JPS6312398B2 - - Google Patents

Info

Publication number
JPS6312398B2
JPS6312398B2 JP55156332A JP15633280A JPS6312398B2 JP S6312398 B2 JPS6312398 B2 JP S6312398B2 JP 55156332 A JP55156332 A JP 55156332A JP 15633280 A JP15633280 A JP 15633280A JP S6312398 B2 JPS6312398 B2 JP S6312398B2
Authority
JP
Japan
Prior art keywords
gas
laser
electrode
torr
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55156332A
Other languages
Japanese (ja)
Other versions
JPS5779691A (en
Inventor
Takafumi Oohara
Naoya Horiuchi
Reiji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15633280A priority Critical patent/JPS5779691A/en
Publication of JPS5779691A publication Critical patent/JPS5779691A/en
Publication of JPS6312398B2 publication Critical patent/JPS6312398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明は炭酸ガスレーザ装置に関するものであ
り、還元用水素ガスを導入すると同時に、水素ガ
スのもとでは酸化腐蝕の少いTi、Mo、W金属か
らなる電極を用いることにより、レーザ発振に必
要な安定した長寿命の放電電極を有するレーザ装
置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon dioxide laser device, in which reducing hydrogen gas is introduced and at the same time electrodes made of Ti, Mo, and W metals, which are less susceptible to oxidation corrosion under hydrogen gas, are used. This provides a laser device having a stable and long-life discharge electrode necessary for laser oscillation.

通常炭酸ガスレーザ装置のガス媒体のモル混合
比はレーザビームの出力が最大になるような比
CO2:N2:He1:2.5:11で混合して、レーザ
発振させる。混合ガスのガス圧は全体で10Torr
〜40Torrであり、この三種混合ガスを基本とし
て色々な別の種類のガスが混入されて、それ等混
合ガスによるレーザビーム出力の特性が調べられ
ている。たとえば、Arガスを混入する時にはビ
ーム出力は約20%増大し、またCOガスを導入す
る時には放電が安定することなどが報告されてい
る。また、CO2、H2、Heの三種混合ガスの分圧
力が1Torr、2.5Torr、11Torr、全圧力14.5Torr
のもとで、窒素ガスの8%の0.2TorrのH2Oある
いは0.2TorrのH2+0.1TorrのO2を導入して白金
電極を用いると出力が約50%増大するという報告
がある。しかしながらCO2ガスがレーザ共振器の
放電領域で電子衝撃によつて解離してCOと活性
なOが生じ、電極である白金をも腐蝕する。高価
な白金以外の金属で、W、Ni、Irは白金よりず
つと早く腐蝕する。
Normally, the molar mixing ratio of the gas medium in a carbon dioxide laser device is such that the output of the laser beam is maximized.
Mix CO2 : N2 :He1:2.5:11 and generate laser oscillation. The total gas pressure of the mixed gas is 10Torr
~40Torr, and various other types of gases have been mixed based on this three-type mixed gas, and the characteristics of laser beam output due to these mixed gases have been investigated. For example, it has been reported that when Ar gas is mixed, the beam output increases by about 20%, and when CO gas is introduced, the discharge becomes stable. In addition, the partial pressures of the three mixed gases of CO 2 , H 2 , and He are 1 Torr, 2.5 Torr, 11 Torr, and the total pressure is 14.5 Torr.
There is a report that the output increases by about 50% when a platinum electrode is used by introducing 0.2 Torr of H 2 O or 0.2 Torr of H 2 + 0.1 Torr of O 2 under 8% nitrogen gas. However, CO 2 gas dissociates due to electron impact in the discharge region of the laser resonator, producing CO and active O, which also corrode the platinum electrodes. Among the expensive metals other than platinum, W, Ni, and Ir corrode faster than platinum.

