を備えた第1工程
の処理槽と、深層濾過床42を備えた第2工程の処理槽
が直列に配置されている。各処理槽の濾過床41.42
には粒状濾材が充填されており、第1工程の浸漬濾過床
41に充填する濾材の粒径は第2工程の深層濾過床42
に充填する濾材の粒径より大きくしである。そして、各
処理槽にはその下部にそれぞれ濾過床41.42に着生
している微生物に酸素を供給するための散気装置43.
44を備えている。但し、第1工程は嫌気性生物処理を
することもあり、この際には散気装置43は停止する。
A technique for alleviating the clogging of the filter bed and reducing the number of times of cleaning is proposed in Japanese Patent Application Laid-Open No. 58-49492. This technology divides the biofilm treatment process, which has both a biological treatment function and an SS capture function, into two stages, and each stage is responsible for removing SS and BOD components in wastewater. FIG. 4 is an explanatory diagram of this technique. In FIG. 4, in the apparatus of this technology, a first step treatment tank equipped with a submerged filter bed 41 and a second step treatment tank equipped with a deep filter bed 42 are arranged in series. Filter bed of each treatment tank 41.42
is filled with granular filter media, and the particle size of the filter media filled in the submerged filter bed 41 in the first step is equal to that of the deep filter bed 42 in the second step.
The particle size should be larger than that of the filter medium to be filled. Each treatment tank has an aeration device 43 at the bottom thereof for supplying oxygen to the microorganisms growing on the filter beds 41 and 42, respectively.
It is equipped with 44. However, the first step may include anaerobic biological treatment, and in this case, the air diffuser 43 is stopped.

上記技術によってBOD成分及びSSを含有する有機性
排水を処理する場合、排水8は第1工程の浸漬濾過床4
1でBOD成分の一部及びssの一部が除去される。こ
の第1工程の流出水4oに残存しているSS及びBOD
成分は次の第2工程の深層濾過床42で除去され、処理
水23となって排出する。
When treating organic wastewater containing BOD components and SS by the above technique, the wastewater 8 is
1, part of the BOD component and part of ss are removed. SS and BOD remaining in the effluent water 4o from this first step
The components are removed in the next second step, a deep filtration bed 42, and are discharged as treated water 23.

そして、実施例にはS S 160〜260mg/ 4
、BOD140〜380 mg/βの下水を処理した結
果が示されている。この実験は第1工程を嫌気性生物処
理にしており、実験条件は次のごとくで行っている。
And, in the examples, S S 160 to 260 mg/4
, the results of treating sewage with a BOD of 140 to 380 mg/β are shown. In this experiment, the first step was anaerobic biological treatment, and the experimental conditions were as follows.

第1工程(嫌気性濾過床) 濾材   10〜15止のプラスチック粒子充填高  
2m 通水速度 濾過床内滞留時間 4時間 (12m/日) 第2工程(深層濾過床) 濾材   3〜4 amのアンスラサイト充填高  1
.5m 通水速度 LOm/時 (240m7日)実験結果によ
れば、第1工程におけるSSの除去率は43〜53%、
BODの除去率は57〜79%になっている。また、濾
過未洗浄の必要頻度は、第1工程の濾過床は48〜60
時間に1回、第2工程の濾過床は30〜40時間に1回
であったことが記載されている。
1st step (anaerobic filter bed) Filter medium 10-15 stops plastic particle filling height
2m Water flow rate Residence time in filter bed 4 hours (12m/day) 2nd process (deep filter bed) Filter medium 3-4 am Anthracite filling height 1
.. 5m Water flow rate LOm/hour (240m 7 days) According to the experimental results, the removal rate of SS in the first step was 43-53%,
The BOD removal rate is 57-79%. In addition, the required frequency of filtering and unwashing is 48 to 60 times for the filtration bed in the first step.
It is stated that the filter bed in the second step was once every 30 to 40 hours.

[発明が解決しようとする課題] 上記の従来技術は、濾過未洗浄の頻度を減少させること
ができる有用な技術ではあるが、処理時間(滞留時間)
を長く要するため装置が大型になり、また濾過未洗浄の
頻度もさらに減少させるべき必要性もある。
[Problems to be Solved by the Invention] The above-mentioned conventional technology is a useful technology that can reduce the frequency of filtration and unwashing, but the processing time (residence time)
This requires a long time, resulting in a large-sized device, and there is also a need to further reduce the frequency of filtration and unwashing.

