JPH02130989A - Halogen excimer laser device - Google Patents

Halogen excimer laser device

Info

Publication number
JPH02130989A
JPH02130989A JP28597288A JP28597288A JPH02130989A JP H02130989 A JPH02130989 A JP H02130989A JP 28597288 A JP28597288 A JP 28597288A JP 28597288 A JP28597288 A JP 28597288A JP H02130989 A JPH02130989 A JP H02130989A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
halogen
gas
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28597288A
Other languages
Japanese (ja)
Inventor
Takeo Yoshioka
武男 吉岡
Tadao Minagawa
忠郎 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28597288A priority Critical patent/JPH02130989A/en
Publication of JPH02130989A publication Critical patent/JPH02130989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To restrain the exhaustion of electrodes by a method wherein the content of impurities reacting to halogen gas or halogen compound gas in the surface layer parts of electrodes to produce a low boiling point compound is specified not to exceed specific percentage. CONSTITUTION:C, Si, S etc., as impurities contained in electrodes 1, 2 comprising Ni which react to fluorine in mixed gas to produce a low boiling point compound are removed down to the content of 0.01%. The said impurities are removed in the process wherein the electrodes 1, 2, after reduction in hydrogen atmosphere, are oxidized in oxygen atmosphere and further reduced again in hydrogen atmosphere later. When the electrodes 1, 2 are thick, the purpose can be achieved if only the impurity in the surface layer parts 14, 24 are removed. Through these procedures, the production of the low boiling point compound can be restricted thereby restraining the exhaustion of the electrode 1, 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体産業、化学産業等の産業応用分野、医
療分野及びレーザ核融合等のエネルギ分野等で幅広(応
用されるエキシマレーザを得ることができるハロゲンエ
キシマレーザ装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a wide range of industrial application fields such as the semiconductor industry and chemical industry, the medical field, and the energy field such as laser nuclear fusion. The present invention relates to a halogen excimer laser device that can be used.

〔従来の技術及び発明が解決しようとする課題〕エキシ
マレーザは発振波長0.1〜0.4nmの紫外線レーザ
であって、これを得るためのエキシマレーザ装置はAr
+にr、 Xe等の不活性ガスとFt、Nh。
[Prior art and problems to be solved by the invention] An excimer laser is an ultraviolet laser with an oscillation wavelength of 0.1 to 0.4 nm, and an excimer laser device for obtaining this is an Ar
+ to r, inert gas such as Xe, Ft, Nh.

C1,、HCL等のハロゲンガス又はハロゲン化合物ガ
スとの混合ガス中において陰極及び陽極の電極でパルス
放電させ、ArF、 KrF+ XeC1,ZeF等の
高エネルギ状態のレーザ活性媒体を生成してエキシマレ
ーザを発振させるようにしたものである。このエキシマ
レーザ装置の寿命因子として、レーザガスの劣化、レー
ザ反射鏡の劣化、スイッチング素子の劣化、主コンデン
サの劣化、予備電離の劣化等を挙げる。ことができる。
Eximer laser is generated by generating a high-energy laser active medium such as ArF, KrF+ It is designed to cause oscillation. The lifespan factors of this excimer laser device include deterioration of the laser gas, deterioration of the laser reflector, deterioration of the switching element, deterioration of the main capacitor, deterioration of pre-ionization, etc. be able to.

この何れにおいても寿命延長の工夫が図られている。ま
た、エキシマレーザ装置は通常封止管動作をさせるよう
になっているが、ハロゲンガスは化学的反応性が高いの
で、電極での化学反応が著しく、このために電極が劣化
してしまう。この電極の劣化もエキシマレーザ装置の寿
命を決定する要因の1つであり、これを解決して電極の
長寿命化を図ることが望まれている。
Efforts have been made to extend the life of each of these devices. Further, although excimer laser devices are normally operated in a sealed tube manner, halogen gas has high chemical reactivity, so chemical reactions at the electrodes are significant, resulting in deterioration of the electrodes. This deterioration of the electrode is also one of the factors that determines the life of the excimer laser device, and it is desired to solve this problem and extend the life of the electrode.

