WO2017169243A1 - Solid state ec mirror and manufacturing method therefor - Google Patents

Solid state ec mirror and manufacturing method therefor Download PDF

Info

Publication number
WO2017169243A1
WO2017169243A1 PCT/JP2017/005655 JP2017005655W WO2017169243A1 WO 2017169243 A1 WO2017169243 A1 WO 2017169243A1 JP 2017005655 W JP2017005655 W JP 2017005655W WO 2017169243 A1 WO2017169243 A1 WO 2017169243A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
region
transparent conductive
mirror
laminated
Prior art date
Application number
PCT/JP2017/005655
Other languages
French (fr)
Japanese (ja)
Inventor
聖斗 増田
正俊 中村
Original Assignee
株式会社 村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村上開明堂 filed Critical 株式会社 村上開明堂
Priority to JP2018508555A priority Critical patent/JPWO2017169243A1/en
Publication of WO2017169243A1 publication Critical patent/WO2017169243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the present invention relates to a mirror using solid-state EC (electrochromic) (hereinafter sometimes abbreviated as "EC mirror").
  • EC mirror solid-state EC
  • the metal reflection film constituting the reflection surface of the EC mirror is formed up to the electrode extraction region of the transparent conductive film so that a mirror surface can be formed in the electrode extraction region.
  • a conventional solid-type EC mirror having a structure in which a transparent conductive film, a solid-type EC film, and a metal reflection film that doubles as an electrode are sequentially laminated on the back surface of the transparent substrate (surface opposite to the side where the viewpoint is disposed) is there.
  • the EC mirror applies a voltage between the transparent conductive film and the metal reflection film to change the transmittance of the EC film, thereby the transparent substrate, the transparent conductive film, and the EC film from the front surface side of the transparent substrate. Changes the reflectance of the metal reflection film seen through it.
  • the metal reflection film is an electrode extraction region of the transparent conductive film so that the transparent conductive film and the metal reflection film do not contact (short circuit) in the electrode extraction region of the transparent conductive film.
  • Film formation except for see, for example, FIG. 2 of Patent Document 1 below. Therefore, a large mirror surface area was not obtained. Therefore, as a conventional solid-type EC mirror having a mirror surface configured to obtain a large mirror surface area also in the electrode extraction region of a transparent conductive film, the one proposed in the following Patent Document 2 according to the application of the present applicant there were.
  • a solder layer is spread in a planar shape and applied to the electrode extraction region of the transparent conductive film.
  • the solder layer is electrically connected to the transparent conductive film to form a feed path for feeding power to the transparent conductive film.
  • the solder layer passes through the electrode extraction region and is viewed from the front side of the EC mirror, and constitutes a part of the mirror surface of the EC mirror in the normal use state of the EC mirror. As a result, a large mirror surface area is obtained, and the field of view is wide.
  • a solder material is required to form a mirror surface in the electrode extraction region of the transparent conductive film. Also, when applying the solder layer to the electrode extraction region of the transparent conductive film, a relatively wide gap is provided between the solder layer and the metal reflection film so that the solder layer does not contact (short circuit) with the metal reflection film. It had to be provided. As a result, the joint (gap) between the solder layer and the metal reflection film is visually noticeable, and a sense of continuity between the mirror surface by the metal reflection film and the mirror surface by the solder layer can not be obtained, and the designability is low.
  • the present invention solves the problems in the above-mentioned prior art, can form a metal reflection film constituting the reflection surface of the EC mirror to the electrode extraction region of the transparent conductive film, and can form a mirror surface in the electrode extraction region
  • the present invention provides a solid-state EC mirror and a method of manufacturing the same.
  • the solid-state EC mirror of the present invention has a structure in which a transparent conductive film, a solid-type EC film, and a metal reflection film are laminated on the back surface of a transparent substrate, and a voltage is applied between the transparent conductive film and the metal reflection film.
  • the transparent conductive film has an EC film laminated region in which the EC film is laminated, and an EC film non-stacked region in which the EC film is not laminated,
  • the film lamination region and the EC film non-stacking region are electrically connected to each other, the metal reflection film is formed over the region of the EC film and the EC film non-stacking region, and the metal reflection film is the EC At a dividing line passing through the membrane area
  • a dividing line passing through the membrane area Such as having a split first region and a second region, the first region conducting to the EC film non-stacking region and the second region non-conducting to the EC film non-stacking region It is.