すなわち、従来技術は、生物処理機能とSSの捕捉機能
を合わせ持つ生物膜処理工程を単に2段に分割したもの
であり、BOD成分の除去はすべて生物学的酸化分解に
よっているので、その処理時間は自ずと長くなり、特に
第1工程における濾過床内滞留時間は長時間を要してい
る。また、第1工程において、高BOD、高SSの排水
を生物学的酸化分解のみによって浄化すると、濾過床を
目詰まりさせる度合いが大きく、濾過未洗浄頻度が多く
なることは避けられない。そして、第1工程の濾過床に
は粒状濾材が充填されているか、粒状濾材は圧損が大き
いので目詰まりの度合いが大きく、高BOD、高SSの
処理用としては適当な濾材ではない。
In other words, the conventional technology simply divides the biofilm treatment process, which has both a biological treatment function and an SS capture function, into two stages, and since all the removal of BOD components is done by biological oxidative decomposition, the treatment time is naturally becomes longer, and particularly the residence time in the filter bed in the first step requires a long time. Furthermore, in the first step, if high BOD and high SS wastewater is purified only by biological oxidative decomposition, it is inevitable that the filter bed will be clogged to a large degree and the frequency of filtering and unwashing will increase. The filtration bed in the first step is filled with granular filter media, or granular filter media has a large pressure loss and therefore has a high degree of clogging, so it is not a suitable filter media for high BOD and high SS treatment.

本発明は、上記の問題点を解決し、処理時間が短く、濾
過床の洗浄頻度をさらに減少させて長時間の処理を継続
することができる有機性排水の処理方法及びその装置を
提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a method and apparatus for treating organic wastewater that can continue treatment for a long time by shortening the treatment time and further reducing the frequency of cleaning the filter bed. With the goal.

[課題を解決するための手段] 上記の目的を達成するために、本発明の方法は、耐水性
繊維を不織に形成し且つ通水時における空隙率が実質的
に変化しない繊維濾材が充填されている濾過床に有機性
排水を通水してSS及びSS性BOD成分を捕捉する濾
過工程と、この濾過工程の流出水を粒状濾材が充填され
ている濾過床に通水するとともに酸素含有ガスを導入し
、主としてBODを除去する生物処理工程よりなってい
る。
[Means for Solving the Problems] In order to achieve the above object, the method of the present invention includes a method in which water-resistant fibers are formed into a non-woven material and filled with a fiber filter medium whose porosity does not substantially change when water is passed through. A filtration step in which organic wastewater is passed through a filtration bed filled with organic waste water to capture SS and SS BOD components, and the effluent from this filtration step is passed through a filtration bed filled with granular filter media and oxygen-containing It consists of a biological treatment process in which gas is introduced and mainly BOD is removed.

また、本発明の装置においては、耐水性繊維を不織に形
成し且つ通水時における空隙率が実質的に変化しない繊
維濾材が充填された濾過床を備えた濾過槽と、この濾過
槽と流路によって接続され、粒状濾材が充填された濾過
床を備え、この濾過床の下方又は内部に酸素含有ガスを
供給する手段を備えた生物膜濾過槽よりなっている。前
記繊維濾材を形成する耐水性繊維としては、ポリ塩化ビ
ニリデンなどのプラスチック繊維あるいはステンレス鋼
などの金属線を使用する。また、前記粒状濾材としては
、アンスラサイト、粒状活性炭、プラスチック粒、軽量
骨材、膨張頁岩などで、任意の形状のものを使用する。
Further, the device of the present invention includes a filtration tank equipped with a filtration bed filled with a fibrous filter medium made of non-woven water-resistant fibers and whose porosity does not substantially change during water passage; It consists of a biofilm filtration tank connected by a flow path, equipped with a filtration bed filled with granular filter media, and equipped with means for supplying an oxygen-containing gas below or inside the filtration bed. As the water-resistant fibers forming the fibrous filter medium, plastic fibers such as polyvinylidene chloride or metal wires such as stainless steel are used. Further, as the granular filter medium, anthracite, granular activated carbon, plastic particles, lightweight aggregate, expanded shale, etc., in any shape can be used.

