JPH02130708A - Composite type magnetic head - Google Patents

Composite type magnetic head

Info

Publication number
JPH02130708A
JPH02130708A JP28530988A JP28530988A JPH02130708A JP H02130708 A JPH02130708 A JP H02130708A JP 28530988 A JP28530988 A JP 28530988A JP 28530988 A JP28530988 A JP 28530988A JP H02130708 A JPH02130708 A JP H02130708A
Authority
JP
Japan
Prior art keywords
magnetic
melting point
core
glass
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28530988A
Other languages
Japanese (ja)
Inventor
Hideji Fujimoto
藤本 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28530988A priority Critical patent/JPH02130708A/en
Publication of JPH02130708A publication Critical patent/JPH02130708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress occurrence of sliding noise by extending both end sections of ferromagnetic metallic layers in directions in which the metallic layers are separated from a magnetic gap section into core half bodies after passing through the boundaries between a glass section and the core half bodies. CONSTITUTION:A pair of ferromagnetic metallic layers 2 and 21 of 'Sendust(R)' etc., are formed at the butting section of a pair of magnetic core half bodies 1 and 11 of a ferromagnetic oxide of Mn-Zn ferrite, etc., with a magnetic gap section 3 of SiO in between. The metallic layers 2 and 21 have a surface shape of Z as a whole on the surface 10 which is brought into contact with a magnetic tape and extended in directions in which the layers 2 and 21 are separated from the magnetic gap section 3 in a plane which is inclined by about 45 deg. against the joined surface of both core half bodies 1 and 11. In addition, both end sections A and A of the layers 2 and 21 enter the core half bodies 1 and 11 are turned to the core joining surface side at the end sections A and A and are extended to the core joined surface. Moreover, at the joining section of the core half bodies 1 and 11, high-melting point glass sections 4 and 41 and low-melting point glass sections 5 and 51 are respectively provided on the entire area of the magnetic gap section 3 and most of the ferromagnetic metallic layers 2 and 21. The low-melting point glass sections 5 and 51 are extended to the depth position of a coil window 6 from the surface 10 contacted with a tape.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ギャップ部近傍の磁気回路が強磁性金属
薄膜によって形成されている磁気ヘッドに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic head in which a magnetic circuit near a magnetic gap portion is formed of a ferromagnetic metal thin film.

(従来の技術) 近年、VTR等の磁気記録再生装置に於いて、記録信号
の高密度化、高周波化が進んでおり、これに伴って、磁
性粉としてFe、Co、Ni等の強磁性金属粉末を用い
た抗磁力の高い塗布型メタルテープ、或は強磁性金属材
料を蒸着によりベースフィルム上に成膜した蒸着テープ
等が使用される様仁なっている。斯種磁気テープに信号
゛記録を行なう為には、高い飽和磁束密度を有する磁性
材料からなる磁気ヘッドが必要となる。
(Prior Art) In recent years, in magnetic recording and reproducing devices such as VTRs, the density and frequency of recording signals have been increasing, and along with this, ferromagnetic metals such as Fe, Co, and Ni have been used as magnetic powder. Coating-type metal tapes using powder and having high coercive force, or vapor-deposited tapes in which a ferromagnetic metal material is deposited on a base film by vapor-deposition, and the like are increasingly being used. In order to record signals on this type of magnetic tape, a magnetic head made of a magnetic material having a high saturation magnetic flux density is required.

そこで、従来より第6図に示す如く、フェライト等の強
磁性酸化物よりなる一対の磁性コア半体(1)(11)
の突合せ部に、磁気ギャップ部(3)を挟んで、センダ
スト等の強磁性金属層(24) (25)を形成した複
合型の磁気ヘッドが提案されている (特開昭61−2
87018[C11BS/23])。
Therefore, as shown in FIG. 6, conventionally a pair of magnetic core halves (1) (11) made of ferromagnetic oxide such as ferrite,
A composite magnetic head has been proposed in which ferromagnetic metal layers (24) (25), such as sendust, are formed between the abutting portions with a magnetic gap portion (3) in between (JP-A-61-2
87018 [C11BS/23]).

該磁気ヘッドに於いては、強磁性金属層(24)(25
)の磁気ギャップ部形成面とコア半体(1)(11)の
強磁性金属層形成面とを非平行に設けると共に、磁気ギ
ャップ部(3)の両側にはガラス部(46) (46)
を形成し、これによって所謂擬似ギャップの発生を阻止
し、実質的なトラック幅を所定値に規制している。
In the magnetic head, ferromagnetic metal layers (24) (25)
) and the ferromagnetic metal layer forming surfaces of the core halves (1) and (11) are provided non-parallel to each other, and glass portions (46) (46) are provided on both sides of the magnetic gap portion (3).
This prevents the occurrence of so-called pseudo gaps and limits the actual track width to a predetermined value.

