JPH03207494A - Biological treatment - Google Patents

Biological treatment

Info

Publication number
JPH03207494A
JPH03207494A JP1342593A JP34259389A JPH03207494A JP H03207494 A JPH03207494 A JP H03207494A JP 1342593 A JP1342593 A JP 1342593A JP 34259389 A JP34259389 A JP 34259389A JP H03207494 A JPH03207494 A JP H03207494A
Authority
JP
Japan
Prior art keywords
tank
coke
water
particle size
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1342593A
Other languages
Japanese (ja)
Inventor
Akio Rikuta
陸田 彰夫
Manabu Oi
大井 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1342593A priority Critical patent/JPH03207494A/en
Publication of JPH03207494A publication Critical patent/JPH03207494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To enhance the treating ability of bacteria and to reduce cost by using coke of 5-30mm diameter as a bacteria carrier when water to be treated such as sewerage is biologically treated by catalytic oxidation with blown air. CONSTITUTION:When water to be treated is biologically treated by catalytic oxidation with blown air, coke of 5-30mm diameter is used as a bacteria carrier so as to easily treat sewage, night soil, ordinary water, etc. A catalytic oxidation tank is divided into two or more tanks and function to degrade org. matter in water is rendered to the 1st tank. Coke of a large diameter, preferably 20-30mm is used as a filler in the 1st tank. Coke of 10-20mm diameter is preferably used in the 2nd tank so as to capture suspended solids flowing out of the 1st tank and to degrade the residual org. matter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水処理、し尿および合併浄化槽、中水道、
雑用水再生処理、一般水処理等に有用な生物処理方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to sewage treatment, human waste and combined septic tanks, gray water supply,
This article relates to biological treatment methods useful for miscellaneous water reclamation treatment, general water treatment, etc.

〔従来の技術〕[Conventional technology]

一般に、水処理は物理処理および生物処理に大別できる
In general, water treatment can be broadly classified into physical treatment and biological treatment.

物理処理は基本的には砂等による濾過等で排水中に浮遊
しているSS (suspended solid ,
浮遊固形物質)分を除去するものであるが、水中に溶解
している汚れ(主として有機物)を除去することはでき
ない。そこでこのような溶解性の汚れを除去するために
は、曝気槽内でのバクテリア等の好気性微生物(以下、
「バクテリア」と略称する。)による生物処理が必要と
なる。
Physical treatment basically removes suspended solids (SS) suspended in wastewater through filtration with sand, etc.
Although it removes suspended solids, it cannot remove dirt (mainly organic matter) dissolved in water. Therefore, in order to remove such soluble dirt, aerobic microorganisms such as bacteria (hereinafter referred to as
Abbreviated as "bacteria". ) is required.

生物処理はバクテリアが水中に溶解している汚れをバク
テリアの体内に取り込んで分解する力を利用して汚れを
除去するものであり、その一種に接触酸化法(固定濾床
)がある。この接触酸化法では、バクテリアの担体とし
て何を用いるかによって、いろいろなシステムがある。
Biological treatment removes dirt by utilizing the power of bacteria to take in dissolved dirt in water and decompose it; one type of biological treatment is the catalytic oxidation method (fixed filter bed). There are various systems for this catalytic oxidation method, depending on what is used as a carrier for the bacteria.

例を挙げれば、この担体として、ヒモ状のループ、人工
石、天然石、焼結材(火山灰を焼結したもの等)、ハニ
カム・チューブ等を使用するものがある。
For example, the carrier may be a string loop, an artificial stone, a natural stone, a sintered material (such as sintered volcanic ash), a honeycomb tube, or the like.

このうち特に、人工石、天然石、焼結材等はコスト的に
有利である。
Among these, artificial stones, natural stones, sintered materials, etc. are particularly advantageous in terms of cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の担体を用いる限り、処理性が必ず
しも高くなく、かつその割に担体のコストが嵩む。
However, as long as conventional carriers are used, processability is not necessarily high and the cost of the carrier increases accordingly.