  • the reflectance of the EC mirror can be changed by applying a voltage between the first region and the second region of the metal reflective film.
  • the electrode extraction region of the transparent conductive film is EC in the normal use state of the EC mirror. It can constitute part of the mirror surface of the mirror. As a result, a large mirror surface area is obtained, and the field of view is wide.
  • the transparent conductive film is formed on the entire surface of the back surface of the transparent substrate, and the EC film has an entire periphery or a region forming the electrode extraction region of the second region. Almost the entire circumference except for the film is formed in a region offset from the outer peripheral edge of the transparent substrate, the metal reflection film is formed on the entire surface of the back surface of the transparent substrate, and the dividing line is the entire periphery Alternatively, substantially the entire periphery of the second region excluding the region for forming the electrode lead-out region may be formed at a position offset from the outer peripheral end of the EC film. According to this, it is possible to form a mirror surface on the entire surface of the metal reflection film.
  • the transparent conductive film and the metal reflection film are formed on the entire surface of the transparent substrate, when forming the transparent conductive film and the metal reflection film, there is no need to use a masking jig for setting a region where film formation is not performed. Can.
  • the EC film has an EC film extending portion formed by reaching the outer peripheral end of the transparent substrate from a part of the offset region, and both ends of the dividing line are the above It can enter into the EC film extending portion and be open at the outer peripheral end of the transparent substrate in the EC film extending portion.
  • the metal reflection disposed at the position where both ends of the dividing line are open to the outer peripheral end of the transparent substrate is sandwiched by the dividing line at the open position and reaches the outer peripheral end of the transparent substrate
  • the area of the membrane can constitute the electrode removal area of the second area.
  • the transparent conductive film has a transparent conductive film separation region separated from another region by a separation line in a part of the outer peripheral portion, and the EC film has the entire region of the outer periphery of the transparent substrate.
  • the film is formed in a region offset from the end, and a partial region of the EC film overlaps the transparent conductive film separation region, and both ends of the dividing line are the region of the EC film from the EC film and the transparent conductive It is possible for the membrane separation region to enter the overlapping region and be open at the outer peripheral end of the transparent substrate in the transparent conductive film separation region.
  • the area of the membrane can constitute the electrode removal area of the second area. Further, since the entire area of the EC film can be disposed at a position offset from the outer peripheral end of the transparent substrate, the EC film can be shielded from the outside air to prevent deterioration of the EC film.
  • the transparent conductive film on the transparent substrate, the solid state EC film, and the laminated film by the metal reflection film are laminated in a part of the outer peripheral portion and separated from other regions by separation lines.
  • a film separation region is formed, and the EC film is deposited on the entire region offset from the outer peripheral edge of the transparent substrate, and both ends of the dividing line are connected to the dividing line, and the second region.
  • the metal reflective film of the laminated film separation area can constitute the electrode extraction area of the second area.
  • the entire area of the EC film can be disposed at a position offset from the outer peripheral end of the transparent substrate.
  • the separation line and the dividing line can be formed after the laminated film is formed, the separation line and the dividing line can be formed in a continuous process.
  • the first terminal may be connected to the first area, and the second terminal may be connected to the second area. According to this, a drive voltage can be applied to the EC film through the first terminal and the second terminal.
  • the metal reflection film is laser cut to form the dividing line. According to this, it is possible to easily divide the first region and the second region from the metal reflection film. Further, the dividing line can be formed to be narrow so that the boundary between the first region and the second region can be made less visible visually, and the design can be improved.
  • the transparent conductive film is laser cut to separate the transparent conductive film separation region from the transparent conductive film. According to this, the transparent conductive film separation area can be easily separated from the transparent conductive film.
  • the laminated film is laser cut to separate the laminated film separation area from the laminated film. According to this, the laminated film separation area can be easily separated from the laminated film.
  • FIG. 2C is a schematic cross-sectional view taken along the line CC in FIG. 2A.
  • FIG. 3B is a schematic cross-sectional view taken along the line DD in FIG. 3A.
