JPH02129906A - Manufacture of film capacitor - Google Patents

Manufacture of film capacitor

Info

Publication number
JPH02129906A
JPH02129906A JP63281380A JP28138088A JPH02129906A JP H02129906 A JPH02129906 A JP H02129906A JP 63281380 A JP63281380 A JP 63281380A JP 28138088 A JP28138088 A JP 28138088A JP H02129906 A JPH02129906 A JP H02129906A
Authority
JP
Japan
Prior art keywords
electrode
dielectric
film
laser beam
edge face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63281380A
Other languages
Japanese (ja)
Inventor
Yukio Nishikawa
幸男 西川
Yuji Uesugi
雄二 植杉
Kunio Oshima
大嶋 邦雄
Shinichi Suesawa
陶澤 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63281380A priority Critical patent/JPH02129906A/en
Publication of JPH02129906A publication Critical patent/JPH02129906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize reliable and effective manufacture by eliminating a section of a dielectric on the side of an electrode drawing edge face in preference to an electrode to expose an electrode to the edge face and simultaneously by forming an irregular edge face between dielectric layers. CONSTITUTION:A proper laser beam 2 having a wave length of at least about 0.4mum is irradiated to an end of an electrode drawing side of a film capacitor 3 whose adsorption rate against a laser beam having a wavelength of 0.4mum or below is higher in a dielectric material than in an electrode material to eliminate a dielectric section in preference to an electrode 5. The electrode 5 is exposed to an edge face and irregularity is formed between layers of lami nated dielectric 4. Since an edge face of each dielectric of an electrode drawing end side is made irregular, an edge face electrode 7 formed thereto keeps good electric contact with an electrode and attaches firmly thereto. Reliability can be thereby acquired and effective manufacture is realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フィルムコンデンサの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a film capacitor.

(従来の技術) 近年の電子部品の小形軽量化、高性能化あるいは低価格
化の傾向の中で、フィルムコンデンサも小形軽量化、高
性能化が要求されている。
(Prior Art) With the recent trend toward smaller and lighter electronic components, higher performance, and lower prices, film capacitors are also required to be smaller and lighter and have higher performance.

第6図は従来の積層フィルムコンデンサ素子の製造方法
を示す図で、フィルムコンデンサを構成する片面金属化
フィルムが理想的に積層されている断面図であり、21
は一方の面を金属膜とした片面金属化フィルム、22は
その片面の金属膜による電極、23はフィルム積層間隙
、24は電極22が形成されていないマージン部である
FIG. 6 is a diagram illustrating a conventional method for manufacturing a laminated film capacitor element, and is a cross-sectional view showing the ideal lamination of single-sided metalized films constituting a film capacitor.
2 is a single-sided metallized film having a metal film on one side, 22 is an electrode formed of the metal film on one side, 23 is a film lamination gap, and 24 is a margin portion where the electrode 22 is not formed.

従来の積層フィルムコンデンサ素子は、図示のように端
面電極を形成するために片面金属化フィルム21を幅方
向に、たとえば最小0.2m程度交互にずらせたラップ
状態にして巻回し、フィルム積層間隙23を形成し、そ
のラップ部分の間隙にメタリコンによるコンタクト層を
喰込ませて、電極22の各々との電気的接続と強固な付
着強度を得ていた。
In the conventional laminated film capacitor element, as shown in the figure, in order to form end electrodes, a single-sided metallized film 21 is wound in a wrap state with alternating shifts of, for example, a minimum of 0.2 m in the width direction, and the film lamination gap 23 is wound. was formed, and a contact layer made of metallicon was inserted into the gap between the lap parts to obtain electrical connection with each of the electrodes 22 and strong adhesion strength.

しかしながら上述の製造方法は、片面金属化フィルム2
1の巻取に高精度であることが要求され。
However, the above-described manufacturing method
1. High precision is required for winding.