[作用] 本発明は、排水中のSS及びSSに含まれ微生物による
浄化速度が比較的遅いBOD成分(SS性BOD成分)
を物理的又は物理化学的に捕捉する濾過と、微細なSS
及び主としてBOD成分を除去する生物膜濾過を組み合
わせた有機性排水の処理方法及びその装置であり、前段
の濾過処理で、排水中のSS及びSS性BOD成分の多
くを除去した後、この流出水を生物膜濾過によって処理
するものである。このため、処理工程別の機能が明確に
分担され、それぞれの処理工程を効率よく行うことがで
きる。すなわち、前段の濾過処理においては、単に濾過
機能だけを効率よくおこなってSS及びSS性BODを
できるだけ後段の生物膜濾過処理に持ち込ませないよう
にする。この際、前段の濾過処理では生物学的処理操作
を伴わないので、処理時間は短時間でよく、また濾過床
の目詰まりの度合いも小さく、長時間の濾過が継続でき
る。生物膜濾過処理においては、濾過処理されてSS及
びSS性BODの大部分が除去された流出水を処理する
ので、そのBOD負荷は著しく軽減される。従って、濾
過床の目詰まりは少なくなり、長時間の処理が継続でき
る。
[Function] The present invention is effective against SS in wastewater and BOD components contained in SS and whose purification rate by microorganisms is relatively slow (SS BOD components).
Filtration that physically or physicochemically captures fine SS
This is a method and apparatus for treating organic wastewater that combines biofilm filtration that mainly removes BOD components, and after removing most of SS and SS-based BOD components in the wastewater in the previous stage filtration treatment, this effluent water is is processed by biofilm filtration. Therefore, the functions for each processing step are clearly divided, and each processing step can be performed efficiently. That is, in the first-stage filtration process, only the filtration function is performed efficiently to prevent SS and SS-related BOD from being brought into the second-stage biofilm filtration process as much as possible. At this time, since the first-stage filtration treatment does not involve any biological treatment operation, the treatment time may be short, and the degree of clogging of the filtration bed is small, so that filtration can be continued for a long time. In biofilm filtration treatment, runoff water from which most of the SS and SS-related BOD have been removed through filtration treatment is treated, so the BOD load is significantly reduced. Therefore, the clogging of the filter bed is reduced, and the treatment can be continued for a long time.

このように、短時間で処理ができ、且つ濾過床の目詰ま
りの度合いが小さく長時間の処理を継続できるのは、前
段の濾過処理が優れた特性を有するためである。本発明
の濾過処理においては、特殊な濾材が使用されている。
The reason why the treatment can be carried out in a short time, the degree of clogging of the filter bed is small, and the treatment can be continued for a long time is because the filtration treatment in the first stage has excellent characteristics. In the filtration process of the present invention, a special filter medium is used.

この濾材が前述した耐水性繊維を不織に形成し且つ通水
時における空隙率が実質的に変化しない繊維濾材であり
、多くの試験の結果に基づいて見い出したものである。
This filter medium is a fibrous filter medium in which the above-mentioned water-resistant fibers are formed in a non-woven manner, and the porosity does not substantially change when water is passed through it, and was discovered based on the results of many tests.

本発明者らが挙げた濾材の要件は次のごとくであり、本
発明で使用する繊維濾材はこの要件のすべてに叶ってい
る。
The requirements for the filter medium listed by the present inventors are as follows, and the fiber filter medium used in the present invention satisfies all of these requirements.

■濾過速度を大きくできる。■Filtration speed can be increased.

■SSの除去効率が高い。■High SS removal efficiency.

■圧損が小さい。■Low pressure loss.

■濾過継続できる時間が長い。■ Filtration can be continued for a long time.

(目詰まりがしにくい) ■SSの捕捉量が多い。(Hard to get clogged) ■A large amount of SS is captured.

この繊維濾材は空隙率が粒状濾材に比べ非常に大きく、
従って、この繊維濾材を充填した濾過床の圧損は極めて
小さい、しかも、後述のごとく、SSの除去効率を損な
うことがないと云う特性を有する。
This fibrous filter medium has a much larger porosity than granular filter media.
Therefore, the pressure loss of the filter bed filled with this fibrous filter medium is extremely small, and as described later, it has the characteristic that it does not impair the removal efficiency of SS.