  • FIG. 4A It is a top view which shows the masking jig
  • FIG. 6B is a schematic sectional view taken along the line GG in FIG. 6A. It is a top view which shows the manufacturing process 6 (post process 1) of the EC mirror of FIG. It is the HH arrow typical cross section figure of FIG. 7A.
  • FIG. 7B is a schematic cross-sectional view taken along the line II in FIG. 7A.
  • FIG. 10B is a schematic cross-sectional view taken along the line K-K in FIG. 10A.
  • FIG. 10B is a schematic cross-sectional view taken along the line LL in FIG. 10A. It is a top view which shows Embodiment 3 of the solid-type EC mirror of this invention.
  • FIG. 11B is a schematic cross-sectional view taken along the line MM in FIG. 11A.
  • 11B is a schematic cross-sectional view taken along the line NN in FIG. 11A.
  • Embodiment 1 of the solid state EC mirror of the present invention is shown in FIG. 1 (A, B, C).
  • the EC mirror 10 constitutes, for example, an EC mirror for a vehicle.
  • the EC mirror 10 has a structure in which a laminated film 19 is formed on the back surface of a transparent substrate 12 such as a glass plate (that is, the surface opposite to the side on which a viewpoint is disposed).
  • the laminated film 19 is configured by sequentially laminating a transparent conductive film 14, a solid EC film 16, and a metal reflection film 18 which also serves as an electrode on the back surface of the transparent substrate 12.
  • the EC mirror 10 is used in a posture in which the transparent film 12 is seen through the transparent substrate 12.
  • the transparent conductive film 14 is made of ITO (indium tin oxide), FTO (fluorine-doped tin oxide), tin oxide or the like.
  • the solid type EC film 16 is formed of an all solid laminated film in which three layers of a counter electrode layer, a solid electrolyte layer, and a reduction coloring layer are sequentially laminated.
  • the counter electrode layer is made of Ir-SnO x (iridium-tin oxide), NiO (nickel oxide), CoO (cobalt oxide) or the like.
  • the solid electrolyte layer is composed of Ta 2 O 5 , ZrO 2 , Nb 2 O 5 or the like.
  • the reduced coloring layer is composed of WO 3 or the like.
  • the metal reflection film 18 is made of Al (aluminum), Ag (silver) alloy, Rh (rhodium) or the like.
  • the transparent conductive film 14 is formed on the entire surface of the transparent substrate 12.
  • the EC film 16 is formed in a region offset by a predetermined distance from the outer peripheral end of the transparent substrate 12 to the inner peripheral side except for a partial region of the EC film 16 (an EC film extended portion 16a described later).
  • the transparent conductive film 14 the EC film non-stacking region 14 a in which the EC film 16 is not stacked and the EC film stacking region 14 b in which the EC film 16 is stacked are formed.
  • the EC film non-stacked region 14a and the EC film stacked region 14b are electrically connected to each other.
  • the metal reflection film 18 is formed on the entire surface of the transparent substrate 12 so as to cover the entire surface of the EC film 16. That is, the metal reflection film 18 is formed over the entire region of the EC film 16 and the entire region of the EC film non-laminated region 14 a of the transparent conductive film 14.
  • the metal reflection film 18 is divided into a first region 18 a and a second region 18 b at a dividing line 20 which passes through the region of the EC film 16 and does not pass outside the region of the EC film 16.
  • the dividing line 20 is continuously formed, for example, by laser cutting by scanning of a laser beam.
  • the first region 18a is joined to the EC film non-stacked region 14a and is conducted to the EC film non-stacked region 14a to form a feed path to the EC film stacked region 14b.
  • the second region 18 b faces the EC film laminated region 14 b with the EC film 16 interposed therebetween.
  • the second region 18 b is nonconductive to the EC film non-laminated region 14 a.
  • a partial region of the entire circumference of the EC film 16 is formed to reach the outer peripheral end of the transparent substrate 12.
  • the partial region constitutes an EC film extending portion 16a.
  • the dividing line 20 enters the EC film extending portion 16a from the general area of the EC film 16 (that is, the region excluding the EC film extending portion 16a).
  • both ends of the dividing line 20 reach the outer peripheral end of the transparent substrate 12 in the EC film extending portion 16 a and are opened. That is, the dividing line 20 is formed in the region of the EC film 16 over the entire length thereof.