そこで本発明の主目的は、処理性が良好でありかつ担体
のコスト低減を図ることができる生物処理方法を提供す
ることにある。
Therefore, the main object of the present invention is to provide a biological treatment method that has good processability and can reduce the cost of carriers.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、被処理水を空気の吹き込みの下で処理する
接触酸化法におけるバクテリアの担体として、粒径が5
〜308のコークスを用いることで解決できる。
The above problem is that the particle size of
This can be solved by using coke of ~308.

この場合、接触酸化にあたり、複数個所で行うとともに
、最初の第1処理部分におけるコークス粒径を20〜3
0mmとし、続く第2処理部分におけるコークス粒径を
lO〜20noiとするのが好ましい。
In this case, catalytic oxidation is carried out at multiple locations, and the coke particle size in the first treatment section is set to 20 to 3
It is preferable to set the coke particle size to 0 mm, and set the coke particle size in the subsequent second processing portion to 10 to 20 noi.

槽内の充填材としてコークスを使用し、その単位容積当
たりの表面積を大きくし、かつバクテリアとの親和性を
大きくすることにより、より沢山のバクテリアを処理槽
内に住まわせることにより、処理性能の向上を図ったも
のである。
By using coke as a filler in the tank, increasing its surface area per unit volume and increasing its affinity for bacteria, more bacteria can live in the treatment tank, improving treatment performance. This is an attempt to improve the results.

〔作 用〕[For production]

本発明では、接触酸化処理におけるバクテリアの担体と
して、コークスを用いている。コークスは、従来の担体
に比較して、安価であるとともに、単位容積当たりの表
面積が大きい。したがって、バクテリアの生息面積が大
きく、処理能力が向上する。しかも、同じ表面積の担体
との比較でも、処理能力が高いことを本発明者らは知見
している。
In the present invention, coke is used as a carrier for bacteria in the catalytic oxidation treatment. Coke is less expensive and has a larger surface area per unit volume than conventional carriers. Therefore, the habitat area for bacteria is large, and processing capacity is improved. Furthermore, the present inventors have found that the processing capacity is higher even when compared with a carrier having the same surface area.

この理由は、コークスが炭素を主成分としているので、
バクテリアとの親和性が高いためと判断される。
The reason for this is that coke has carbon as its main component.
This is thought to be due to its high affinity with bacteria.

一方、この種の生物処理においては、処理能力はその粒
径に依存する。従来、一般的には、1つの曝気槽(接触
酸化槽)内に1種類の粒径の材料を充填しているケース
が多い。
On the other hand, in this type of biological treatment, the treatment capacity depends on the particle size. Conventionally, in many cases, one aeration tank (contact oxidation tank) is filled with a material having one type of particle size.

しかるに、充填効率を上げるため等により、粒径の小さ
い担体を用いると水中の汚泥負荷によつては、汚泥が沢
山発生して、担体の間を埋め尽くし水の通りが悪くなっ
たり、槽内の流速が早くなり、担体に付着した汚泥が剥
離してSS分がキャリーオーバーして、処理水のSS分
が多くなる。
However, if carriers with small particle size are used to increase filling efficiency, etc., depending on the sludge load in the water, a lot of sludge will be generated, filling the spaces between the carriers, making it difficult for water to pass through, and causing problems in the tank. The flow rate increases, the sludge adhering to the carrier is peeled off, the SS content carries over, and the SS content of the treated water increases.

逆に、粒径の大きい担体を用いると、単位容積当たりの
表面積が小さくなり、処理性能が悪くなる。また表面積
が小さいため、ある程度担体に汚泥が付着してくると、
槽内に通常よりは多めの空気と水を入れて、担体に付着
している汚泥の一部を槽から追い出すという工程を必要
とする。
On the other hand, when a carrier with a large particle size is used, the surface area per unit volume becomes small, resulting in poor processing performance. Also, since the surface area is small, if some sludge adheres to the carrier,
This requires a step in which a larger amount of air and water than usual is introduced into the tank and some of the sludge adhering to the carrier is expelled from the tank.