この繊維濾材は空隙率が80%〜99.5%程度のもの
が使用される。この空隙率は、通水中に圧縮されて圧損
が上昇したり目詰まりの度合いが大きくなく、且つSS
の除去率が良好であることを前提にして決定した。一般
に、粒状濾材の空隙率は、アンスラサイトなどが45〜
55%程度、ラシヒリングなどの成形品が65〜75%
程度であるが、本発明で使用する繊維濾材はこれらの粒
状濾材よりも空隙率が大きく、しかも、高いSSの除去
効率を得ることができる。空隙率80%は、高SS濃度
の排水の濾過においても目詰まりの度合いが小さい下限
であり、空隙率が99.5%を超えるとSSの除去率が
不十分となり濾材としての機能が不足する。
The fibrous filter medium used has a porosity of about 80% to 99.5%. This porosity is such that the pressure drop does not increase due to compression during water flow, and the degree of clogging is not large, and the SS
The decision was made on the assumption that the removal rate was good. Generally, the porosity of granular filter media is 45~
Approximately 55%, molded products such as Raschig rings 65-75%
Although the fibrous filter medium used in the present invention has a larger porosity than these granular filter media, it is possible to obtain high SS removal efficiency. A porosity of 80% is the lower limit at which the degree of clogging is small even when filtering wastewater with a high SS concentration, and if the porosity exceeds 99.5%, the removal rate of SS will be insufficient and the function as a filter medium will be insufficient. .

生物膜濾過処理で使用する粒状濾材は、排水中のSS濃
度および粒径分布などによって、適当な粒径のもの選定
して使用されるが、通常2〜10l璽程度のものを用い
る。
The granular filter medium used in the biofilm filtration process is selected to have an appropriate particle size depending on the SS concentration and particle size distribution in the wastewater, and is usually about 2 to 10 liters.

[実施例] 第2図は本発明において使用する繊維濾材を模式的に示
した説明図である。この繊維濾材30は耐水性繊維31
を曲げ加工して弾性体にし、この加工された耐水性繊維
31を結合剤で被覆結合し、三次元の網目様の構造にし
て不織に形成したものである。繊維濾材30を構成する
耐水性繊維31の径は100デニール(約0.0911
1m)〜10000デニール(約0.91+u)の範囲
である。そして、繊維濾材30の空隙率は前述のように
80%〜99.5%の範囲で選定する。
[Example] FIG. 2 is an explanatory diagram schematically showing a fiber filter medium used in the present invention. This fiber filter medium 30 has water-resistant fibers 31
It is made into an elastic body by bending, and the processed water-resistant fibers 31 are coated and bonded with a binder to form a three-dimensional mesh-like structure into a non-woven material. The diameter of the water-resistant fibers 31 constituting the fiber filter medium 30 is 100 denier (approximately 0.0911
1 m) to 10,000 denier (approximately 0.91+u). The porosity of the fiber filter medium 30 is selected within the range of 80% to 99.5% as described above.

繊維濾材30を構成する耐水性繊維31の径は濾材選定
実験の結果を基に次のように決定した。
The diameter of the water-resistant fibers 31 constituting the fiber filter medium 30 was determined as follows based on the results of a filter medium selection experiment.

充填した繊維濾材30は通水中に圧縮されて減容される
ことがあれば、空隙率が減少して処理性能が変わるので
好ましくない、このため、耐水性繊維31は、繊維濾材
30が通水時に実質的に圧縮されないだけの強度を有す
る必要があり、この条件に適合する耐水性繊維31の径
は約100デニール以上が必要となる。しかし、あまり
太くなると、濾材単位容積当たりの濾材有効表面績が減
少し、濾過効率が悪化する。このように、濾過効率との
関係を考慮すると耐水性繊維31の径は10000デニ
ール以下であるのが望ましい。
If the filled fiber filter medium 30 is compressed and reduced in volume during water passage, the porosity will decrease and the processing performance will change, which is undesirable.For this reason, the water-resistant fibers 31 are Sometimes, it is necessary to have a strength that is not substantially compressed, and the diameter of the water-resistant fiber 31 that meets this condition needs to be about 100 deniers or more. However, if it becomes too thick, the effective surface area of the filter medium per unit volume of the filter medium decreases, and the filtration efficiency deteriorates. Thus, in consideration of the relationship with filtration efficiency, it is desirable that the diameter of the water-resistant fiber 31 is 10,000 deniers or less.

第1図は本発明による装置の一実施例の断面を模式的に
示した説明図である。
FIG. 1 is an explanatory diagram schematically showing a cross section of an embodiment of the device according to the present invention.