  • the region 18 b ′ of the metal reflective film 18 is sandwiched by the parting line 20 at the open position at a position where both ends of the parting line 20 are open to the outer peripheral end of the transparent substrate 12 and the outer peripheral end of the transparent substrate 12 It is an area which is arranged to reach.
  • This region 18 b ′ constitutes an electrode lead-out region of the metal reflection film 18 (second region 18 b).
  • the terminal 30 (FIGS. 7A and 7B) is connected to the area 18b '.
  • the width (length in the circumferential direction of the transparent substrate 12) of the electrode lead-out area 18b ' is about several mm.
  • the first region 18 a constitutes an electrode lead-out region of the transparent conductive film 14.
  • the terminal 28 (FIGS. 7A and 7C) is connected to the first region 18a.
  • a coloring voltage is applied between both terminals 28 and 30. That is, with the terminal 28 on the opposite electrode layer side as the positive electrode and the terminal 30 on the reduction coloring layer side as the negative electrode, a voltage is applied between the two terminals 28 and 30.
  • the area facing the second area 18b of the entire area of the EC film 16 is colored, and the transmittance of the area is reduced.
  • the metal reflection film 18 (second region 18 b) seen through the transparent substrate 12, the transparent conductive film 14, and the EC film 16 from the front surface (the surface on which the viewpoint is arranged) side of the transparent substrate 12.
  • the reflectance of decreases.
  • a decoloring voltage is applied between the terminals 28 and 30 this time. That is, with the terminal 28 on the opposite electrode layer side as the negative electrode and the terminal 30 on the reducing color layer side as the positive electrode, a voltage is applied between the two terminals 28 and 30. Or short circuit between both terminals 28 and 30. As a result, the area that has been colored disappears, and the transmittance of that area is increased.
  • the reflectance of the metal reflection film 18 (second region 18 b) seen through the transparent substrate 12 and the transparent conductive film 14 and the EC film 16 from the front surface side of the transparent substrate 12 is increased, and the reflection is The rate is close to the reflectance of the first region 18a.
  • the first region 18a does not change the reflectance, it constitutes a part of the mirror surface. Therefore, the entire surface of the EC mirror 10 constitutes a mirror surface, so a wide field of view can be obtained. Since the dividing line 20 is formed by a thin line (for example, a line with a width of 0.1 mm) which is not easily visible by laser cutting, the joint (that is, dividing line 20) of the first region 18a and the second region 18b is Not visually noticeable.
  • the continuity of the mirror surface by the 1st field 18a and the mirror surface by the 2nd field 18b is good, EC mirror 10 with high designability is obtained.
  • the metal reflection film 18 (first region 18a) having a low resistance value is connected to substantially the entire periphery of the transparent conductive film 14 having a high resistance value (that is, the EC film non-laminated region 14a), the EC film lamination is performed. Electricity is supplied to the region 14b simultaneously from substantially the entire periphery of the EC film laminated region 14b. Therefore, the response of coloring / decoloring of the EC mirror 10 is improved.
  • the contact time (irradiation time) of the laser beam to the EC film 16 at the time of forming the dividing line 20 is short, as in the technique described in Patent Document 2, the solder is applied on the transparent conductive film As compared with the case of forming the film, the damage to the EC film 16 due to heat is less, and the quality of the EC film 16 is stabilized. Further, the formation of the dividing line 20 by the laser beam has a faster processing speed than that of the formation of the solder layer by the application of the solder, and the productivity is improved.
  • a masking jig is not necessary for forming the transparent conductive film 14 and the metal reflection film 18 in the manufacturing process.
  • a general-purpose jig such as a claw jig (a jig for holding and holding the transparent substrate 12 with claws from both sides of the outer periphery) can be used. Therefore, when manufacturing a plurality of types of EC mirrors having different outer shapes, it is sufficient to individually prepare only the film forming masking jig for the EC film 16 as a film forming masking jig.
  • the manufacturing process of the EC mirror 10 of FIG. 1 described above will be described.
  • [Step 1] (FIG. 2A, B)
  • the transparent substrate (glass substrate) 12 is cut into a surface shape of the EC mirror 10, chamfered, and cleaned.