上記磁気ヘッドの製造方法を第7m<a>〜(g)に示
す。
A method of manufacturing the above magnetic head is shown in 7th m<a> to (g).

先ず第7図(a)の如く磁性基板(12)の表面に、底
面が傾斜した薄膜形成溝(14)を凹設した後、同図(
b)の如く、磁性基板(12)の溝形成面に強磁性金属
膜(22)をスパッタリング形成する。
First, as shown in FIG. 7(a), a thin film formation groove (14) with an inclined bottom surface is formed in the surface of the magnetic substrate (12), and then
As in b), a ferromagnetic metal film (22) is formed by sputtering on the groove forming surface of the magnetic substrate (12).

次に、同図(e)の如く強磁性金属Ill! (22)
の表面にガラス(47)を充填した後、その表面を研磨
して、同図(d)の如く基板(12〉の表面に強磁性金
、[(23)及びガラス(27)の充填部を露出せしめ
る。
Next, as shown in the same figure (e), a ferromagnetic metal Ill! (22)
After filling the surface of the substrate (12) with glass (47), the surface is polished, and as shown in FIG. expose it.

更に、第7図(e)の如く磁性基板(12)の表面に、
前記充填部に沿ってトラック幅規制溝(16)を凹設す
る。
Furthermore, as shown in FIG. 7(e), on the surface of the magnetic substrate (12),
A track width regulating groove (16) is recessed along the filling portion.

第7図(f)に示す様に、上記工程を経て作製された一
対のブロック半体(74) (75)の内、一方のブロ
ック半体(74)にコイル溝(61)と融着溝(62)
を凹設した後、両ブロック半体(74)(75)をs 
i OzNI <図示省略)を介して互いに重ね合せ、
更に加熱炉内にて、融着溝(62)に挿入したガラス棒
(48)を溶融せしめることにより、同図(Fl)の如
く両ブロック半体(74)(75)をガラス接合してコ
アブロック(70)を作製する。
As shown in FIG. 7(f), among the pair of block halves (74) and (75) produced through the above steps, one block half (74) has a coil groove (61) and a welding groove. (62)
After recessing both block halves (74) and (75),
overlaid on each other via iOzNI <not shown),
Furthermore, by melting the glass rod (48) inserted into the welding groove (62) in the heating furnace, the two block halves (74) and (75) are glass-bonded as shown in the same figure (Fl) to form the core. A block (70) is produced.

最後に、前記コアブロック(70)をスライスし、テー
プとの対接面を曲面研磨することによって、第6図の磁
気ヘッドを完成する。
Finally, the magnetic head shown in FIG. 6 is completed by slicing the core block (70) and polishing the tape-contacting surface into a curved surface.

(解決しようとする課題) ところが、第6図に示す磁気ヘッドに於いては、強磁性
酸化物のコア半体(1)(11)が磁気ギャップ部(3
〉に連接して形成されている為、コア半体(1)(11
)が磁気テープに対し磁石として作用し、これによって
摺動ノイズが発生する問題があった。
(Problem to be Solved) However, in the magnetic head shown in FIG.
〉 core halves (1) (11
) acts as a magnet on the magnetic tape, which causes sliding noise.

又、該磁気ヘッドの製造に於いては、第7図(e)に示
すトラック幅規制溝(16)の加工精度が最終的な磁気
ギャップ部のトラック幅の精度を左右するから、溝の機
械加工に高い精度が要求され、これによって大幅に工数
が増加する問題があった。
Furthermore, in manufacturing the magnetic head, the machining accuracy of the track width regulating groove (16) shown in FIG. 7(e) influences the accuracy of the final track width of the magnetic gap, so High precision is required for processing, which poses the problem of significantly increasing the number of man-hours.

然も、第7図(b)の如く磁性基板(12)の全表面に
、磁性基板(12)とは熱膨張係数が大きく異なる強磁
性金属膜(22)が形成されるから、同図(f)に示す
ガラス接合工程にて、強磁性金属M (22)及び磁性
基板(12)表層部に過大な内部応力が発生し、これに
よって強磁性金属M (22)が!1llllI!した
り、磁性基板(12)にクラックが発生し、歩留りが低
下する問題があった。
However, as shown in FIG. 7(b), a ferromagnetic metal film (22) having a coefficient of thermal expansion significantly different from that of the magnetic substrate (12) is formed on the entire surface of the magnetic substrate (12). In the glass bonding process shown in f), excessive internal stress occurs in the surface layer of the ferromagnetic metal M (22) and the magnetic substrate (12), which causes the ferromagnetic metal M (22) to! 1lllllI! There is a problem that cracks occur in the magnetic substrate (12) and the yield decreases.