第1図において、第2図に示した繊維濾材を充填した濾
過床1を備えた濾過槽2と粒状濾材を充填した濾過床3
を備えた生物膜濾過槽4は配管5によって接続されてい
る。そして、濾過槽2には排水流入管6が、生物膜濾過
槽4には処理水排出管7が接続され、排水8の処理流路
が形成されている。生物膜濾過槽4には、濾過床3の下
方に設けた散気器10、配管11、ブロワ−12よりな
る酸素含有ガスである空気供給手段9を備え、空気13
を流入させて濾過床3に着生している微生物に酸素を供
給するようになっている。また、濾過槽2及び生物膜濾
過槽4には濾過床1.3を洗浄するための空気及び洗浄
水の供給並びに洗浄排水の排出機構が備わっている。洗
浄用空気14は洗浄用ブロワ−15、配管16、散気器
17によって濾過槽2に送られるとともに、配管18゜
11、散気器10のラインを経て生物膜濾過槽4にも供
給できる。洗浄水19は配管20から分岐され、配管2
0aによって濾過槽2に流入させ、配管20bによって
生物膜濾過槽4に流入させることができる。濾過槽2及
び生物膜濾過槽4の側部上方にはそれぞれ洗浄排水排出
管21a21bが設けられている。
In FIG. 1, a filter tank 2 equipped with a filter bed 1 filled with a fibrous filter medium shown in FIG. 2 and a filter bed 3 filled with a granular filter medium are shown.
A biofilm filtration tank 4 equipped with a filtration tank 4 is connected by a pipe 5. A wastewater inflow pipe 6 is connected to the filtration tank 2, a treated water discharge pipe 7 is connected to the biofilm filtration tank 4, and a treatment flow path for the wastewater 8 is formed. The biofilm filtration tank 4 is equipped with an air supply means 9, which is an oxygen-containing gas, consisting of an aeration diffuser 10, piping 11, and a blower 12 provided below the filtration bed 3.
is made to flow in to supply oxygen to the microorganisms growing on the filter bed 3. In addition, the filtration tank 2 and the biofilm filtration tank 4 are equipped with a mechanism for supplying air and washing water for washing the filter bed 1.3 and for discharging washing waste water. The cleaning air 14 is sent to the filtration tank 2 by a cleaning blower 15, piping 16, and a diffuser 17, and can also be supplied to the biofilm filtration tank 4 through the piping 18.11 and the diffuser 10 line. The cleaning water 19 is branched from the pipe 20 and
It can be made to flow into the filtration tank 2 through 0a, and into the biofilm filtration tank 4 through piping 20b. Washing water discharge pipes 21a21b are provided above the sides of the filtration tank 2 and the biofilm filtration tank 4, respectively.

なお、本発明の実施態様は上記の実施例に限定されるも
のではなく、例えば、繊維濾材を構成する繊維の材質は
ポリ塩化ビニリデンに限らず、ポリエチレン、ポリプロ
ピレン等のプラスチックあるいはステンレス鋼等の金属
であってもよい。また、濾過槽2の濾過床1は第2図に
示したような立方体や直方体に成形した繊維濾材を敷き
詰めるようにして形成させるだけでなく、適度の大きさ
の立方体や球状に成形したものや不定形の繊維濾材を充
填して形成させてもよい、また繊維濾材を籠状の容器に
詰め、このバックを複数個充填して濾過床を形成させて
もよい。
The embodiments of the present invention are not limited to the above-mentioned examples, and for example, the material of the fibers constituting the fiber filter medium is not limited to polyvinylidene chloride, but may also be plastics such as polyethylene or polypropylene, or metals such as stainless steel. It may be. In addition, the filter bed 1 of the filter tank 2 is not only formed by laying fiber filter media formed into a cube or rectangular parallelepiped as shown in Fig. 2, but also formed into a cube or sphere of an appropriate size. It may be formed by filling an amorphous fibrous filter medium, or the fibrous filter medium may be packed into a basket-like container and a plurality of bags may be filled therein to form a filtration bed.

このように構成された装置による排水処理方法を説明す
る。スクリーンなどを通過させた排水8を濾過槽2に流
入させる。排水8中のSS及びSS性BODの大部分は
濾過床1に充填されている繊維濾材の捕捉機能によって
除去される。前記繊維濾材を充填した濾過床1は全層に
互ってSSを捕捉する特性を有しているので、圧損の上
昇が小さく、長時間の濾過を継続することができるとと
もに、多量のSSを捕捉することができる。濾過槽2を
出た流出水22は生物膜濾過槽4に送られる。生物膜濾
過槽4におては、濾過槽2で除去できなかった微細なS
Sを捕捉するとともに、散気器10から供給される空気
中の酸素と濾過床3に生息する微生物によってBOD成
分が生物学的に酸化分解され、排水は浄化された処理水
23となって排出する。
A wastewater treatment method using the apparatus configured as described above will be explained. The waste water 8 that has passed through a screen or the like is made to flow into the filter tank 2. Most of the SS and SS BOD in the waste water 8 are removed by the trapping function of the fiber filter medium filled in the filter bed 1. The filter bed 1 filled with the fiber filter medium has the property of trapping SS in all layers, so the increase in pressure drop is small and filtration can be continued for a long time, and a large amount of SS can be collected. can be captured. Effluent water 22 leaving the filtration tank 2 is sent to the biofilm filtration tank 4. In the biofilm filtration tank 4, fine S that could not be removed in the filtration tank 2 is
While capturing S, BOD components are biologically oxidized and decomposed by the oxygen in the air supplied from the diffuser 10 and the microorganisms living in the filter bed 3, and the wastewater is discharged as purified treated water 23. do.