巻取精度が低ければラップ状態が蛇行し、この蛇行はコ
ンデンサを小形化するためにフィルム幅を狭くしたり、
あるいは大容址化するためフィルムの厚さを薄くしたり
すると一層ひどくなり、通常設定されるラップ幅0.2
mを保つことが困難になる。
If the winding accuracy is low, the wrapping state will meander, and this meandering can be avoided by narrowing the film width to make the capacitor smaller.
Or, if the thickness of the film is made thinner to increase the capacity, the problem becomes even worse, and the wrap width is usually set at 0.2
It becomes difficult to maintain m.

第7図はその状態を示す断面図で、巻取精度が低いと、
この図のように設定ずらし量、つまりラップ幅■4を維
持して巻取ることが困難であり、低い製造歩留り、容量
安定性の低下、コスト高、さらには小形化の困難等種々
の問題点を生ずる。
Figure 7 is a cross-sectional view showing this state, and if the winding accuracy is low,
As shown in this figure, it is difficult to maintain the set shift amount, that is, the wrap width ■4, and wind it, resulting in various problems such as low manufacturing yield, decreased capacity stability, high cost, and difficulty in downsizing. will occur.

一方、コンデンサ要素を有する広幅のフィルム複数を巻
回した後、それを単位コンデンサの幅に切断する製造方
法があり、それ自体は生産性が高いがフィルム積層間隙
が形成されないため、電極引出しは上述の方法では行え
ない。これに代えてコンデンサ要素を有する広幅の片面
金属化フィルム複数を単位コンデンサ素子の幅に切断し
た後、それを巻回、積層して製造する方法があるが、な
お生産性に劣る欠点がある。
On the other hand, there is a manufacturing method in which multiple wide films containing capacitor elements are wound and then cut into the width of a unit capacitor.This method is highly productive in itself, but since it does not form gaps between film laminations, the electrode drawer is not as described above. It cannot be done using this method. An alternative method is to cut a plurality of wide single-sided metallized films having capacitor elements to the width of a unit capacitor element, and then wind and laminate them, but this method still has the drawback of poor productivity.

その欠点の排除を、たとえば特開昭58−24933号
公報に開示されているように、コンデンサ要素を有する
広幅の複数の片面金属化フィルムのマージン部に貫通孔
を配列形成して巻回し、得られる巻回物を」二記マージ
ン部で切断すれば、フィルム積層間隙が得られることを
利用した製造方法がある。
In order to eliminate this drawback, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-24933, a plurality of wide single-sided metallized films having capacitor elements are formed with arrays of through holes in the margins and wound. There is a manufacturing method that takes advantage of the fact that a film lamination gap can be obtained by cutting the rolled material at the margin.

第8図ないし第10図は、その方法を説明する図で、2
5はマージン幅部、26は貫通孔であり、その他の符号
は前図迄の符号説明を援用する。
Figures 8 to 10 are diagrams explaining the method.
5 is a margin width portion, 26 is a through hole, and other symbols refer to the explanations of the symbols up to the previous figures.

まず、第8図に示しているように、複数個の電極22と
マージン部24とが形成されている広幅の片面金属化フ
ィルム21を、その隣接するマージン部24とにより形
成されるマージン幅部25に、複数個の貫通孔26を長
さ方向に配列させ、その後、複数の片面金属化フィルム
21を第9図のように、隣接するマージン幅部25の中
間が上下層のフィルム間で半分ずつ、ずれるように重ね
て巻回し、それにより得られる巻回物を、マージン幅部
25の中央部で切断することによって、第10図に示す
ように複数の親コンデンサ素子を得る。
First, as shown in FIG. 8, a wide single-sided metallized film 21 on which a plurality of electrodes 22 and margin parts 24 are formed is attached to a margin width part formed by the adjacent margin parts 24. 25, a plurality of through holes 26 are arranged in the length direction, and then, as shown in FIG. A plurality of parent capacitor elements are obtained as shown in FIG. 10 by winding the capacitor elements in a staggered manner and cutting the resulting wound material at the center of the margin width section 25.