  • [Step 2] (FIG. 3A, B)
  • the transparent conductive film 14 is formed on the entire back surface of the transparent substrate 12. Since the transparent conductive film 14 may be formed on the entire surface of the transparent substrate 12, no masking jig is necessary for forming the transparent conductive film 14. Therefore, the film formation of the transparent conductive film 14 can be performed by vapor deposition using a claw jig, flat placement sputtering, or the like.
  • the transparent conductive film 14 can be formed in advance on the entire surface of the transparent substrate 12 before cutting, and then the transparent substrate 12 can be cut into the surface shape of the EC mirror 10.
  • Step 3 (FIG. 4A, B) Three layers (a counter electrode layer, a solid electrolyte layer, and a reduction coloring layer) constituting the EC film 16 are sequentially formed on the transparent conductive film 14 by vapor deposition.
  • the masking jig 22 of FIG. 5A and 5B is used for this film-forming.
  • the masking jig 22 has a recess 24 and an opening 26 in the recess 24.
  • the transparent substrate 12 is held in the recess 24 with the surface on which the EC film 16 is formed facing the opening 26 without looseness.
  • the opening 26 is formed on the inner peripheral side from a position offset to the inner peripheral side by a predetermined width from the outer peripheral end of the recess 24.
  • a partial area 26 a of the outer peripheral portion of the opening 26 is formed to reach the outer peripheral end of the recess 24.
  • the transparent conductive film 14 is divided into an EC film non-stacking region 14 a where the EC film 16 is not stacked and an EC film stacking region 14 b where the EC film 16 is stacked.
  • Step 4 (FIG. 6A, B)
  • the metal reflection film 18 is formed on the entire surface of the transparent substrate 12.
  • the metal reflection film 18 is stacked on the EC film 16, and the entire surface of the EC film 16 is covered with the metal reflection film 18.
  • An outer peripheral portion of the metal reflection film 18 (that is, a region where the EC film 16 is not formed) is stacked on the EC film non-laminated region 14 a of the transparent conductive film 14.
  • the metal reflection film 18 may be formed on the entire surface of the transparent substrate 12, a masking jig is unnecessary. Therefore, the film formation of the metal reflection film 18 can be performed by vapor deposition using a claw jig, flat placement sputtering, or the like.
  • the metal reflection film 18 is formed on the entire surface of the transparent substrate 12 without the masking jig, in the EC film extended portion 16a, a part of the evaporated metal generated at the time of film formation corresponds to the end face of the EC film extended portion 16a. There is a possibility that the light may reach the transparent conductive film 14 and short circuit between the metal reflective film 18 and the transparent conductive film 14.
  • Step 5 (FIGS. 1A, B, C)
  • the metal reflection film 18 is laser cut to form a continuous dividing line 20.
  • the dividing line 20 is formed in the region of the EC film 16. Thereby, the metal reflection film 18 is divided into the first region 18a and the second region 18b.
  • An electrode lead-out area 18b 'of the metal reflection film 18 (second area 18b) is formed in a part of the second area 18b.
  • the laser output is adjusted so that the transparent conductive film 14 is not cut by the laser. Even if the EC film 16 is cut or not cut, the performance of the EC mirror 10 is not affected. Thus, the EC mirror 10 shown in FIG. 1 is obtained.
  • the metal reflection film 18 has large reflection and absorption with respect to the laser, so most of the laser energy is absorbed or reflected by the metal reflection film 18 and the absorbed energy is used for cutting the metal reflection film 18. Also, the laser remaining without being absorbed or reflected by the metal reflection film 18 reaches the EC film 16 and the transparent conductive film 14.
  • Step 6 (Post-step 1)
  • the metal terminal 30 is joined with the solder 31 to the area 18 b ′ which constitutes the electrode extraction area of the metal reflection film 18 (second area 18 b).
  • Step 7 (Post-Step 2)] (FIGS. 8A and 8B)
  • a sealing glass 36 is joined with a sealing resin 34 to the surface on which the laminated film 19 (transparent conductive film 14, solid EC film 16, metal reflective film 18) of the EC mirror 10 is formed. Seal. In the normal use state, the edge of the mirror holder does not cover the periphery of the EC mirror 10, and the entire surface of the EC mirror 10 constitutes a mirror surface. Therefore, a large mirror surface area can be obtained.