本発明の目的は、摺動ノイズの発生を可及的に抑制出来
、又、従来よりも少ない工数で、然も歩留り良く製造す
ることが出来る構造の磁気ヘッドを提供することである
An object of the present invention is to provide a magnetic head having a structure that can suppress the occurrence of sliding noise as much as possible, and can be manufactured with fewer man-hours than conventional ones and with a high yield.

(課題を解決する為の手段) 本発明に係る磁気ヘッドは、強磁性酸化物よりなる一対
の磁性コア半体(1)(11)の突会せ部に、磁気ギャ
ップ部(3)を挟んで一対の強磁性金属層(2)(21
)を配備している。該強磁性金属層(2)(21)は、
磁気ギャップ部形成面に対して非平行な平面或は曲面上
に形成される。
(Means for Solving the Problems) A magnetic head according to the present invention has a magnetic gap portion (3) sandwiched between the abutting portions of a pair of magnetic core halves (1) and (11) made of ferromagnetic oxide. A pair of ferromagnetic metal layers (2) (21
) is deployed. The ferromagnetic metal layers (2) (21) are
It is formed on a flat or curved surface that is non-parallel to the magnetic gap forming surface.

コア半体(1)(11)の突合せ部には、磁気ギャップ
部<3)全体及び強磁性金属層(2)(21)の大部分
を包囲して、ガラス部<4) <41) (5) <5
1)が設けられる。
At the abutting portion of the core halves (1) (11), a glass portion <4) <41) ( 5) <5
1) is provided.

又、強磁性金属層(2)(21)の磁気ギャップ部(3
)から離間する方向の両端部(第2図中A、A)は、ガ
ラス部<4> (41)(,5) (51)とコア半体
<1)(11)との界面を貫通してコア半#(1)(1
1)中へ伸びている。
Moreover, the magnetic gap portion (3) of the ferromagnetic metal layer (2) (21)
) (A, A in Fig. 2) penetrate the interface between the glass part <4> (41) (,5) (51) and the core half <1) (11). Core half # (1) (1
1) Extending inward.

(作 用) コア半体(1)(11)中へ侵入した強磁性金属層(2
)〈21)の両端部A、Aによって、コア半体(1)(
11)と強磁性金属層(2>(21)とが互いに磁気的
に接続され、磁気ギャップ部(3)を介在した磁気ルー
プが形成される。
(Function) The ferromagnetic metal layer (2) that has penetrated into the core halves (1) (11)
)〈21), the core half (1) (
11) and the ferromagnetic metal layer (2>(21)) are magnetically connected to each other to form a magnetic loop with a magnetic gap (3) interposed therebetween.

(発明の効果) 本発明に係る複合型磁気ヘッドに於いては、磁気ギャッ
プ部(3)の全周囲を包囲してガラス部(4)(41)
(5)(51)が形成されており、又、磁気記録媒体と
の対接面り10)に於ける磁気ギャップ部(3)とコア
半体(1)(11)との間には、十分な距離が設けられ
ているから、従来の如き摺動ノイズは生じない 又、強磁性金属層(2)(21)の大部分がガラス部(
4)(41)(5) (51)によって包囲され、強磁
性金属層(2)(21)とコア半体(1)(11)との
接触面積は、従来の磁気ヘッドに比べて狭いことに対応
して、該磁気ヘッドの製造工程においては、コア半体(
1)<2)の資材となる磁性基板(12)と強磁性金属
1(2) (21)となる強磁性金属III (22)
との接触面積が、従来の磁気ヘッドの場合に比べて狭く
なるく第4図(e)(f)参照〉、従って、一対のブロ
ック半体をガラス接合する際〈第4図(i>(j)参照
)、熱応力に起因する欠陥は発生せず、従来の磁気ヘッ
ドに比べて歩留りが改善される。
(Effects of the Invention) In the composite magnetic head according to the present invention, the glass portions (4) (41) surround the entire periphery of the magnetic gap portion (3).
(5) and (51) are formed, and between the magnetic gap part (3) and the core halves (1) and (11) on the surface 10) that faces the magnetic recording medium, Since there is a sufficient distance, sliding noise as in the conventional case does not occur, and most of the ferromagnetic metal layers (2) (21) are glass parts (
4) Surrounded by (41) (5) (51), the contact area between the ferromagnetic metal layer (2) (21) and the core half body (1) (11) is narrower than in conventional magnetic heads. Correspondingly, in the manufacturing process of the magnetic head, the core half (
1) <2) Magnetic substrate (12) and ferromagnetic metal 1 (2) (21) ferromagnetic metal III (22)
The contact area with the magnetic head is narrower than in the case of conventional magnetic heads (see Figures 4(e) and (f)). Therefore, when glass-bonding a pair of block halves (see Figure 4(i)) j)), defects due to thermal stress do not occur, and the yield is improved compared to conventional magnetic heads.