このようにして形成した親コンデンサ素子は、貫通孔2
6によってフィルム積層間FAX23が形成されて、メ
タリコンにより形成される端面電極としてのコンタクト
層の喰込みを十分なものとし、そのコンタクト層と電極
22との間の良・好な電気的接触と、端面電極の十分な
付着強度が得られるから、さらにマージン部方向に対し
直角に切断することによって、単位コンデンサ素子複数
を同時に得ることができる。
The parent capacitor element formed in this way has through-hole 2
6, a film interlayer FAX 23 is formed to ensure sufficient penetration of the contact layer as an end electrode formed of metallicon, and good and good electrical contact between the contact layer and the electrode 22. Since sufficient adhesion strength of the end electrodes can be obtained, a plurality of unit capacitor elements can be obtained at the same time by cutting at right angles to the margin direction.

しかしながら、上記の製造方法は生産性に長するが貫通
孔26の孔周縁に残る「ばり」のため、近接する片面金
属化フィルム21が圧迫されて、フィルム積層間VX2
3が潰され、あるいは、フィルムの厚さが2.0戸以下
の薄さでは、フィルムの柔軟性からフィルム積層間隙2
3が塞がれ、そのためメタリコンにより形成するコンタ
クト層と電Vfi、22との間に、良好な電気的接触が
得られない欠点があり、これを解決するため特開昭63
−76797号公報は、プラズマによりフィルムを構成
する誘電体の電極引出し端面側の部分を、選択除去する
フィルムコンデンサの製造方法を開示している。
However, although the above manufacturing method improves productivity, the "burr" remaining on the periphery of the through hole 26 presses the adjacent single-sided metallized film 21, resulting in
3 is crushed or the film thickness is less than 2.0 mm, the film lamination gap 2 is reduced due to the flexibility of the film.
3 is blocked, and as a result, good electrical contact cannot be obtained between the contact layer formed of metallicon and the voltage Vfi, 22. To solve this problem, Japanese Patent Laid-Open No. 63
Japanese Patent No. 76797 discloses a method for manufacturing a film capacitor in which a portion of a dielectric constituting the film on the side of the electrode extension end surface is selectively removed using plasma.

(発明が解決しようとする課題) しかしながら、プラズマを使用する方法は加工中の温度
上昇によって片面金層化フィルム21の誘電体が劣化す
る欠点があり、また、チャンバー内で行うプラズマ加工
であるため作業性に欠けるとともに、プラズマ反応によ
る加工速度等の制御も困難な問題点がある。
(Problems to be Solved by the Invention) However, the method using plasma has the disadvantage that the dielectric of the single-sided gold-layered film 21 deteriorates due to temperature rise during processing, and also because plasma processing is performed in a chamber. There is a problem that it lacks workability and that it is difficult to control processing speed etc. due to plasma reaction.

本発明は上述した従来の問題点を解決した積層、または
巻回型のフィルムコンデンサの製造方法の提供を目的と
する。
An object of the present invention is to provide a method for manufacturing a laminated or wound type film capacitor that solves the above-mentioned conventional problems.

(課題を解決するための手段) 本発明は上記の目的を、波長0.4−以下のレーザビー
ムに対する吸収率が、電極材料よりも誘電体材料の方が
高いフィルムコンデンサの、電極引出しを行う側の端面
に、波長約0.4P以下の適宜なレーザビームを照射し
て誘電体部分を電極より優先的に除去し、それにより電
極を前記端面に露出させるとともに、積層した各誘電体
層間で凹凸を形成させることにより、上記露出した電極
との良好な電気的接触と十分な付着強度を得る端面電極
の形成を可能にして目的を達成する。
(Means for Solving the Problems) The present invention achieves the above-mentioned object by providing electrode extraction for a film capacitor whose dielectric material has a higher absorption rate for a laser beam with a wavelength of 0.4 or less than the electrode material. The side end face is irradiated with an appropriate laser beam with a wavelength of about 0.4P or less to remove the dielectric portion preferentially than the electrode, thereby exposing the electrode to the end face and removing the space between each of the stacked dielectric layers. By forming the unevenness, it is possible to form an end face electrode that has good electrical contact with the exposed electrode and sufficient adhesion strength, thereby achieving the purpose.