また、エキシマレーザ装置では、対向する2極の電極間
に高電圧を印加してレーザ光軸と電流の方向が直角な放
電である横放電を得ている。この放電は立上り時間が1
0ns程度、パルス幅が通常約100ns以下であるの
で、C(h レーザ横放電励起の場合のように一方の電
極を多数個に分割してそれぞれに独立のバラスト抵抗を
付けなくても、電界が均一であれば、連続構造体の電極
であっても放電が局所化せず、−様な放電を得ることが
できる。
Furthermore, in an excimer laser device, a high voltage is applied between two opposing electrodes to obtain a transverse discharge in which the direction of the current is perpendicular to the laser optical axis. This discharge has a rise time of 1
0 ns, and the pulse width is usually about 100 ns or less, so the electric field is If it is uniform, the discharge will not be localized even if the electrode has a continuous structure, and a negative-like discharge can be obtained.

電極が無限に広い平板であれば、電界は均一になるが、
実際の電極は有限の拡がりしか持たないので、平板間に
電圧を印加しても−様な電界は得られない。−様な電界
を得るには電磁気学的計算を必要とし、古くはロゴスキ
ー電極形状、現在ではチャン電極形状が最適とされ、こ
うした数学的に表現される電極形状はNG工作機械で製
作される。
If the electrode were an infinitely wide flat plate, the electric field would be uniform, but
Actual electrodes have only a finite extent, so even if a voltage is applied between the plates, a -like electric field cannot be obtained. - Electromagnetic calculations are required to obtain a similar electric field, and in the past the Rogowski electrode shape was considered optimal, and currently the Chang electrode shape is considered optimal, and these mathematically expressed electrode shapes are manufactured using NG machine tools. .

第4図(a)はこうした電極形状の断面を示しており、
例えば表面層11.21をNiコートとし、内部12.
22にコバール合金を用いた陰極側電極1と陽極側電極
2とが所定間隔離した状態で対向して設けられている。
FIG. 4(a) shows a cross section of such an electrode shape,
For example, the surface layer 11.21 is coated with Ni, and the inner layer 12.21 is coated with Ni.
At 22, a cathode side electrode 1 and an anode side electrode 2 made of a Kovar alloy are provided facing each other and separated by a predetermined distance.

この第4図(a)に示すように、画電極1゜2間にパル
ス放電が始まった直後では、画電極l。
As shown in FIG. 4(a), immediately after the pulse discharge starts between the picture electrodes 1 and 2, the picture electrodes l.

2の表面は面一で窪みはない。ところが、画電極1.2
間の放電が続けられると、第4図(blに示すように、
電極1の表面層11の中央部は放電時、電極1.2間に
存在する混合ガスと反応してフッ化物(低沸点生成物)
を生成するため、電極1の表面層11は徐々に窪み13
を生じて変形する。このとき、電極1の中央部は電極間
隔が拡大したことになり、電極1.2の両端部の方が実
質的な間隔が小さ(なるので、この両端部に放電が集中
してしまう。従って電極表面の全体に亘っての放電の均
−製が失われ、レーザの出力が低下するといった問題点
があった。
The surface of 2 is flush with no depressions. However, picture electrode 1.2
If the discharge in between continues, as shown in Fig. 4 (bl),
During discharge, the center of the surface layer 11 of the electrode 1 reacts with the mixed gas present between the electrodes 1 and 2 to form fluoride (a low boiling point product).
, the surface layer 11 of the electrode 1 gradually becomes depressed 13
and deformation. At this time, the distance between the electrodes has increased at the center of the electrode 1, and the actual distance between the ends of the electrodes 1 and 2 is smaller (as a result, the discharge is concentrated at these ends. There were problems in that the uniformity of the discharge over the entire electrode surface was lost and the output of the laser was reduced.

本発明は上記問題点に鑑みてなされたものであって、電
極の構成材料中から、混合ガス中のハロゲンガス又はハ
ロゲン化合物ガスと反応して低沸点生成物を生じる不純
物を十分に除去することによって、電極の消耗を抑制す
ることができて長時間電極を交換することなく使用でき
、電極の交換のための装置の解体等を頻繁にする必要が
ないハロゲンエキシマレーザ装置を提供することを目的
としている。
The present invention has been made in view of the above problems, and aims to sufficiently remove impurities that react with halogen gas or halogen compound gas in a mixed gas to produce low-boiling point products from the constituent materials of the electrode. An object of the present invention is to provide a halogen excimer laser device that can suppress electrode consumption, can be used for a long time without replacing the electrodes, and does not require frequent disassembly of the device to replace the electrodes. It is said that

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、不活性ガスとハ
ロゲンガス又はハロゲン化合物ガスとの混合ガス中のハ
ロゲンガス又はハロゲン化合物カスと反応して低沸点生
成物を生じる不純物の量が少なくとも表層部で0.01
%以下である電極を備えている。
In order to achieve the above object, the present invention provides that the amount of impurities that react with halogen gas or halogen compound residue in a mixed gas of an inert gas and halogen gas or halogen compound gas to produce a low boiling point product is reduced at least on the surface. 0.01 in parts
% or less.