然も、磁気ギャップ部(3)のトラック幅は、強磁性金
属層(2>(21)の成膜厚さによって規定されるから
、従来の磁気ヘッドの如きトラック幅規制溝は不要であ
る。従って、磁気ヘッドの製造に必要な工数は従来より
も少なくて済む。
However, since the track width of the magnetic gap portion (3) is defined by the film thickness of the ferromagnetic metal layer (2>(21)), there is no need for track width regulating grooves as in conventional magnetic heads. Therefore, the number of man-hours required to manufacture the magnetic head can be reduced compared to the conventional method.

(実施例) 実施例は本発明を説明するためのものであって、特許請
求の範囲に記載の発明を限定し、或は範囲を減縮する様
に解すべきではない。
(Examples) Examples are provided to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing its scope.

第1図及び第2図は本発明に係る複合型磁気ヘッドの一
例を示している。
FIGS. 1 and 2 show an example of a composite magnetic head according to the present invention.

Mn−Znフェライト等の強磁性酸化物よりなる一対の
磁性コア半体(1)(11)の突合せ部に、Sio2か
らなる磁気ギャップ部(3)を挟んで、センダスト或は
アモルファス合金等からなる一対の強磁性金属層(2)
(21)が形成されている。
A pair of magnetic core halves (1) and (11) made of a ferromagnetic oxide such as Mn-Zn ferrite are sandwiched between a magnetic gap part (3) made of Sio2 at the abutting part, and a magnetic core made of sendust or an amorphous alloy is placed between them. A pair of ferromagnetic metal layers (2)
(21) is formed.

該強磁性金属層(2)(21)は、テープ対接面(10
)上の表面形状が2字状を呈しており、両コア半体(1
)(11)の接合面に対して略45度傾斜した平面上を
磁気ギャップ部(3)から離れる方向に伸び、両端部A
、Aがコア半体(1)(11)中に侵入し、更に該端部
Aからコア接合面側へ折り返し、コア接合面まで伸びて
いる。
The ferromagnetic metal layer (2) (21) has a tape contact surface (10
) has a two-character shape, and both core halves (1
) (11) extends in a direction away from the magnetic gap part (3) on a plane inclined approximately 45 degrees with respect to the bonding surface of (11), and both ends A
, A penetrate into the core halves (1) and (11), and further fold back from the end A toward the core joint surface and extend to the core joint surface.

又、コア半体(1)(11)の突合せ部には、磁気ギャ
ップ部(3)全体及び強磁性金属層(2)(21)の大
部分を包囲して、高融点ガラス部(4)(41)と低融
点ガラス部(5)(51)が設けられている。該ガラス
部は、テープ対接面(10)からコイル窓(6)の深さ
位置まで伸びている。
Further, at the abutting portion of the core halves (1) (11), a high melting point glass portion (4) surrounds the entire magnetic gap portion (3) and most of the ferromagnetic metal layers (2) (21). (41) and low melting point glass parts (5) and (51) are provided. The glass portion extends from the tape contact surface (10) to the depth of the coil window (6).

尚、後述の如く高融点ガラス部(4)(41)及び低融
点ガラス部(5)(51)は、熱膨張係数がコア半体(
1)(11)の強磁性酸化物よりも大きく、且つ強磁性
金属層(2)(21)よりも小なるガラス資材から形成
される。
As will be described later, the high melting point glass portions (4) (41) and the low melting point glass portions (5) (51) have thermal expansion coefficients similar to those of the core half (
1) It is formed from a glass material larger than the ferromagnetic oxide of (11) and smaller than the ferromagnetic metal layers (2) and (21).

以下、上記磁気ヘッドの製造方法について説明する9 先ず第4図(a)に示す磁性基板(12)を作製し、該
磁性基板(12)の表面に、同図(b)の如く断面矩形
のガラス充填?II(13)を回転砥石等によって繰り
返し凹設する。
The method for manufacturing the above magnetic head will be described below.9 First, a magnetic substrate (12) shown in FIG. Glass filled? II (13) is repeatedly recessed using a rotary grindstone or the like.