したがって、1つの曝気槽で2つの機能(生物処理と濾
過処理)をもたせようとする以上、どちらかの機能を犠
牲にするか、両方の機能がどちらもそこそこに不十分に
機能するようにするしかないのが現状であった。
Therefore, if you are trying to have two functions (biological treatment and filtration treatment) in one aeration tank, either one of the functions must be sacrificed, or both functions must function somewhat insufficiently. The current situation was that there was only one.

これに対して、本発明に従って、担体としてコークスを
用いると、単位容積当たりの表面積が大きく、かつ製鉄
所から得られるコークス自体の粒度が生物処理に適切で
ある。その結果、単一槽にコークス担体を充填したとき
、生物処理性および濾過性が共に良好となる。
In contrast, when coke is used as a carrier according to the present invention, the surface area per unit volume is large and the particle size of the coke itself obtained from the steel mill is suitable for biological treatment. As a result, when a single tank is filled with a coke carrier, both biological treatment properties and filtration properties are good.

本発明における好ましい態様によれば、接触酸化槽(曝
気槽)を2槽以上に分け、最初の槽には水中の有機分を
分解する機能を持たせ、水中の有機分の大半をこの槽で
分解する。この槽の充填材には大きい粒径のコークスを
用いる。このようにすることにより、沢山の有機分を分
解して、槽内に多くの汚泥が発生してもコークスとコー
クスの間隙が比較的多いので、槽内に汚泥を蓄積させる
ことができる。かくして第1槽の担体として、粒径の大
きなコークスを用いることにより、槽の濾過性能を保持
したまま、分解性能を発揮することができる。
According to a preferred embodiment of the present invention, the contact oxidation tank (aeration tank) is divided into two or more tanks, the first tank has a function of decomposing organic components in water, and most of the organic components in water are absorbed in this tank. Disassemble. Coke with a large particle size is used as the filling material for this tank. By doing this, even if a large amount of organic matter is decomposed and a large amount of sludge is generated in the tank, the sludge can be accumulated in the tank because there are relatively many gaps between the cokes. Thus, by using coke with a large particle size as a carrier in the first tank, it is possible to exhibit decomposition performance while maintaining the filtration performance of the tank.

また第1槽の担体の粒径が太き《、間隙が多いために一
部の汚泥が第1槽から流出することもあるが、そのよう
な場合でも、次の第2槽で流出SS分を捕捉し、バクテ
リアで分解することができる。
In addition, because the particle size of the carrier in the first tank is large (and there are many gaps), some sludge may flow out from the first tank, but even in such cases, the next second tank handles the sludge that flows out. can be captured and decomposed by bacteria.

この次槽には最初の槽から流出してくるSS分を捕捉す
る機能とともに、残っている水中の有機分を分解除去す
る機能を持たせる。
This second tank has the function of capturing the SS components flowing out from the first tank, as well as the function of decomposing and removing the remaining organic components in the water.

このように、接触酸化槽を複数槽または一つの接触酸化
槽において複数ゾーンに分割して、かく部分におけるコ
ークス粒径を異ならせることにより、良好な処理を行う
ことができる。
In this way, by dividing the contact oxidation tank into a plurality of zones or in one contact oxidation tank and varying the coke particle size in these zones, good treatment can be achieved.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに具体的に説明する。 The present invention will be explained in more detail below.

第l図は本発明に係る生物処理法を実施するための処理
フローシ一トである。
FIG. 1 is a treatment flow sheet for carrying out the biological treatment method according to the present invention.

被処理水lは、比較的粗大な固形物をバー形式などのス
クリーン2で除去された後、調整貯溜槽3に導入される
。調整貯溜槽3では、その底部から空気ブロヮー4から
の空気を送気し、これにより固形分を浮遊させ、次いで
流量計測器5を介してメッシュスクリーン6により、そ
の固形分を除去する。なお、調整貯溜槽3から溢出した
浮遊分を多く含む処理水7は、放流槽8に一旦貯溜され
た後、放流9される。
The treated water 1 is introduced into an adjustment storage tank 3 after relatively coarse solid matter is removed by a screen 2 such as a bar type. In the adjustment storage tank 3, air from an air blower 4 is supplied from the bottom thereof to suspend the solid content, and then the solid content is removed by a mesh screen 6 via a flow meter 5. The treated water 7 containing a large amount of suspended matter overflowing from the adjustment storage tank 3 is once stored in a discharge tank 8 and then discharged 9.