(作 用) 以上のように構成する本発明は、親コンデンサ素子の電
極引出し端面から、電極を容易に露出させることができ
、さらに電極引出し端面部分の各誘電体の端面ば凹凸面
に形成されるので、それに形成する端面電極が電極と良
好な電気的接触を保ち、かつ十分な強度で付着すること
になり、したがって積層、または右同型のフィルムコン
デンサが能率よく製造できる。
(Function) According to the present invention configured as described above, the electrode can be easily exposed from the electrode lead-out end face of the parent capacitor element, and furthermore, the end face of each dielectric material in the electrode lead-out end face portion is formed with an uneven surface. Therefore, the end face electrode formed thereon maintains good electrical contact with the electrode and adheres with sufficient strength, so that a laminated or the same type of film capacitor can be manufactured efficiently.

(実施例) 以下、本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1−図は本発明の一実施例を積層フィルムコンデンサ
の製造によって示す斜視図であり、1はエキシマレーザ
発振器、2はレーザビーム、3は積層フィルムコンデン
サである。積層フィルムコンデンサ3はエキシマレーザ
発振器1からのレーザビーム2の光路内に、電極引出し
端面をレーザビームが照射、するように設置されている
。この例ではレーザビーム2の断面積は25mmX7w
mであり、レーザビーム2の光路内に複数の積層フィル
ムコンデンサ3を設置することが可能である6第2図は
積層フィルムコンデンサ3の加工断面図であり、電極引
出し端面に直角な断面を示しており、4はフィルムを構
成するvI@体で材料はポリエチレンテレフタレート(
P、E、T)、5は電極で材料はアルミニウム、6はマ
ージン部である。
FIG. 1 is a perspective view showing an embodiment of the present invention by manufacturing a multilayer film capacitor, in which 1 is an excimer laser oscillator, 2 is a laser beam, and 3 is a multilayer film capacitor. The laminated film capacitor 3 is installed in the optical path of the laser beam 2 from the excimer laser oscillator 1 so that the laser beam irradiates the electrode lead end face. In this example, the cross-sectional area of laser beam 2 is 25mm x 7w.
m, and it is possible to install a plurality of laminated film capacitors 3 in the optical path of the laser beam 2.6 Figure 2 is a processed cross-sectional view of the laminated film capacitor 3, showing a cross section perpendicular to the end face of the electrode lead. 4 is the vI@body that makes up the film, and the material is polyethylene terephthalate (
P, E, T), 5 is an electrode made of aluminum, and 6 is a margin portion.

レーザビーム2の波長が248nmであるとき、誘電体
4のビーム吸収率は約97%、電極5のビーム吸収率は
約25%である。また、誘電体4のC−C1C−H等の
結合エネルギーは約80 k caQ / wolfな
いし100 k caa / moa、電極5のアルミ
ニウムの結合エネルギーは55kcad/mol+であ
る。
When the wavelength of the laser beam 2 is 248 nm, the beam absorption rate of the dielectric 4 is about 97%, and the beam absorption rate of the electrode 5 is about 25%. Further, the bond energy of C-C1C-H etc. of the dielectric material 4 is about 80 k caQ/wolf to 100 k caa/moa, and the bond energy of aluminum of the electrode 5 is 55 kcad/mol+.

したがって、電極引出し端面ばほぼ均一なレーザビーム
2が照射された場合、1mof2当たりの加工速度は、
誘電体4の方が電極5よりも大きい。
Therefore, when the electrode extraction end face is irradiated with a substantially uniform laser beam 2, the processing speed per 1 mof2 is:
The dielectric 4 is larger than the electrode 5.