次に、第4図(c)の如く磁性基板(12)の溝形成面
に、軟化点が略650℃、膨張係数が0〜300℃にて
略140X10−7m/’Cの高融点ガラス膜(42)
を形成する。高融点ガラス膜(42)の形成は、例えば
第5図(a)(b)に示す方法によって行なわれる。即
ち、第5図(a)の如く石英ガラスよりなる一対の加圧
治具(100) (101)の間に、磁性基板(12)
、高融点ガラスM (42)の資材となるガラス板(4
4)、及び金属箔(102)を介装し、同図(b)の如
く両加圧治具によってガラス板(44)を磁性基板(1
2)に加圧した状態で、加熱炉内にてガラス板(44)
を溶融せしめるのである。
Next, as shown in FIG. 4(c), a high melting point glass film with a softening point of about 650°C and an expansion coefficient of about 140 x 10-7 m/'C at a temperature of 0 to 300°C is applied to the groove forming surface of the magnetic substrate (12). (42)
form. The high melting point glass film (42) is formed, for example, by the method shown in FIGS. 5(a) and 5(b). That is, as shown in FIG. 5(a), a magnetic substrate (12) is placed between a pair of pressing jigs (100) and (101) made of quartz glass.
, glass plate (4) that is the material for high melting point glass M (42)
4), and metal foil (102), and press the glass plate (44) onto the magnetic substrate (1) using both pressure jigs as shown in FIG.
2) The glass plate (44) is heated in a heating furnace under pressure.
It melts it.

その後、第4図(d)の如く磁性基板(12)のガラス
充填面を研磨して、高融点ガラス(43)が充填された
溝(13〉を露出せしめる。
Thereafter, as shown in FIG. 4(d), the glass-filled surface of the magnetic substrate (12) is polished to expose the groove (13) filled with the high melting point glass (43).

前記研磨面に、゛第4図(e)の如くガラス充填溝(1
3)に対して略直交する薄膜形成溝(14)を、ガラス
充填溝(13)よりも大なる深さで凹設する。該薄膜形
成溝(14)の底面は、研摩面に対して傾斜した平面く
例えば45度の斜面)或は曲面に形成される。
A glass-filled groove (1) is formed on the polished surface as shown in FIG.
A thin film forming groove (14) substantially perpendicular to 3) is recessed to a depth greater than that of the glass filling groove (13). The bottom surface of the thin film forming groove (14) is formed into a flat surface inclined to the polishing surface (for example, a 45 degree slope) or a curved surface.

第4図(f)に示す如く、磁性基板(12)の溝形成面
に、センダスト或はアモルファス合金等からなる強磁性
金属膜(22)を、スパッタリングによりトラック幅に
対応する所定厚さに形成する。
As shown in FIG. 4(f), a ferromagnetic metal film (22) made of Sendust or an amorphous alloy is formed on the groove forming surface of the magnetic substrate (12) by sputtering to a predetermined thickness corresponding to the track width. do.

第4図(g)の如く前記強磁性金属膜(22)の表面に
、軟化点が略400℃、膨張係数が0〜300℃にて略
140X 10−’論/ ”Cの低融点ガラス膜(52
)を形成する。低融点ガラス膜(52)の形成には、第
5図と同様の方法を用いることが出来る。
As shown in FIG. 4(g), a low melting point glass film with a softening point of approximately 400°C and an expansion coefficient of approximately 140X 10-'C at a temperature of approximately 400°C and an expansion coefficient of 0 to 300°C is placed on the surface of the ferromagnetic metal film (22) as shown in FIG. 4(g). (52
) to form. A method similar to that shown in FIG. 5 can be used to form the low melting point glass film (52).

更に第4図(h)に示す様に、前記低融点ガラス膜(5
Z)の形成面に平面研字を施して、強磁性金属<23)
、低融点ガラス(53)及び高融点ガラス(43)を表
面に露出したブロック半体(71)を作製する。
Furthermore, as shown in FIG. 4(h), the low melting point glass film (5
Surface grinding is applied to the forming surface of Z), and ferromagnetic metal <23)
, a block half (71) having a low melting point glass (53) and a high melting point glass (43) exposed on the surface is produced.

前記工程を経て得られた一対のブロック半体(71)<
72)の内、一方のブロック半体()2)に、第4図(
i)に示す様に高融点ガラス(43)の充填溝に沿って
、コイル講(61)を7凹設する。
A pair of block halves (71) obtained through the above steps
Figure 4 (
As shown in i), seven coil holes (61) are provided along the filling groove of the high melting point glass (43).