(実施例1) 第1図の構成による装置を使用し都市下水の処理実験を
行った。
(Example 1) An urban sewage treatment experiment was conducted using the apparatus having the configuration shown in FIG.

実験条件は第1表に示すごとくで行い、生物膜濾過槽に
は流入B OD 1 kgあたり10〜15N賛の空気
を供給した。供試した排水の水質は第2表に記載の通り
であった。この結果を第2表及び第3図に示す。
The experimental conditions were as shown in Table 1, and air of 10 to 15 N per kg of inflow BOD was supplied to the biofilm filtration tank. The water quality of the sampled wastewater was as shown in Table 2. The results are shown in Table 2 and Figure 3.

第2表 実験結果 第3図は排水と濾過槽流出水のssの粒径分布を比較し
たものである。流出水中に含まれるssの粒径は大部分
が37μ未満であり、微生物による浄化が比較的遅い3
7μ以上のssは濾過槽において殆ど除去されている。
Table 2 Experimental Results Figure 3 compares the particle size distributions of waste water and ss of the filtration tank outflow water. The particle size of SS contained in runoff water is mostly less than 37μ, and purification by microorganisms is relatively slow3.
Most of the ss of 7 μ or more is removed in the filtration tank.

換言すれば、生物膜濾過槽に送られる流出水中のBOD
成分は微生物による浄化が速いものだけになっており、
生物膜濾過槽のBOD負荷が著しく軽減されている。
In other words, the BOD in the effluent sent to the biofilm filtration tank
The ingredients are only those that are quickly purified by microorganisms,
The BOD load on the biofilm filtration tank is significantly reduced.

第2表において、濾過槽におけるss及びBODの除去
率を算定すると、ssの除去率は70〜85%であり、
この値は従来技術における第1工程の処理槽の除去率4
3〜53%に対して極めて高い値である。そして、BO
Dの除去についても、生物学的処理をした従来技術が5
7〜79%の除去率であるのに対し、単なる濾過操作だ
けで50〜60%の除去率が得られた。
In Table 2, when calculating the removal rate of ss and BOD in the filtration tank, the removal rate of ss is 70 to 85%,
This value is the removal rate of the treatment tank in the first step in the conventional technology.
This is an extremely high value compared to 3% to 53%. And B.O.
Regarding the removal of D, the conventional technology using biological treatment is
Whereas the removal rate was 7 to 79%, a removal rate of 50 to 60% was obtained by simple filtration.

そして、濾過床の洗浄頻度は、濾過槽が48〜96時間
に1回の割合、生物膜濾過槽は48〜72時間に1回の
割合であった。この洗浄頻度も従来技術に比べ大幅の減
少となっている。
The frequency of cleaning the filter bed was once every 48 to 96 hours for the filtration tank, and once every 48 to 72 hours for the biofilm filtration tank. This cleaning frequency is also significantly reduced compared to the conventional technology.

上記の実験結果をもとに、本発明と従来の活性汚泥法に
よる技術を本発明者らの試算によって比較した結果は第
3表のごとくである。
Table 3 shows the results of a comparison between the present invention and the conventional activated sludge technology based on the above experimental results, based on trial calculations by the inventors.

第3表において、本発明の濾過槽は活性汚泥法の最初沈
殿池を代わりをしており、生物膜濾過槽は活性汚泥曝気
槽の代わりをなしている。また、本発明によれば最終沈
殿池は不要である。第3表で明らかなように、本発明は
活性汚泥法に対し、スペース比で30%、エネルギー比
で35%の規模でよく、著しい省スペース及び省エネル
ギーとなる。
In Table 3, the filtration tank of the present invention replaces the initial settling tank of the activated sludge process, and the biofilm filtration tank replaces the activated sludge aeration tank. Further, according to the present invention, a final settling tank is not required. As is clear from Table 3, the present invention requires only 30% of the space ratio and 35% of the energy ratio compared to the activated sludge method, resulting in significant space and energy savings.