メッシュスクリーン6により浮遊固形分の除去された水
は、油浮上槽IOに導入されここで大部分の油を浮上さ
せ、次いで処理後の水を油吸着槽11に導入し、微小に
分散された油分を2段の吸着膜11aにより分離し、1
次処理水ピット12に一旦貯溜する。
The water from which suspended solids have been removed by the mesh screen 6 is introduced into the oil flotation tank IO, where most of the oil is floated, and the treated water is then introduced into the oil adsorption tank 11 where it is finely dispersed. The oil is separated by a two-stage adsorption membrane 11a,
The next treated water is temporarily stored in the pit 12.

次いでこの処理後の水は直列配置の第1接触酸化槽13
および第2接触酸化槽14の底部に送られ、コークスか
らなる固定充填床13a,14aを通過し、これにより
、本発明の主眼とする生物的処理が行われ、前述したよ
うに溶解性の汚れが分解除去される。
The water after this treatment is then transferred to the first contact oxidation tank 13 arranged in series.
and is sent to the bottom of the second catalytic oxidation tank 14 and passes through the fixed packed beds 13a and 14a made of coke, where the biological treatment that is the main focus of the present invention is performed, and as described above, the soluble dirt is removed. is decomposed and removed.

第l接触酸化槽l3と第2接触酸化槽14の底部からは
、図示しないブロヮー13b,14bからの空気を散気
ノズル13c,14cからブローし、好気性のバクテリ
アの活性を高め、溶解性の汚れを分解させる。この場合
、第1接触酸化槽l3中に充填されているコークスの粒
径は、第2接触酸化槽14内のコークスの粒径より大と
するのが好ましい。具体できには、特に第l接触酸化槽
l3内の充填コークス粒径を20〜30正、第2接触酸
化槽14内の充填コークス粒径を10〜20鵬とするの
が好適である。
From the bottoms of the first contact oxidation tank l3 and the second contact oxidation tank 14, air from blowers 13b and 14b (not shown) is blown through aeration nozzles 13c and 14c to increase the activity of aerobic bacteria and to increase the soluble Decomposes dirt. In this case, the particle size of the coke filled in the first catalytic oxidation tank l3 is preferably larger than the particle size of the coke in the second catalytic oxidation tank 14. Specifically, it is particularly preferable that the particle size of the filled coke in the first contact oxidation tank 13 is 20 to 30 mm, and the particle size of the filled coke in the second catalytic oxidation tank 14 is 10 to 20 mm.

第1接触酸化槽13および第2接触酸化槽14の頂部か
ら排出される逆洗排水は管路22Aを経て汚泥消化槽1
5に導入し、好気性下で消化処理し、浮遊水15aは先
の調整貯溜槽3に返送する一方で、沈降分15bはタン
クローリーにより系外に廃棄する。
The backwash wastewater discharged from the top of the first contact oxidation tank 13 and the second contact oxidation tank 14 passes through the pipe 22A to the sludge digestion tank 1.
The suspended water 15a is returned to the adjustment storage tank 3, while the settled water 15b is disposed of outside the system by a tank truck.

一方、上記第2接触酸化槽l4の頂部から排出される2
次処理水工6は、2次処理水ピットl7に導入され静置
される。この2次処理水の一部は前記第1および第2接
触酸化槽13、14の逆洗水として使用される。
On the other hand, 2 discharged from the top of the second contact oxidation tank l4
The secondary treatment water system 6 is introduced into the secondary treatment water pit 17 and left standing. A part of this secondary treated water is used as backwash water for the first and second contact oxidation tanks 13 and 14.