現在、レーザビーム出力を増大さすために混合
ガスの比を前述の比CO2:N2:He1:2.5:11
のままで全圧力を約30Torrにして、レーザ共振
器の中での逆転分布の密度を濃くすることによ
り、低圧力約1+2.5+11=14.5Torrの時のレー
ザ圧力の時のレーザビーム出力の増大が図られて
いる。しかしながら炭酸ガスレーザ装置で出力が
大きくなるように混合ガスの圧力を40Torrにし
て電極の還元効果を期待して水素ガスを既報告の
ように窒素ガスの8%近く導入することは、レー
ザ出力を30%近く低下させるという弊害が生じ
る。
Currently, to increase the laser beam power, the mixed gas ratio is changed to the above ratio CO2 : N2 :He1:2.5:11.
By increasing the total pressure to about 30 Torr and increasing the density of the inverted population in the laser resonator, the laser beam output can be increased at a low pressure of about 1 + 2.5 + 11 = 14.5 Torr. is planned. However, in order to increase the output of the carbon dioxide laser device, the pressure of the mixed gas is set at 40 Torr, and hydrogen gas is introduced at nearly 8% of the nitrogen gas as previously reported in hopes of reducing the electrode. This has the disadvantage of reducing the amount of water by nearly %.

本発明はレーザビーム出力を低下させることな
く、電極の酸化を防止することができる炭酸ガス
レーザ装置を提供するものである。
The present invention provides a carbon dioxide laser device that can prevent electrode oxidation without reducing laser beam output.

第1図aは炭酸ガスレーザ発振装置の共振器部
分を示すものである。共振器部分においては、炭
酸ガスレーザを発振させるために、CO2、N2
Heなどから成る約40Torrの混合ガスを用いて共
振器内に放電領域を作り、この放電領域で励起さ
れた上記ガス分子のエネルギーをコヒーレントな
光であるレーザビームに変換する。
FIG. 1a shows a resonator portion of a carbon dioxide laser oscillation device. In the resonator part, CO 2 , N 2 ,
A discharge region is created within the resonator using a mixed gas of approximately 40 Torr consisting of He or the like, and the energy of the gas molecules excited in this discharge region is converted into a laser beam, which is coherent light.

放電管11はホルダー12およびホルダー13
に挿入されてあり、ホルダー12,13と放電管
11との間には気密を保つためにOリング14,
15がはさまれている。ホルダー12には全反射
鏡16が、ホルダー13には出力鏡17がそれぞ
れ取りつけられてあり、この2つの鏡の間でレー
ザビームは共振し、一部は出力鏡17を通して外
に取り出される。放電管11のホルダー挿入側は
陰極部18,19があり、放電管の中央には陽極
部20がある。陽極、陰極間に約8KV〜10KVの
高電圧を印加して放電管中に放電領域を作る。ホ
ルダー12,13にはガスの出入口が設けられて
おり、放電によつて励起され十分に基底状態に落
ちないレーザガスを取り去り、絶えず新しいガス
を供給してレーザ出力を一定に維持している。
The discharge tube 11 has a holder 12 and a holder 13.
An O-ring 14 is inserted between the holders 12 and 13 and the discharge tube 11 to maintain airtightness.
15 is sandwiched. A total reflection mirror 16 is attached to the holder 12, and an output mirror 17 is attached to the holder 13. The laser beam resonates between these two mirrors, and a part of the laser beam is extracted to the outside through the output mirror 17. There are cathode sections 18 and 19 on the holder insertion side of the discharge tube 11, and an anode section 20 at the center of the discharge tube. A high voltage of approximately 8KV to 10KV is applied between the anode and cathode to create a discharge region in the discharge tube. The holders 12 and 13 are provided with gas inlets and outlets to remove laser gas that is excited by the discharge and does not sufficiently fall to the ground state, and to constantly supply new gas to maintain a constant laser output.