第3図は第2図の加工後の断面図である。誘電体4は電
極5よりも優先的にレーザ加工され、電極5の端面より
マージン部6を残して後退しており、同時に各誘電体4
相互は多少のレーザ加工の速度差により、凹凸の端面を
形成している。ゆえにこの部分に金属溶射をすることに
より電気的接続良好な、強固に接続された端面電極7が
形成される。
FIG. 3 is a cross-sectional view after the processing shown in FIG. 2. The dielectric material 4 is laser-processed preferentially than the electrode 5, and is set back from the end surface of the electrode 5 leaving a margin 6. At the same time, each dielectric material 4 is
Due to the slight difference in speed of laser processing, the end faces are uneven. Therefore, by spraying metal onto this portion, a firmly connected end electrode 7 with good electrical connection is formed.

第4図は完成したコンデンサ素子の断面図で、これは前
第3図で説明した端面電極の引出しを両端面に行った後
、黄銅を溶射し端面電極7を形成した後マージン部の形
成方向と直角な方向に切断して単位コンデンサ素子を得
ている。
Figure 4 is a cross-sectional view of the completed capacitor element, which shows the formation direction of the rear margin after the end electrodes are drawn out on both end faces as explained in Figure 3, and then brass is sprayed to form the end electrodes 7. A unit capacitor element is obtained by cutting the capacitor in a direction perpendicular to .

第5図は他の実施例を示す斜視図で1巻同型フィルムコ
ンデンサの製造方法の要部を示しており、8は端面電極
形成前の巻回型フィルムコンデンサである。エキシマレ
ーザ発振器1からのレーザビーム2の光路内に、端面電
極形成前の巻回型フィルムコンデンサ8の電極引出し端
面にレーザビーム2が照射されるように設置し、その後
の工程は前述した第1の実施例の場合と同じ工程で右同
型のフィルムコンデンサを製造するもので、詳細な説明
は省略する。
FIG. 5 is a perspective view showing another embodiment, showing the main part of a method for manufacturing a single-wound film capacitor of the same type, and 8 is a wound-wound film capacitor before end face electrodes are formed. The laser beam 2 is installed in the optical path of the laser beam 2 from the excimer laser oscillator 1 so that the electrode extension end face of the wound film capacitor 8 before end face electrode formation is irradiated with the laser beam 2. A film capacitor of the same type on the right is manufactured using the same process as in Example 2, and detailed explanation thereof will be omitted.

以上、エキシマレーザを用いて実施例を説明したが、こ
れは光子エネルギーが高く加工点において微小スポット
に集光されずとも、誘電体4を後退させることが可能で
あり、また紫外レーザによる量子切断を利用した加工で
あるため温度上昇が少なく、周辺に熱影響を与えにくい
利点がある。
The embodiment has been explained above using an excimer laser, which has high photon energy and can retract the dielectric 4 without being focused on a minute spot at the processing point, and can also perform quantum cutting using an ultraviolet laser. Because it is a process that utilizes

さらにレーザビームをパルス状に照射すれば、さらに熱
影響を軽減でき加工の制御性にも優れている。なお、以
上の説明でレーザ光は波長が0.4p以下であれば他の
レーザ光であってもよいことはいうまでもない。
Furthermore, if the laser beam is irradiated in a pulsed manner, the thermal effects can be further reduced and the processing controllability is also excellent. Note that in the above description, it goes without saying that the laser beam may be any other laser beam as long as it has a wavelength of 0.4p or less.

(発明の効果) 以上、詳細に説明して明らかなように本発明は。(Effect of the invention) As is clear from the detailed description above, the present invention is as follows.