一方、2次処理水の残部は分離用の膜を有する膜分離濾
過器l8に供され、残った不純物を膜により濾別する。
On the other hand, the remainder of the secondary treated water is sent to a membrane separation filter l8 having a membrane for separation, and the remaining impurities are filtered out by the membrane.

この濾液19は、中水貯槽21に貯溜し、使用向けに供
する。また、不純物濃度の高くなった濃縮水は調整貯溜
槽3に返送する。膜分離操作の継続に伴って、膜分離効
果が低下するので、膜洗浄剤(例えば次亜塩素酸ソーダ
NaCIO)を膜洗浄剤槽から膜分離濾過器18に供給
し、膜を所定時間膜洗浄剤中に濃縮する。その後、膜洗
浄剤を管路22を経て、膜洗浄剤槽26に返送し、繰り
返し利用を図る。洗浄効果の低下した膜洗浄剤は管路2
2を経て中和剤槽24A、24Bから投入し、中和処理
を図った後、系外へ排出する。
This filtrate 19 is stored in a gray water storage tank 21 and provided for use. Further, concentrated water with a high impurity concentration is returned to the adjustment storage tank 3. As the membrane separation operation continues, the membrane separation effect decreases, so a membrane cleaning agent (for example, sodium hypochlorite NaCIO) is supplied from the membrane cleaning agent tank to the membrane separation filter 18, and the membrane is cleaned for a predetermined period of time. Concentrate into a liquid. Thereafter, the membrane cleaning agent is returned to the membrane cleaning agent tank 26 through the pipe line 22 for repeated use. Membrane cleaning agent with reduced cleaning effect is transferred to pipe 2.
2, the neutralizing agent is charged from the neutralizing agent tanks 24A and 24B, and after being neutralized, it is discharged from the system.

25は中水の殺菌剤槽である。25 is a gray water disinfectant tank.

次に、上述したような処理例になどに適用される接触酸
化処理において、第l接触酸化処理の場合には、不純物
(栄養分)濃度の濃い液(または水)が入ってくるので
、例えば同じ除去率でも、発生する汚泥量が多くなる。
Next, in the contact oxidation treatment applied to the above-mentioned treatment examples, in the case of the first contact oxidation treatment, a liquid (or water) with a high concentration of impurities (nutrients) enters, so for example, the same The removal rate also increases the amount of sludge generated.

したがって第l接触酸化処理においては、充填材の径を
大きくして汚泥を蓄える空間を多くとる必要があるが、
コークスは多孔質でかつ炭素材は一般的にバクテリアの
住処としては最適であるので好適に採用される。
Therefore, in the first catalytic oxidation treatment, it is necessary to increase the diameter of the filler to provide more space for storing sludge.
Coke is preferably used because it is porous and carbon materials are generally optimal as a habitat for bacteria.

さらにある程度汚泥が増えると、逆洗を行う必要がある
が、コークスの見掛け比重は0.8〜0.9程度、かつ
水中に入ると孔内部に水が入り、水中に沈むが逆洗時比
重が適切であるため、逆洗に際して、たとえばブロワー
13b,14bにより散気ノズル13c,14cから空
気を吹き上げて逆洗するとき、コークスが槽13または
14内で浮遊流動を行うようになるので、逆洗効果が高
い。
When the sludge increases to a certain extent, it is necessary to perform backwashing, but the apparent specific gravity of coke is about 0.8 to 0.9, and when it enters the water, water enters the pores and sinks in the water, but the specific gravity at the time of backwashing is is appropriate, so when backwashing is performed by blowing air up from the aeration nozzles 13c and 14c using the blowers 13b and 14b, the coke will float in the tank 13 or 14, so the backwashing will not be possible. High cleaning effect.