[発明の効果コ 本発明は、濾過処理と生物膜濾過処理の組み合わせによ
るものであり、有機性排水を優れた特性を有する繊維濾
材が充填された濾過床で濾過した後、生物膜濾過を行う
構成になっているので、次のような効果をもたらす。
[Effects of the Invention] The present invention is based on a combination of filtration treatment and biofilm filtration treatment, in which organic wastewater is filtered through a filter bed filled with a fiber filter medium having excellent characteristics, and then biofilm filtration is performed. The structure has the following effects:

濾過処理において使用する繊維濾材は、圧損が小さく、
SSの捕捉量が大きいので、長時間の濾過処理が継続で
き、濾過装置の稼働率が上がる。
The fiber filter media used in filtration treatment has low pressure loss and
Since the amount of SS trapped is large, filtration processing can be continued for a long time, increasing the operating rate of the filtration device.

さらに、濾過処理は、大きな濾過速度で、しかも短い滞
留時間で行うことができるので、濾過装置の規模が小さ
くて済む。
Furthermore, since the filtration process can be performed at a high filtration rate and with a short residence time, the scale of the filtration apparatus can be small.

排水中のSS及びSs性BOD成分の大部分は濾過処理
で除去され、生物膜濾過処理の負荷が大幅に軽減される
。これにより、高BOD、高SSの排水を効率的に処理
することができるとともに、装置規模が小さくできる。
Most of the SS and Ss-based BOD components in wastewater are removed by filtration, and the load on biofilm filtration is significantly reduced. As a result, high BOD and high SS wastewater can be efficiently treated, and the scale of the apparatus can be reduced.

また、BOD負荷が減少するので、散気する空気量が少
なくて済み、送風動力が節減できる。
Furthermore, since the BOD load is reduced, the amount of air to be diffused can be reduced, and the blowing power can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一実施例の断面を模式的に
示した説明図、第2図は本発明において使用する繊維濾
材を模式的に示した説明図、第3図は本発明による排水
と濾過槽流出水のSSの粒径分布を比較した図、第4は
従来の生物膜濾過装置の説明図である。 1.3・・・濾過床、2・・・濾過槽、4・・・生物膜
濾過槽、5・・・配管、6・・・排水流入管、7・・・
処理水排出管、8・・・排水、9・・・空気供給手段、
10・・・散気器、12・・・ブロワ−513・・・空
気、22・・・流出水、23・・・処理水、30・・・
繊維濾材、31・・・耐水性繊維。
Fig. 1 is an explanatory diagram schematically showing a cross section of an embodiment of the device according to the present invention, Fig. 2 is an explanatory diagram schematically showing a fiber filter medium used in the present invention, and Fig. 3 is an explanatory diagram schematically showing a cross section of an embodiment of the device according to the present invention. The fourth figure is an explanatory diagram of a conventional biofilm filtration device. 1.3... Filter bed, 2... Filter tank, 4... Biofilm filtration tank, 5... Piping, 6... Wastewater inflow pipe, 7...
Treated water discharge pipe, 8... Drainage, 9... Air supply means,
DESCRIPTION OF SYMBOLS 10... Diffuser, 12... Blower-513... Air, 22... Outflow water, 23... Treated water, 30...
Fiber filter medium, 31... Water resistant fiber.

Claims (2)

【特許請求の範囲】[Claims] (1)耐水性繊維を不織に形成し且つ通水時における空
隙率が実質的に変化しない繊維濾材が充填されている濾
過床に有機性排水を通水してSS及びSS性BOD成分
を捕捉する濾過工程と、この濾過工程の流出水を粒状濾
材が充填されている濾過床に通水するとともに酸素含有
ガスを導入し、主としてBODを除去する生物処理工程
よりなる有機性排水の処理方法。
(1) Organic wastewater is passed through a filter bed filled with a fibrous filter material made of non-woven water-resistant fibers and whose porosity does not substantially change during water passage to remove SS and SS BOD components. A method for treating organic wastewater consisting of a filtration step for capturing, and a biological treatment step for mainly removing BOD by passing the effluent from this filtration step through a filter bed filled with granular filter media and introducing an oxygen-containing gas. .
(2)耐水性繊維を不織に形成し且つ通水時における空
隙率が実質的に変化しない繊維濾材が充填された濾過床
を備えた濾過槽と、この濾過槽と流路によって接続され
、粒状濾材が充填された濾過床を備え、この濾過床の下
方又は内部に酸素含有ガスを供給する手段を備えた生物
膜濾過槽よりなる有機性排水の処理装置。
(2) a filtration tank equipped with a filtration bed filled with a fibrous filter medium made of non-woven water-resistant fibers and whose porosity does not substantially change when water is passed through; connected to this filtration tank by a flow path; A treatment device for organic wastewater comprising a biofilm filter tank equipped with a filter bed filled with granular filter media and a means for supplying oxygen-containing gas below or inside the filter bed.
JP63287268A 1988-11-14 1988-11-14 Treatment of organic waste water and device therefor Pending JPH02135200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287268A JPH02135200A (en) 1988-11-14 1988-11-14 Treatment of organic waste water and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287268A JPH02135200A (en) 1988-11-14 1988-11-14 Treatment of organic waste water and device therefor