波長が0.41!m以下のレーザビームに対する吸収率
が30%以上で、電極材料よりも大きい吸収率の有機材
料からなる誘電体と、金属膜からなる電極とから形成し
た片面金属化フィルムを積層し、電極引出し側の端面に
波長が約0.4.以下のレーザビームを照射させ、電極
引出し端面側の誘電体部分を電極よりも優先的に除去し
て、電極を前記端面に露出させると同時に、各誘電体層
間で凹凸させた端面を形成することにより、電極と良好
に電気的接触し、十分な強度で付着する端面電極を形成
できるから、信頼性のある積層フィルムコンデンサを効
率よく容易に製造できる効果がある。
The wavelength is 0.41! A single-sided metallized film formed from a dielectric material made of an organic material with an absorption rate of 30% or more for a laser beam of m or less and a larger absorption rate than the electrode material and an electrode made of a metal film is laminated, and the electrode extraction side is laminated. The wavelength is about 0.4. The following laser beam is irradiated to remove the dielectric portion on the end face side of the electrode extension preferentially than the electrode, thereby exposing the electrode to the end face and at the same time forming an uneven end face between each dielectric layer. This makes it possible to form end-face electrodes that make good electrical contact with the electrodes and adhere with sufficient strength, resulting in the effect that reliable multilayer film capacitors can be manufactured efficiently and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部工程を示す斜視図、第
2図は加工断面図、第3図は第2図の加工後の断面図、
第4図はコンデンサ素子の断面図、第5図は他の実施例
の要部工程を示す斜視図、第6図は従来の積層フィルム
コンデンサ素子の理想構造を示す断面図、第7図は従来
方法で製造中の積層フィルムコンデンサ素子の断面図、
第8図は貫通孔を設けた従来の片面金属化フィルムを示
す斜視図、第9図は第8図の片面金属化フィルム積層物
の切断前の断面図、 の断面図である。 1 ・・・エキシマレーザ発振器、 2 ・・・ レー
ザビーム、 3 ・・・積層フィルムコンデンサ、 4
 ・・・誘電体、 5・・・電極、6 ・・・マージン
部、 7 ・・・端面電極、8 ・・・巻回型フイルム
コンデンサ。 第10図は第9図の切断後 特許出願人 松下電器産業株式会社 第 図 1 工致シマレーサ゛発株5 第3図 第2図 第4図 第 図 ラップI 第 図 24  マー・ノン仲 マージ゛ン幅さや 第 ア 区 第 図 第 ○ 図
Fig. 1 is a perspective view showing the main steps of an embodiment of the present invention, Fig. 2 is a processed sectional view, Fig. 3 is a sectional view after processing of Fig. 2,
Figure 4 is a sectional view of a capacitor element, Figure 5 is a perspective view showing the main steps of another embodiment, Figure 6 is a sectional view showing the ideal structure of a conventional multilayer film capacitor element, and Figure 7 is a conventional Cross-sectional view of a laminated film capacitor element being manufactured by the method,
FIG. 8 is a perspective view showing a conventional single-sided metalized film provided with through holes, and FIG. 9 is a cross-sectional view of the single-sided metalized film laminate shown in FIG. 8 before cutting. 1... Excimer laser oscillator, 2... Laser beam, 3... Multilayer film capacitor, 4
...Dielectric material, 5...Electrode, 6...Margin part, 7...End face electrode, 8...Wound film capacitor. Figure 10 shows the result of cutting in Figure 9 Patent applicant Matsushita Electric Industrial Co., Ltd. Saya Ward A, Figure ○

Claims (2)