〔作用〕[Effect]

本発明は上記のように電極の少なくとも表層部における
混合ガス中のハロゲンガス又はハロゲン化合物ガスと反
応して低沸点化合物責生じる不純物の量を0.01%以
下にしたことにより、パルス放電時における低沸点生成
物の発生量が減少されて電極の消耗が抑制される。
As described above, the present invention reduces the amount of impurities that react with the halogen gas or halogen compound gas in the mixed gas at least in the surface layer of the electrode to form low-boiling point compounds to 0.01% or less, thereby reducing the amount of impurities during pulse discharge. The amount of low-boiling products generated is reduced, and electrode wear is suppressed.

〔実施例〕〔Example〕

以下本発明に係るハロゲンエキシマレーザ装置を図面に
示す実施例について説明する。
Embodiments of the halogen excimer laser device according to the present invention shown in the drawings will be described below.

第1図は本発明に係るハロゲンエキシマレーザ装置の電
極を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an electrode of a halogen excimer laser device according to the present invention.

このハロゲンエキシマレーザ装置は八r、 Kr+ X
e等の不活性ガスとFt、 NF3. CI□、 HC
I等のハロゲンガス又はハロゲン化合物ガスとの混合ガ
ス中において陰極及び陽極の電極1,2でパルス放電さ
せ^rp、 KrP、 XeC1,XeF等の高エネル
ギ状態のレーザ活性媒体を生成させてエキシマレーザを
発振させるように構成されている。
This halogen excimer laser device has 8r, Kr+X
Inert gas such as e and Ft, NF3. CI□, HC
Eximer laser is generated by pulse-discharging the cathode and anode electrodes 1 and 2 in a mixed gas with a halogen gas such as I or a halogen compound gas to generate a high-energy laser active medium such as ^rp, KrP, XeC1, XeF, etc. It is configured to oscillate.

そして、本発明にあっては、例えばNiからなる電極1
.2中に含まれ、混合ガス中のフッ素と反応して低沸点
化合物を生成する不純物であるC1Si、 S等を除去
して、その含有量を0.01%以下に抑制している。
In the present invention, the electrode 1 made of, for example, Ni
.. C1Si, S, etc., which are impurities contained in fluorine and react with fluorine in the mixed gas to produce low-boiling compounds, are removed to suppress their content to 0.01% or less.

このNiからなる電極1,2のc、 St、  S等の
除去は、電極1. 2を水素雰囲気内において還元した
後に、酸素雰囲気内において酸化し、その後に更に水素
雰囲気内において還元するプロセスを経由することによ
って行われる。電極1.2の板厚が厚い場合には、電極
1,2全体のC,Si、  S等を除去するには長時間
必要とするので、第1図に示すように電極1,2の表層
部14.24(厚みが例えばl、am)だけのC,Si
、  S等を除去するようにする。
Removal of c, St, S, etc. from electrodes 1 and 2 made of Ni is performed by removing electrodes 1 and 2 made of Ni. This is done by reducing 2 in a hydrogen atmosphere, oxidizing it in an oxygen atmosphere, and then further reducing it in a hydrogen atmosphere. If the electrodes 1 and 2 are thick, it will take a long time to remove C, Si, S, etc. from the entire electrodes 1 and 2, so the surface layer of the electrodes 1 and 2 will be removed as shown in Figure 1. C, Si of only part 14.24 (thickness is e.g. l, am)
, S, etc. are removed.

上述のようにして、電極1.2中のC,Si、  S等
を除去してその含有量を0.01%以下に抑制すること
によって、パルス放電時に、低沸点生成物の発生を少な
くすることができて、電極1.2の消耗を抑制するこ、
とができる。
As described above, by removing C, Si, S, etc. in the electrode 1.2 and suppressing the content to 0.01% or less, the generation of low boiling point products is reduced during pulse discharge. It is possible to suppress wear and tear on the electrodes 1.2,
I can do it.