その後、第4図(j)に示す様に、前記一対のブロック
半体()1)(72)を、SiO2の非磁性層(31)
を介して、強磁性金属(23)の層が突き合う位相で互
いに接合し、加熱炉内にて低融点ガラス(53)を溶融
せしめる。これによって両ブロック半体(71)り72
)が互いに固定され、一体のコアブロック(7)が得ら
れる。
Thereafter, as shown in FIG. 4(j), the pair of block halves (1) (72) are coated with a nonmagnetic layer (31) of SiO2.
The layers of ferromagnetic metal (23) are joined to each other in an abutting phase, and the low melting point glass (53) is melted in a heating furnace. As a result, both blocks (71) are cut in half (72)
) are fixed together to obtain an integral core block (7).

前記コアブロック(7)を図中X線に沿って切断し、第
4図(k)に示すヘッドブロック(8)を作製する。更
に、該ヘッドブロック(8)を図中Y線に沿ってスライ
スし、磁気テープとの対接面を曲面研磨することによっ
て、第1図に示す磁気ヘッドが完成する。
The core block (7) is cut along the X-ray in the figure to produce a head block (8) shown in FIG. 4(k). Furthermore, the head block (8) is sliced along the Y line in the figure, and the surface facing the magnetic tape is polished to a curved surface, thereby completing the magnetic head shown in FIG. 1.

高融点ガラス部(4)(41)及び低融点ガラス部(5
)(51)の組成及び物理特性を下記衣に示す。
High melting point glass part (4) (41) and low melting point glass part (5
The composition and physical properties of ) (51) are shown in the coating below.

尚、第3図(a)(b)に示す如く、テープ対接面(1
0)に溝加工(9)(91)を施すことにより、磁気ギ
ャップ部(3)の以外の箇所、即ち強磁性金属層<2)
(21)とコア半体(1)(11)とが高融点ガラス部
(4)(41)を挟んで僅かな距離で対向する部分(第
2図中B)に於ける磁束漏れを完全に防止することが出
来る。
In addition, as shown in FIGS. 3(a) and 3(b), the tape contact surface (1
By applying grooves (9) and (91) to 0), the area other than the magnetic gap part (3), that is, the ferromagnetic metal layer <2)
Completely eliminate magnetic flux leakage in the part (B in Figure 2) where (21) and core halves (1) and (11) face each other at a short distance with the high melting point glass parts (4) and (41) in between. It can be prevented.

第1図に示す磁気ヘッドに於いては、テープ対接面(1
0)ににて磁気ギャップ部(3)とコア半体(1)(1
1)とが十分に離間しているから、従来の如き摺動ノイ
ズが生じることはない。
In the magnetic head shown in FIG.
0), magnetic gap part (3) and core half (1) (1
1) are sufficiently spaced apart from each other, so there is no sliding noise as in the conventional case.

又、第4図(f)に示す強磁性金属膜(22)の形成工
程にて、磁性基板(12)の表面にはガラス充填部が形
成されているから、強磁性金属膜(22)と磁性基板(
12)との接触面積は、従来の磁気ヘッドの場合に比べ
て半減する。従って、同図(j)に来すガラス接合工程
にて、熱膨張係数の差に基づいて磁性基板(12)と強
磁性金属膜(22)に生じる内部応力は、従来に比べて
小さい、然も、前述の如く低融点ガラス及び高融点ガラ
スの熱膨張係数は、磁性基板(12)よりも大きく、且
つ強磁性金属膜(22)よりも小さいから、前記内部応
力がガラス部によって緩和されることになる。
Furthermore, in the process of forming the ferromagnetic metal film (22) shown in FIG. Magnetic substrate (
12) The contact area with the magnetic head is halved compared to that of conventional magnetic heads. Therefore, in the glass bonding process shown in Figure (j), the internal stress generated between the magnetic substrate (12) and the ferromagnetic metal film (22) due to the difference in thermal expansion coefficients is smaller than that in the past. Also, as mentioned above, the thermal expansion coefficients of the low melting point glass and the high melting point glass are larger than that of the magnetic substrate (12) and smaller than that of the ferromagnetic metal film (22), so the internal stress is alleviated by the glass portion. It turns out.

従って、第4図(h)の如くブロック半体(71)の表
面を研磨する際、或は第4図U)の如く一対のブロック
半体(71)(72)をガラス接合する際、強磁性金属
層が剥離したり、磁性基板にクラックが生じることはな
い。
Therefore, when polishing the surface of the block half (71) as shown in FIG. 4(h), or when bonding the pair of block halves (71) and (72) with glass as shown in FIG. 4(U), strong No peeling of the magnetic metal layer or cracking of the magnetic substrate occurs.