Publications (1)

Publication Number Publication Date
JPH02135200A true JPH02135200A (en) 1990-05-24

Family

ID=17715206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287268A Pending JPH02135200A (en) 1988-11-14 1988-11-14 Treatment of organic waste water and device therefor

Country Status (1)

Country Link
JP (1) JPH02135200A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371299A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Method and device for biologically nitrifying and denitrifying organic sewage
JP2008018366A (en) * 2006-07-14 2008-01-31 Saitamaken Gesuido Kosha Filter medium for water treatment or carrier for microorganism adhesion
WO2009119696A1 (en) * 2008-03-24 2009-10-01 Kureha Engineering Co., Ltd. Process for producing shaped contact-filtration member, shaped contact-filtration member, filtration apparatus, and method of processing soiled water
WO2014063212A1 (en) * 2012-10-25 2014-05-01 Roberto Bartolomei Method for diffusing fluids/air/gas in fluids/air/gas and fluidised beds, and device for diffusing fluids/air/gas in fluids/air/gas and fluidised beds
CN105028302A (en) * 2015-07-30 2015-11-11 关广联 Water oxygenation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647998A (en) * 1987-06-29 1989-01-11 Mini Public Works Treatment of organic waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647998A (en) * 1987-06-29 1989-01-11 Mini Public Works Treatment of organic waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371299A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Method and device for biologically nitrifying and denitrifying organic sewage
JP2008018366A (en) * 2006-07-14 2008-01-31 Saitamaken Gesuido Kosha Filter medium for water treatment or carrier for microorganism adhesion
WO2009119696A1 (en) * 2008-03-24 2009-10-01 Kureha Engineering Co., Ltd. Process for producing shaped contact-filtration member, shaped contact-filtration member, filtration apparatus, and method of processing soiled water
WO2014063212A1 (en) * 2012-10-25 2014-05-01 Roberto Bartolomei Method for diffusing fluids/air/gas in fluids/air/gas and fluidised beds, and device for diffusing fluids/air/gas in fluids/air/gas and fluidised beds
CN105028302A (en) * 2015-07-30 2015-11-11 关广联 Water oxygenation device

Similar Documents

Publication Publication Date Title
JP2875765B2 (en) High-concentration wastewater treatment equipment
JPH06277058A (en) Microbial carrier and cleaning of sewage using the carrier
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JPH02135200A (en) Treatment of organic waste water and device therefor
MX2008004820A (en) Saf system and method involving specific treatments at respective stages.
US6258274B1 (en) Method for reducing sludge within a river or the like
KR100873052B1 (en) Wast water and sewage treatment apparatus in open type
JP3142792B2 (en) Wastewater treatment method using carbon-based adsorbent
JPH07112189A (en) Biological filter incorporating special microorganisms
CN218146274U (en) Biological filter
JPH02191594A (en) Sewage treating device
WO2003053866A1 (en) Water clarifying system
CN209957619U (en) Sewage treatment system adopting biological active coke adsorption method
CN108383238A (en) A kind of bio-matrix biofilm pipeline infiltration sewage disposal system
JP3654991B2 (en) Water purification system
CN217398702U (en) Multidirectional-circulation efficient denitrification sewage treatment equipment
CN216005531U (en) High-efficient sewage treatment plant
RU89518U1 (en) SEWAGE TREATMENT PLANT
JPH02164499A (en) Treatment of organic waste water
JPH07112190A (en) Biological filter
JPH03207494A (en) Biological treatment
JPH02131195A (en) Soil water treatment device
JPH10314792A (en) Waste water treating device
JPS5939396A (en) Disposal of organic waste water