第2図(a)、 (b)はCを0.02%、 Siを0
.08%含む電極の試料AのX線拡大写真であり、第3
図(a)、 (b)はSiを0.06%含む電極の試料
BOX線拡大写真である。尚、第2図(a)、第3図(
a)は100倍率、第2図(b)、第3図(blは20
0倍率でそれぞれ撮影したものである。そして、それぞ
れの試料A、Bの成分値及びフン化物の沸点を第1表に
示す。
Figure 2 (a) and (b) show 0.02% C and 0 Si.
.. This is an X-ray enlarged photograph of sample A of the electrode containing 0.08%.
Figures (a) and (b) are enlarged BOX-ray photographs of a sample of an electrode containing 0.06% Si. In addition, Fig. 2 (a) and Fig. 3 (
a) is 100x magnification, Fig. 2(b), Fig. 3 (bl is 20x
Each photograph was taken at 0x magnification. Table 1 shows the component values and boiling points of fluorides for each of Samples A and B.

第  1  表 第2図(a)、 (b)と第3図(al、 (blを比
較すると、第3図(a)、 (b)の試料Bが、第2図
(a)、 (b)の試料Aに比べて、試料の表面の凹凸
が少なくなっていることが判る。これは、試料Aに含ま
れるC、SiO量に対して、試料Bに含まれるC、Sj
の世が少ないので、表面の凹凸が少なくなっているもの
と考察される。したがって、本発明装置における電極の
C,Si、  S等の不純物の含有量は0.01%以下
であって、前記試料Bよりも少ないので、さらに電極の
表面の凹凸は少な(なって、結果的に電極の消めに、水
素雰囲気中において還元させた後、酸素雰囲気中におい
て酸化させ、その後に更に水素雰囲気中において還元さ
せるプロセスを経由してC及びSiを除去する。
Comparing Table 1 Figures 2(a), (b) and Figures 3(al, (bl), Sample B in Figures 3(a), (b) is different from Figure 2(a), (b). ) It can be seen that the surface unevenness of the sample is smaller than that of sample A. This is because the amount of C and SiO contained in sample B is smaller than that of sample A.
It is thought that because there are fewer grains, the surface is less uneven. Therefore, since the content of impurities such as C, Si, and S in the electrode in the device of the present invention is 0.01% or less, which is lower than that in Sample B, the unevenness on the surface of the electrode is further reduced. Generally, to remove the electrode, C and Si are removed through a process of reducing in a hydrogen atmosphere, oxidizing in an oxygen atmosphere, and then further reducing in a hydrogen atmosphere.

尚、上記実施例にあっては、混合ガスの成分としてフッ
素ガスを、電極1.2の構成材料としてNiを用いたも
のについて説明したが、電極1.2の構成材料としては
例えばCO等、主成分が低沸点フッ化物を生成しないも
のにおいては、この構成材料中の不純物を除去したもの
についても適用することができる。
In the above embodiment, fluorine gas was used as a component of the mixed gas and Ni was used as a constituent material of the electrode 1.2. However, the constituent material of the electrode 1.2 may be, for example, CO, etc. In the case where the main component does not produce low-boiling fluoride, it is also possible to use the constituent material from which impurities have been removed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以上述べたように、電極の少なくとも
表層部における混合ガス中のハロゲンガス又はハロゲン
化合物ガスと反応して低沸点生成物を生じる不純物の量
を0.01%以下にしたので、パルス放電時における低
沸点生成物の発生を少なくすることができて、電極の消
耗を抑制することができ、長時間電極を交換することな
く使用ができ、保守を顛繁に行うことがない等の効果を
奏する。
According to the present invention, as described above, the amount of impurities that react with the halogen gas or halogen compound gas in the mixed gas in at least the surface layer of the electrode to produce low-boiling point products is reduced to 0.01% or less. , it is possible to reduce the generation of low-boiling point products during pulse discharge, it is possible to suppress the wear of the electrodes, it can be used for a long time without replacing the electrodes, and there is no need for frequent maintenance. It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るハロゲンエキシマレーザ装置の一
実施例における電極の模式的断面図、第2図(a)、 
(b)は本発明のハロゲンエキシマレーザ装置における
パルス放電時の電極の表面のX線拡大写真、第3図(a
)、 (b)は従来のハロゲンエキシマレーザ装置にお
けるパルス放電時の電極の表面のX線拡大写真、第4図
(a)、 (b)は従来のハロゲンエキシマレーザ装置
の電極を示す説明図である。 ■、2・・・電極 なお、図中、同一符号は同一、又は相当部分を示す。 代理人  大  岩  増  雄 見 1 閉 第  2 図 (a) (b) ネ 聞
FIG. 1 is a schematic cross-sectional view of an electrode in an embodiment of a halogen excimer laser device according to the present invention, FIG. 2(a),
(b) is an X-ray enlarged photograph of the surface of the electrode during pulse discharge in the halogen excimer laser device of the present invention;
), (b) are X-ray enlarged photographs of the surface of the electrode during pulse discharge in a conventional halogen excimer laser device, and FIGS. 4(a) and (b) are explanatory diagrams showing the electrodes of a conventional halogen excimer laser device. be. (2), 2... Electrodes In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Yumi 1 Closed Figure 2 (a) (b) Nemon