然も、第2図の如く磁気ギャップ部(3)の両側には、
低融点ガラス部(5)(51)及び高融点ガラス部(4
)(41)が設けられ、これらのガラス部によってトラ
ック幅が規定されるから、第4図(h)から同図(j>
に至る製造工程で、従来の如きトラック幅規制溝の加工
(第7図(e))は不要である。尚、本発明の磁気ヘッ
ドでは、第4図(b)に示すガラス充填溝(13)の加
工が必要なるが、ガラス充填溝(13)の形状寸法はト
ラック幅に関与しないから、該溝加工に高い精度は不要
である。従って、本発明の磁気ヘッドの製造に必要な工
数は従来の磁気ヘッドよりも減少する。
However, as shown in Figure 2, on both sides of the magnetic gap part (3),
Low melting point glass part (5) (51) and high melting point glass part (4
) (41) are provided, and the track width is defined by these glass parts, so that from FIG. 4(h) to FIG. 4(j>
In the manufacturing process leading up to this step, the conventional processing of track width regulating grooves (FIG. 7(e)) is unnecessary. Incidentally, in the magnetic head of the present invention, it is necessary to process the glass-filled groove (13) shown in FIG. High accuracy is not required. Therefore, the number of man-hours required to manufacture the magnetic head of the present invention is reduced compared to conventional magnetic heads.

図面及び上記実施例の説明は、本発明を説明するための
ものであって、図面及び上記実施例の説明は、特許請求
の範囲に記載の発明を限定し、或は範囲を減縮する様に
解すべきではない。
The drawings and the description of the above-mentioned embodiments are for explaining the present invention, and the drawings and the explanation of the above-mentioned embodiments are not intended to limit or reduce the scope of the invention described in the claims. It should not be understood.

又、本発明の各部構成は上記実施例に限らず、特許請求
の範囲に記載の技術的範囲内で種々の変形が可能である
ことは勿論である。
Further, it goes without saying that the configuration of each part of the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the technical scope of the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気ヘッドの斜面図、第2図は同
上の平面図、第3図(a)は他の実施例を示す磁気ヘッ
ドの平面図、第3図(b)は同図(a) B−B線に沿
う断面図、第4図(、)〜(k>は第1図の磁気ヘッド
製造工程を示す斜面図、第5図はガラス充填工程を説明
する図、第6図は従来の磁気ヘッドの斜面図、第7図(
、)〜(g)は第6図の磁気ヘッドの製造工程を示す斜
面図である。 (1)(11)・・・コア半体 (2)(21)・・・強磁性金属層 (3)・・・磁気ギャップ部 (4)(41)・・・高融点ガラス部 (5)(51)・・・低融点ガラス部 第5図 手続補正書(自発〕 1゜ 事件の表示 2、発明の名称 特願昭63−285309 複合型磁気ヘラ 三洋電機株式会社 5、補正の対象 明4I書発明の詳細な説明の欄 6、補正の内容 〈1〉  明細書第9頁第18行目 「略140 X 10”’m/’C〜形成」を (2)明細書第9頁第19行目 r高融点ガラスWA(42)の形成」をr高融点ガラス
(42)の充填1に補正。 (3)  明細書第10頁第2行目〜第3行目r高融点
ガラスfil(42)Jを c高融点ガラス(42)Jに補正。 (4)  明細書第11頁第2行目〜第3行目「略14
0X10−’輔/℃〜形成には」をr略140xlO−
’/’Cの低融点ガラス(52)を形成する。低融点ガ
ラス(52)の充填には1に補正。 (5)明細書第11頁第5行目〜第6行目「低融点ガラ
ス膜(52)Jを r低融点ガラス(52)Jに補正。 (6)  明細書第11頁第6行目〜第7行目「強磁性
金属(23)Jを 7強磁性金属膜(23)Jに補正。 (7)明細書第11頁第15行目 「位相」を r位置1に補正。 (8)明細書第12頁第15行目 表中のr(0〜300℃)(m/’C)Jをr(Q〜3
00℃)(/”C)Jに補正。
FIG. 1 is a perspective view of a magnetic head according to the present invention, FIG. 2 is a plan view of the same as above, FIG. 3(a) is a plan view of a magnetic head showing another embodiment, and FIG. 3(b) is a plan view of the same. Figure (a) is a sectional view taken along line B-B, Figures 4 (,) to (k> are perspective views showing the magnetic head manufacturing process in Figure 1, Figure 5 is a diagram explaining the glass filling process, Figure 5 is a diagram illustrating the glass filling process, Figure 6 is an oblique view of a conventional magnetic head, and Figure 7 (
, ) to (g) are perspective views showing the manufacturing process of the magnetic head of FIG. 6. (1) (11) ... Core half (2) (21) ... Ferromagnetic metal layer (3) ... Magnetic gap part (4) (41) ... High melting point glass part (5) (51) ...Low melting point glass section Figure 5 Procedural amendment (voluntary) 1゜Indication of case 2, Title of invention Patent application 1986-285309 Composite magnetic spatula Sanyo Electric Co., Ltd. 5, Subject of amendment 4I Detailed Description of the Invention Column 6, Contents of Amendment <1> Page 9 of the Specification, Line 18, "Approximately 140 x 10"'m/'C~ Formation" (2) Page 9 of the Specification, Line 19 "Formation of high melting point glass WA (42) in line r" is corrected to filling 1 of high melting point glass (42) in r high melting point glass (42). 42) J is corrected to c high melting point glass (42) J. (4) Specification, page 11, lines 2 to 3, “approximately 14
0x10-'輔/℃〜Formation' is approximately 140xlO-
'/'C low melting point glass (52) is formed. Correct to 1 for filling with low melting point glass (52). (5) Specification, page 11, lines 5 to 6 "Low melting point glass film (52) J is corrected to r low melting point glass (52) J. (6) Specification, page 11, line 6 ~7th line "Ferromagnetic metal (23) J is corrected to 7 ferromagnetic metal film (23) J. (7) Specification page 11, line 15 "Phase" is corrected to r position 1. (8) r(0~300℃)(m/'C)J in the table on page 12, line 15 of the specification
Corrected to 00℃)(/”C)J.