【特許請求の範囲】[Claims] (1)片面金属化フィルムを積層するフィルムコンデン
サの製造方法において、波長が約0.4μm以下のレー
ザビームに対する吸収率が約30%以上の、電極材料よ
りも大きな吸収率をもつ有機材料による誘電体と、その
一面を金属膜化してなる電極とによって構成される片面
金属化フィルムを複数積層し、その側面の電極引出し端
面に波長が約0.4μm以下のレーザビームを照射する
ことにより、上記誘電体を上記電極より優先的に除去し
、その後端面電極を形成することを特徴とするフィルム
コンデンサの製造方法。
(1) In a method for manufacturing a film capacitor in which one-sided metallized film is laminated, a dielectric material made of an organic material with an absorption rate of about 30% or more for a laser beam with a wavelength of about 0.4 μm or less, which is larger than the electrode material. By laminating a plurality of single-sided metalized films consisting of a body and an electrode formed by metalizing one side of the film, and irradiating a laser beam with a wavelength of about 0.4 μm or less to the electrode extraction end face on the side, the above-mentioned method can be achieved. A method for producing a film capacitor, comprising removing the dielectric material preferentially over the electrodes, and forming end face electrodes afterward.
(2)片面金属化フィルムを巻回して積層することを特
徴とする請求項(1)記載のフィルムコンデンサの製造
方法。
(2) The method for manufacturing a film capacitor according to claim (1), wherein the single-sided metalized film is wound and laminated.
JP63281380A 1988-11-09 1988-11-09 Manufacture of film capacitor Pending JPH02129906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281380A JPH02129906A (en) 1988-11-09 1988-11-09 Manufacture of film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281380A JPH02129906A (en) 1988-11-09 1988-11-09 Manufacture of film capacitor

Publications (1)

Publication Number Publication Date
JPH02129906A true JPH02129906A (en) 1990-05-18

Family

ID=17638332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281380A Pending JPH02129906A (en) 1988-11-09 1988-11-09 Manufacture of film capacitor

Country Status (1)

Country Link
JP (1) JPH02129906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222189A (en) * 2005-02-09 2006-08-24 Toppan Printing Co Ltd Method of forming capacitor for substrate with built-in component
WO2023090278A1 (en) * 2021-11-16 2023-05-25 ルビコン株式会社 Capacitor and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222189A (en) * 2005-02-09 2006-08-24 Toppan Printing Co Ltd Method of forming capacitor for substrate with built-in component
JP4661249B2 (en) * 2005-02-09 2011-03-30 凸版印刷株式会社 Method for forming capacitor for substrate with built-in components
WO2023090278A1 (en) * 2021-11-16 2023-05-25 ルビコン株式会社 Capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH01248607A (en) Film capacitor and method and apparatus for manufacturing the same
DE69938456T2 (en) LAMINATED PLATE FOR A CONDUCTOR PLATE, MULTILAYER CONDUCTOR PLATE AND METHOD FOR THE PRODUCTION THEREOF
EP1400991B1 (en) Multilayer film capacitor and production method thereof
JPH02129906A (en) Manufacture of film capacitor
JP3979027B2 (en) Manufacturing method of ceramic electronic component
JP2003109837A (en) Laminated film capacitor, manufacturing method of the laminated film capacitor and laminated film capacitor manufacturing device
JP4867030B2 (en) Manufacturing method of multilayer film capacitor
JPH0334520A (en) Manufacture of film capacitor
WO2023090278A1 (en) Capacitor and method for manufacturing same
JPH04170016A (en) Manufacture of laminated ceramic electronic parts
JP2658614B2 (en) Manufacturing method of metallized film capacitor
JPH0158853B2 (en)
JPH02198122A (en) Manufacture of metallized film capacitor
JPS6336131B2 (en)
JP2001332442A (en) Film capacitor and method of manufacturing the same
JPH02213112A (en) Laminated film capacitor and manufacture thereof
EP0375508A1 (en) Layered capacitor capable of undergoing a severe electrical treatment, and process for its manufacture
JPH0256912A (en) Manufacture of film capacitor
JPH04243112A (en) Manufacture of metallized organic film capacitor
WO2017169243A1 (en) Solid state ec mirror and manufacturing method therefor
JP2002231555A (en) Rolled film capacitor
US5384005A (en) Process for producing laminated capacitors and capacitor made from such a process
JP2005026424A (en) Film capacitor and its manufacturing method
JP2003080377A (en) Producing method of metallic laminated belt
JP2731257B2 (en) Manufacturing method of film capacitor