一方、特に第2接触酸化槽内のコークス粒径は、第1接
触酸化槽でのコークス粒径より小さくすることができる
。これは第1接触酸化槽で大半の不純物が除去されるた
め、第2接触酸化槽でバクテリアが分解処理しなければ
ならない不純分の量が少ないからである。また、第2接
触酸化槽へは第1接触酸化槽で発生した余剰汚泥が流出
してくるので、これも合わせて処理する必要がある。こ
のために第2曝気槽では■流出してくる汚泥の捕捉およ
び消化、■不純物(水中の)の分解処理、以上2つの役
割が必要である。このために、コークスの粒径を第1接
触酸化槽のそれより小さくし、かつバクテリアが住みや
すい環境を作ってやる必要があり、これには比較的粒径
が小さくかつ多孔質なコークスが最適である。しかし、
コークスの粒径が小さ過ぎると、逆洗時に槽から流出し
てしまう危険性があるので、ある程度の粒径が必要であ
る。以上の理由により、第1曝気槽20〜30mum 
,第2曝気槽が10〜20m/mの粒径のコークスを使
用するのが好ましい。
On the other hand, in particular, the coke particle size in the second catalytic oxidation tank can be made smaller than the coke particle size in the first catalytic oxidation tank. This is because most of the impurities are removed in the first catalytic oxidation tank, so the amount of impurities that must be decomposed by bacteria in the second catalytic oxidation tank is small. Additionally, excess sludge generated in the first catalytic oxidation tank flows into the second catalytic oxidation tank, so it is necessary to treat this as well. For this purpose, the second aeration tank is required to perform the following two roles: (1) capture and digest the sludge flowing out, and (2) decompose the impurities (in the water). For this purpose, it is necessary to make the coke particle size smaller than that in the first contact oxidation tank and create an environment where bacteria can easily live, and coke with relatively small particle size and porousness is ideal for this purpose. It is. but,
If the coke particle size is too small, there is a risk that it will flow out of the tank during backwashing, so a certain particle size is required. For the above reasons, the first aeration tank is 20-30mm.
, it is preferable that the second aeration tank uses coke having a particle size of 10 to 20 m/m.

〔実施例〕〔Example〕

次に実施例を説明する。 Next, an example will be described.

第1図に示した生物処理装置を用いて、排水を浄化した
。この場合、実施例、比較例の条件は次の通りであった
The wastewater was purified using the biological treatment equipment shown in FIG. In this case, the conditions for the Examples and Comparative Examples were as follows.

実施例1;第1接触酸化槽l3、第2接触酸化槽14に
用いるコークスの粒径を、両槽で同一の粒径25mとし
た場合。
Example 1: When the particle size of the coke used in the first catalytic oxidation tank 13 and the second catalytic oxidation tank 14 is the same in both tanks, 25 m.

実施例2;第1接触酸化槽13でのコークス粒径を25
m、第2接触酸化槽14での粒径を15とした場合。
Example 2: The coke particle size in the first contact oxidation tank 13 was set to 25
m, when the particle size in the second contact oxidation tank 14 is 15.

従来例;担体として火山灰の焼結材を用いた場比較例:
上記数値範囲外の粒径のコークスを用いた場合。
Conventional example; Comparative example using sintered volcanic ash as a carrier:
When coke with a particle size outside the above numerical range is used.

上記各条件により、生物処理を行い、原水中の各不純物
濃度とともに、それに対応する処理水の不純物濃度( 
mg/ l )を測定したところ、第1表に示す結果を
得た。
Biological treatment is performed under each of the above conditions, and the concentration of each impurity in the raw water and the corresponding impurity concentration of the treated water (
mg/l) was measured, and the results shown in Table 1 were obtained.