Claims (1)

【特許請求の範囲】[Claims] [1]強磁性酸化物よりなる一対の磁性コア半体(1)
(11)の突合せ部に、磁気ギャップ部(3)を挟んで
一対の強磁性金属層(2)(21)を配備し、該強磁性
金属層(2)(21)は、磁気ギャップ部形成面に対し
て非平行な平面或は曲面上に形成されている複合型磁気
ヘッドに於いて、コア半体(1)(11)の突合せ部に
は、磁気ギャップ部(3)全体及び強磁性金属層(2)
(21)の大部分を包囲して、ガラス部(4)(41)
(5)(51)が設けられ、強磁性金属層(2)(21
)の磁気ギャップ部(3)から離間する方向の両端部は
、ガラス部(4)(41)(5)(51)とコア半体(
1)(11)との界面を貫通してコア半体(1)(11
)中へ伸びていることを特徴とする複合型磁気ヘッド。
[1] A pair of magnetic core halves made of ferromagnetic oxide (1)
A pair of ferromagnetic metal layers (2) and (21) are provided at the abutting portion of (11) with the magnetic gap portion (3) in between, and the ferromagnetic metal layers (2 and 21) form the magnetic gap portion. In a composite magnetic head formed on a flat or curved surface that is non-parallel to the surface, the abutting portion of the core halves (1) and (11) includes the entire magnetic gap portion (3) and the ferromagnetic Metal layer (2)
Glass portion (4) (41) surrounding most of (21)
(5) (51) are provided, and the ferromagnetic metal layer (2) (21
) of the glass portion (4) (41) (5) (51) and the core half (
1) (11) through the interface with the core half (1) (11)
) A composite magnetic head characterized by an inward extension.
JP28530988A 1988-11-10 1988-11-10 Composite type magnetic head Pending JPH02130708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28530988A JPH02130708A (en) 1988-11-10 1988-11-10 Composite type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28530988A JPH02130708A (en) 1988-11-10 1988-11-10 Composite type magnetic head

Publications (1)

Publication Number Publication Date
JPH02130708A true JPH02130708A (en) 1990-05-18

Family

ID=17689860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28530988A Pending JPH02130708A (en) 1988-11-10 1988-11-10 Composite type magnetic head

Country Status (1)

Country Link
JP (1) JPH02130708A (en)

Similar Documents

Publication Publication Date Title
JPH02130708A (en) Composite type magnetic head
JPH0766492B2 (en) Magnetic head
JP2512976B2 (en) Magnetic head
JPH045046Y2 (en)
JPH0467246B2 (en)
JPH0548244Y2 (en)
JPH0312805A (en) Magnetic head and its manufacture
JPH0349003A (en) Magnetic head
JPS61280009A (en) Magnetic head
JPH0744816A (en) Magnetic head
JPS63288407A (en) Production of magnetic head
JPS59203210A (en) Magnetic core and its production
JPH0580724B2 (en)
JPS6251009A (en) Magnetic core and its production
JPS6050608A (en) Magnetic head and its production
JPH0448416A (en) Magnetic head
JPH0411307A (en) Composite-type magnetic head and its production
JPS61227206A (en) Manufacture of magnetic head
JPH03225607A (en) Magnetic head and its production
JPH0770023B2 (en) Magnetic head
JPH0476168B2 (en)
JPH04229407A (en) Magnetic head
JPH07129910A (en) Magnetic head and its production
JPS62277607A (en) Magnetic head
JPH06243416A (en) Magnetic head and its production