レーザ管の放電電極部の詳細を第1図bに示
す。図において1は鉄や銅などの金属から成る電
極ホルダー部である。ホルダー部1の内部には
Ti、Ta、SUS、W、Moなどの金属から成る電
極2がはめ合わせあるいはネジを用いて固定され
ている。電極2は陰極として働かせる時もあり、
陽極として働かすことも出来、電流の真空外への
取り出しはホルダー1の金属を介して行なわれ
る。ホルダー1にはガラス管3が溶着あるいは真
空Oリングを介して接続されており、大気のガス
と、レーザガスがレーザ管の中で混らないように
なつている。以下上記第1図aに示した放電管を
複数個折返し状に接続した多重折返し型のレーザ
装置を用いた結果について説明するが、もちろん
これに限定されるものではない。
Details of the discharge electrode section of the laser tube are shown in FIG. 1b. In the figure, 1 is an electrode holder made of metal such as iron or copper. Inside the holder part 1
Electrodes 2 made of metal such as Ti, Ta, SUS, W, and Mo are fixed by fitting or using screws. Electrode 2 is sometimes used as a cathode,
It can also function as an anode, and current is taken out of the vacuum through the metal of the holder 1. A glass tube 3 is connected to the holder 1 by welding or via a vacuum O-ring so that atmospheric gas and laser gas do not mix inside the laser tube. Hereinafter, a description will be given of the results obtained using a multi-folded laser device in which a plurality of discharge tubes are connected in a folded manner as shown in FIG.

第2図aは水素ガスの混らない、CO2、N2
Heの通常のCO2レーザガス(CO2:N2:H2
3:7:30Torr)を用いて、特に陰極として
Ta、Ti、SUSの電極を用いた多段折返し型のレ
ーザ装置を連続発振させた時の、レーザ出力の経
時変化であり、いずれの電極も表面に酸化膜層が
出来放電が起こらなくなり、多段レーザ管の電極
がひとつづつ機能しなくなるため時間と共に出力
は低下する。第2図bは、レーザ装置を連続使用
した時に電極の表面に形成される酸化物層の厚さ
を表面分析によつて測定したもので第2図a及び
bは酸化物表面層の厚さとレーザ出力の関係を非
常に良くあらわしている。
Figure 2 a shows CO 2 , N 2 , and no hydrogen gas mixed in.
He normal CO2 laser gas ( CO2 : N2 : H2 =
3:7:30Torr), especially as a cathode.
This is the change in laser output over time when a multistage folded laser device using Ta, Ti, and SUS electrodes is continuously oscillated. The output decreases over time as the tube's electrodes fail one by one. Figure 2b shows the thickness of the oxide layer formed on the surface of the electrode when the laser device is used continuously, measured by surface analysis, and Figures 2a and b show the thickness of the oxide surface layer. It expresses the relationship between laser output very well.

第3図aはCO2:N2:He=3:7:30Torr、
全圧力40TorrのCO2レーザガスの他に、H2ガス
をN2ガスの3%の0.21Torrを混入させて、連続
的にレーザ発振させた時のレーザ出力の変化を示
すものである。水素ガスを混入させることによ
り、電極の表面の酸化が非常に遅くなるため、水
素ガスを混合しない場合に比べ電極の寿命は3倍
以上に飛躍的に伸びる。特にTi金属の電極につ
いては、グロー放電によるイオンが表面をスパツ
タするので、寿命は10倍以上長くなる。
Figure 3 a shows CO 2 :N 2 :He=3:7:30Torr,
In addition to CO 2 laser gas with a total pressure of 40 Torr, H 2 gas is mixed with 0.21 Torr of 3% of N 2 gas, and the laser output changes when the laser is continuously oscillated. By mixing hydrogen gas, the oxidation of the electrode surface is extremely slowed down, so the life of the electrode is dramatically extended by more than three times compared to the case where hydrogen gas is not mixed. In particular, for Ti metal electrodes, ions from glow discharge spatter the surface, increasing the lifespan by more than 10 times.

この効果はN2ガスの0.5%以上のH2ガスを混入
することによつて得られる。
This effect can be obtained by mixing 0.5% or more of H 2 gas to N 2 gas.