第 1 表 上表より、本発明によれば原水中の不純物を確実に除去
できることが明らかとなった。
From the table above in Table 1, it is clear that according to the present invention, impurities in raw water can be reliably removed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、処理性が良好でありかつ
担体のコスト低減を図ることができるなどの利点がもた
らされる。
As described above, the present invention provides advantages such as good processability and the ability to reduce the cost of the carrier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る処理例を示す模式図である。 1・・・被処理水、3・・・調整貯溜槽、8・・・放流
槽、IO・・・油浮上槽、1l・・・油吸着槽、12・
・・1次処理水ピット、13・・・第1接触酸化槽槽、
14・・・第2接触酸化槽、15・・・汚泥消化槽、l
7・・・2次処理水ピット、18・・・膜分離濾過器、
2l・・・中水貯槽、23・・・中和槽。
FIG. 1 is a schematic diagram showing an example of processing according to the present invention. 1...Water to be treated, 3...Adjustment storage tank, 8...Discharge tank, IO...Oil flotation tank, 1l...Oil adsorption tank, 12.
... Primary treated water pit, 13... First contact oxidation tank tank,
14...Second contact oxidation tank, 15...Sludge digestion tank, l
7... Secondary treated water pit, 18... Membrane separation filter,
2l... Gray water storage tank, 23... Neutralization tank.

Claims (2)

【特許請求の範囲】[Claims] (1)被処理水を空気の吹き込みの下で処理する接触酸
化法におけるバクテリアの担体として、粒径が5〜30
mmのコークスを用いることを特徴とする生物処理方法
(1) As a carrier for bacteria in the catalytic oxidation method in which treated water is treated under air blowing, the particle size is 5 to 30.
A biological treatment method characterized by using mm coke.
(2)接触酸化にあたり、複数個所で行うとともに、最
初の第1処理部分におけるコークス粒径を20〜30m
mとし、続く第2処理部分におけるコークス粒径を10
〜20mmとする請求項1記載の方法。
(2) Catalytic oxidation is carried out at multiple locations, and the coke particle size in the first treatment area is 20 to 30 m.
m, and the coke particle size in the subsequent second treatment section is 10
2. The method of claim 1, wherein the length is ˜20 mm.
JP1342593A 1989-12-29 1989-12-29 Biological treatment Pending JPH03207494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342593A JPH03207494A (en) 1989-12-29 1989-12-29 Biological treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342593A JPH03207494A (en) 1989-12-29 1989-12-29 Biological treatment

Publications (1)

Publication Number Publication Date
JPH03207494A true JPH03207494A (en) 1991-09-10

Family

ID=18354971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342593A Pending JPH03207494A (en) 1989-12-29 1989-12-29 Biological treatment

Country Status (1)

Country Link
JP (1) JPH03207494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686213A (en) * 2017-09-29 2018-02-13 重庆耐德水处理科技有限公司 Oily wastewater treatment method and processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686213A (en) * 2017-09-29 2018-02-13 重庆耐德水处理科技有限公司 Oily wastewater treatment method and processing system

Similar Documents

Publication Publication Date Title
US20140042086A1 (en) Method for improving a wastewater purification process
KR101594822B1 (en) The method and processing apparatus of the floating fish cage sludge using biological activated carbon
JPH04227099A (en) Method for purifying underground water and waste water
CN115974305B (en) Integrated membrane method water treatment system and treatment method
KR0126883Y1 (en) Facilities for treating waste water on a large scale
CN1141264C (en) Integrated treating system and process for cleaning sewage
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JPH03207494A (en) Biological treatment
JP2861045B2 (en) Treatment of water containing organic matter
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH07112189A (en) Biological filter incorporating special microorganisms
JPH0613119B2 (en) Biological water treatment method
KR0139853B1 (en) Ultra water cleaning apparatus containing multi-stage biological activated carbon contactor and air suction injector
JPH02135200A (en) Treatment of organic waste water and device therefor
JPH10216795A (en) Waste water treatment system for cleaning plant
CN109796105A (en) A kind of highly difficult organic wastewater treatment process
KR101594824B1 (en) Floating fish cage of purification apparatus sludge sedimentation using biological activated carbon
CN209957619U (en) Sewage treatment system adopting biological active coke adsorption method
JPH0221315B2 (en)
CN214243931U (en) Constructed wetland filler structure for purifying ammonium nitrogen
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
CN205653304U (en) Pharmaceutical workshop sewage high -efficiency processing device
JP3665042B2 (en) Water treatment method and apparatus using sludge vacuum concentrator
JPH07112191A (en) Biological filter
JP2952125B2 (en) Surfactant-containing water treatment equipment