Claims (1)

【特許請求の範囲】[Claims] 1.不活性ガスとハロゲンガス又はハロゲン化合物ガス
との混合ガス中でパルス放電させるべき電極を備えてい
るハロゲンエキシマレーザ装置において、 前記ハロゲンガス又はハロゲン化合物ガス と反応して低沸点生成物を生じる不純物の量が前記電極
の少なくとも表層部で0.01%以下であることを特徴
とするハロゲンエキシマレーザ装置。
1. In a halogen excimer laser device equipped with an electrode to be pulse-discharged in a mixed gas of an inert gas and a halogen gas or a halogen compound gas, impurities that react with the halogen gas or halogen compound gas to produce low-boiling point products. A halogen excimer laser device, wherein the amount of the electrode is 0.01% or less at least in a surface layer portion of the electrode.
JP28597288A 1988-11-11 1988-11-11 Halogen excimer laser device Pending JPH02130989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28597288A JPH02130989A (en) 1988-11-11 1988-11-11 Halogen excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28597288A JPH02130989A (en) 1988-11-11 1988-11-11 Halogen excimer laser device

Publications (1)

Publication Number Publication Date
JPH02130989A true JPH02130989A (en) 1990-05-18

Family

ID=17698353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28597288A Pending JPH02130989A (en) 1988-11-11 1988-11-11 Halogen excimer laser device

Country Status (1)

Country Link
JP (1) JPH02130989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529682A (en) * 1991-07-22 1993-02-05 Komatsu Ltd Discharge electrode for excimer laser
JPH08335736A (en) * 1995-06-07 1996-12-17 Nec Corp Discharge electrode for excimer laser and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529682A (en) * 1991-07-22 1993-02-05 Komatsu Ltd Discharge electrode for excimer laser
JPH08335736A (en) * 1995-06-07 1996-12-17 Nec Corp Discharge electrode for excimer laser and its production

Similar Documents

Publication Publication Date Title
US4860300A (en) Electrode for pulsed gas lasers
US5729565A (en) Discharge unit and electrode for a pulsed discharge laser
US5923693A (en) Discharge electrode, shape-restoration thereof, excimer laser oscillator, and stepper
JP2002025949A (en) Cutting method of single crystal
JP4807889B2 (en) Gas laser electrode, laser chamber and gas laser device using the electrode
JPH02130989A (en) Halogen excimer laser device
JP4367886B2 (en) Gas laser device
JP2022189923A (en) Electrode for discharge chamber
JP2763777B2 (en) Excimer laser
Paetzel et al. KrF excimer laser with repetition rates of 1 kHz for DUV lithography
JP4059758B2 (en) Manufacturing method of main discharge electrode for laser device
JP3875451B2 (en) Excimer laser apparatus, exposure apparatus, and semiconductor device manufacturing method
Endert et al. New KrF and ArF excimer lasers for advanced deep ultraviolet optical lithography
JP2890506B2 (en) Thin film forming equipment
JPH024148B2 (en)
JPS63204677A (en) Electrode for excimer laser
JP2893158B2 (en) Discharge reactor
JP4396119B2 (en) Method for adjusting frequency of surface wave device
JPS6312398B2 (en)
JPS63229870A (en) High gas pressure laser device
US3617933A (en) Method for generating oscillation in krypton laser
JPH0361375A (en) Thin film forming device
JP3393640B2 (en) Low gas pressure plasma etching method for single crystal silicon
JP2004363245A (en) Ultraviolet laser device
Rebhan et al. NovaTube: first excimer laser design for quasi-sealed-off operation