第3図bは、水素ガス0.21TorrをCO2レーザガ
スに混入させた時の酸化物層の厚さの経時変化を
示すものである。この図でわかるようにTi電極
の表面に形成される酸化物層は1000時間たつても
約1μmよりも少く、他のSUS、Ta金属電極に比
べて非常に少い。勿論、水素ガスの混入量を増加
すればSUS、Taなどの金属電極も酸化物層の厚
さを減少させることが出来るがレーザ共振器の中
のガスの逆転分布の密度を著しく減少させる。電
極としてはTiのほかにW、Moについても同様の
効果がある。第4図は上記のCO2:N2:He=
3:7:30Torr、全圧力40Torrのレーザガスに
水素ガスを濃度を変えて混入した時の各種電極を
用いてレーザ出力の変化を示すもので、水素ガス
の窒素ガスに対するモル比が5%を超すと、レー
ザ出力が20%減少し、加工性能が著しく低下し、
実用性を失なう。このことから水素ガスを窒素ガ
スの5%以上混入させることは、電極の酸化を少
くするという効果はあるものの、出力を減少させ
る点で著しくレーザ装置の特性を劣化させる。し
たがつて混入させるH2ガスの量は、電極の劣化
を防止する意味でN2ガスの0.5%以上必要であ
り、レーザ出力の低下を防止する点でN2ガスの
5%未満であることが望ましい。また電極金属と
しては、Ti、W、Moが最適と考えられる、特に
陰極電極としてはこれらの金属を使うことが望ま
しい。
FIG. 3b shows the change over time in the thickness of the oxide layer when 0.21 Torr of hydrogen gas is mixed into the CO 2 laser gas. As can be seen in this figure, the oxide layer formed on the surface of the Ti electrode is less than about 1 μm even after 1000 hours, which is extremely small compared to other SUS and Ta metal electrodes. Of course, if the amount of hydrogen gas mixed in is increased, the thickness of the oxide layer of metal electrodes such as SUS or Ta can be reduced, but this will significantly reduce the density of the inverted gas distribution in the laser resonator. As an electrode, in addition to Ti, W and Mo have similar effects. Figure 4 shows the above CO 2 :N 2 :He=
This shows the change in laser output using various electrodes when hydrogen gas is mixed at different concentrations into the laser gas at 3:7:30 Torr and a total pressure of 40 Torr, and the molar ratio of hydrogen gas to nitrogen gas exceeds 5%. , the laser output decreased by 20% and the processing performance decreased significantly.
loses its practicality. From this, it can be seen that mixing hydrogen gas in an amount of 5% or more of nitrogen gas has the effect of reducing oxidation of the electrodes, but it significantly deteriorates the characteristics of the laser device in that it reduces the output. Therefore, the amount of H2 gas to be mixed must be 0.5% or more of N2 gas to prevent deterioration of the electrode, and less than 5% of N2 gas to prevent a decrease in laser output. is desirable. Further, as the electrode metal, Ti, W, and Mo are considered to be optimal, and it is particularly desirable to use these metals as the cathode electrode.

以上のように本発明はレーザ発振時に発生する
ラジカル酸化を還元するために、水素ガスを窒素
ガスの分圧の0.5〜5%導入し、電極酸化腐蝕の
少いTi、Mo、W金属などから成る放電電極をも
つCO2レーザ装置であり寿命が従来のものに比べ
約10倍伸び、その間レーザ出力が安定しているも
のが得られる。
As described above, the present invention introduces hydrogen gas at 0.5 to 5% of the partial pressure of nitrogen gas in order to reduce the radical oxidation generated during laser oscillation. This is a CO 2 laser device with a discharge electrode that has a lifespan of about 10 times longer than conventional ones, and the laser output remains stable during that time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭酸ガスレーザ発振装置の構造図、第
2図及び第3図はレーザ装置駆動時間に対するレ
ーザ出力、酸化物層の厚さの関係を示した図、第
4図は水素ガス混合量のレーザ出力に及ぼす影響
を示す図である。 1…電極ホルダー部、2…電極、3…ガラス
管。
Figure 1 is a structural diagram of a carbon dioxide laser oscillation device, Figures 2 and 3 are diagrams showing the relationship between laser output and oxide layer thickness with respect to laser device driving time, and Figure 4 is a diagram showing the relationship between the amount of hydrogen gas mixed FIG. 3 is a diagram showing the influence on laser output. 1... Electrode holder part, 2... Electrode, 3... Glass tube.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ管内に、窒素、二酸化炭素およびヘリ
ウムを主成分としこれに水素ガスを付加した活性
媒体と、放電電極とを具備し、前記水素ガスの分
圧が窒素分圧の0.5%以上5%未満であり、放電
電極のうち少なくとも陰極電極がTi、W、Moの
いずれかの材料で形成されたことを特徴とする炭
酸ガスレーザ装置。
1 A laser tube is equipped with an active medium containing nitrogen, carbon dioxide, and helium as main components and to which hydrogen gas is added, and a discharge electrode, and the partial pressure of the hydrogen gas is 0.5% or more and less than 5% of the nitrogen partial pressure. A carbon dioxide laser device, characterized in that at least a cathode electrode among the discharge electrodes is formed of any one of Ti, W, and Mo.
JP15633280A 1980-11-05 1980-11-05 Carbonic acid gas laser device Granted JPS5779691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15633280A JPS5779691A (en) 1980-11-05 1980-11-05 Carbonic acid gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15633280A JPS5779691A (en) 1980-11-05 1980-11-05 Carbonic acid gas laser device

Publications (2)

Publication Number Publication Date
JPS5779691A JPS5779691A (en) 1982-05-18
JPS6312398B2 true JPS6312398B2 (en) 1988-03-18

Family

ID=15625459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15633280A Granted JPS5779691A (en) 1980-11-05 1980-11-05 Carbonic acid gas laser device

Country Status (1)

Country Link
JP (1) JPS5779691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344799B2 (en) * 1989-01-23 1991-07-09 Fuji Car Mfg
JPH0341679Y2 (en) * 1988-12-01 1991-09-02

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157276A (en) * 1984-01-25 1985-08-17 Matsushita Electric Ind Co Ltd Laser oscillator
JPS63155783A (en) * 1986-12-19 1988-06-28 Toshiba Corp Gas laser device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114992A (en) * 1974-02-16 1975-09-09
JPS519390A (en) * 1974-07-12 1976-01-26 Hitachi Ltd GASUREEZAANET SUYOKI
JPS5165595A (en) * 1974-10-17 1976-06-07 Avco Everett Res Lab Inc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114992A (en) * 1974-02-16 1975-09-09
JPS519390A (en) * 1974-07-12 1976-01-26 Hitachi Ltd GASUREEZAANET SUYOKI
JPS5165595A (en) * 1974-10-17 1976-06-07 Avco Everett Res Lab Inc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341679Y2 (en) * 1988-12-01 1991-09-02
JPH0344799B2 (en) * 1989-01-23 1991-07-09 Fuji Car Mfg

Also Published As

Publication number Publication date
JPS5779691A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
US3723902A (en) Carbon dioxide laser employing multiple gases including oxygen and water vapor
Hutchinson Excimers and excimer lasers
US3899750A (en) Long life gas laser system and method
JPS6312398B2 (en)
US7006546B2 (en) Gas laser electrode, laser chamber employing the electrode, and gas laser device
US4412333A (en) Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media
Gerstenberger et al. Hollow‐cathode aluminum ion laser
Hochuli et al. 13.6-Cold cathodes for He-Ne gas lasers
Eichler et al. Performance of CuII lasers with cylindrical hollow cathodes
US4612642A (en) Operation of transversely excited N2 O lasers
Vuchkov et al. Optimization of a UV Cu/sup+/laser excited by pulse-longitudinal Ne-CuBr discharge
Dlabal et al. Multiline (480–496 nm) discharge‐pumped iodine monofluoride laser
Witteman High-power single-mode CO 2 laser
Jones Gain and energy measurements on an HF/DF electrically pulsed chemical laser
Hochuli et al. Cold cathodes for sealed-off CO 2 lasers
Seguin et al. Sealed Room‐Temperature CO–CO2 Laser Operating at 5 or 10 μ
Eden et al. Compact coaxial diode electron beam system: Carbon cathodes and anode fabrication techniques
Franzen et al. High-gain small-bore cooled CO 2 amplifier
Szalai et al. Optimum operating conditions of a hollow-cathode Au-II laser
Szalai et al. Dependence of gain and laser power for Cu-II 780.8-nm transition on the diameter of a segmented hollow cathode discharge
Koch et al. Hollow cathode copper ion lasers
Ivanov et al. Special features of using an unstable resonator in XeCl laser with aperture 12× 16 cm2
US4048587A (en) Bismuth halide vapor laser
Garnsworthy The pressure-dependent performance of a transversely excited pulsed CO2 laser
Brink A small-scale CW HF laser based on a hollow-cathode discharge