  • a mirror surface is configured by a solder layer in a partial region in the circumferential direction of the transparent substrate.
  • the transparent substrate and the sealing glass are joined by the sealing resin in a non-parallel posture by the thickness obtained by adding the terminal thickness and the solder layer thickness.
  • the thickness of the sealing resin layer becomes uneven in the circumferential direction of the EC mirror.
  • the thickness of the sealing resin layer can be made uniform in the circumferential direction of the EC mirror 10 due to the absence of the solder layer.
  • Transparent substrate 12 Flat glass
  • Transparent conductive film 14 ITO
  • Solid EC film 16 The counter electrode layer is Ir-SnO x
  • the solid electrolyte layer is Ta 2 O 5
  • the reduction coloring layer is WO 3 .
  • the overall film thickness of the solid EC film 16 is 1.2 ⁇ m
  • Metal reflective film 18 Al
  • the maximum output of laser 25 W ⁇
  • Moving speed of laser 400 mm / s
  • the horizontal axis indicates the laser output in proportion to the maximum output (25 W)
  • the vertical axis indicates the removal width of the laminated film 19. According to FIG.
  • the sample ⁇ obtained by cutting the laminated film 19 by setting the laser output to about 20% of the maximum output is completely cut by the metal reflection film 18 and divided into the first region 18a and the second region 18b, and a transparent conductive film It is presumed that 14 was processed into a partially cut state. Therefore, it can be seen that it can function to some extent as an EC mirror.
  • the sample X obtained by laser cutting the laminated film 19 with the laser output set at 25% or more of the maximum output is processed so that not only the metal reflective film 18 and the EC film 16 but also the transparent conductive film 14 is completely cut. It is guessed. Therefore, it turns out that it can not function as an EC mirror.
  • the EC mirror 10 with sufficient performance according to the present invention can be obtained.
  • a laser with a wavelength of 1064 nm was used in the above experiment, a wavelength such as a green laser with a wavelength of 532 nm, which has higher transmittance to the transparent conductive film 14 and the EC film 16 and larger reflection and absorption to the metal reflective film 18 is used. If so, it can be expected that the processing state in which only the metal reflection film 18 is cut can be obtained more easily.
  • FIGS. 10A, 10B, and 10C Second Embodiment Embodiment 2 of the solid-state EC mirror of the present invention is shown in FIGS. 10A, 10B, and 10C.
  • the EC mirror 40 is different from the EC mirror 10 of the first embodiment in the structure for forming an electrode lead-out area 18b 'of the metal reflection film 18 (second area 18b).
  • the remaining structure of the EC mirror 40 is the same as that of the EC mirror 10 of the first embodiment.
  • the same reference numerals as those used in the first embodiment are used for the portions common to the EC mirror 10 of the first embodiment, and the description thereof is omitted.
  • the transparent conductive film 14 is separated by the separation line 42 into a partial region of the outer peripheral portion (that is, a region including the electrode extraction region 18b 'to be formed). It has a transparent conductive film separation region 14c.
  • the separation line 42 is formed by laser cutting the transparent conductive film 14 into a U shape from one end position of the outer periphery of the transparent conductive film 14 (that is, the outer periphery of the transparent substrate 12) to another end position. It is done.
  • the EC film 16 is formed in a region whose entire area is offset from the outer peripheral end of the transparent substrate 12. In addition, a part of the EC film 16 overlaps the transparent conductive film separation region 14 c.
  • the area 44 is the overlapping area.
  • the dividing line 20 enters from a region of the EC film 16 into a region 44 where the EC film 16 and the transparent conductive film separation region 14 c overlap. Then, both ends of the dividing line 20 are open at the outer peripheral end of the transparent substrate 12 in the transparent conductive film separation area 14 c without passing through the other area (area other than the transparent conductive film separation area 14 c).
  • the electrode extraction area 18b 'of the metal reflection film 18 (second area 18b) is connected to the transparent conductive film separation area 14c.
  • the transparent conductive film separation region 14 c is separated from the other region of the transparent conductive film 14 (the region other than the transparent conductive film separation region 14 c) by the separation line 42.
  • the second region 18 b and the region of the transparent conductive film 14 other than the transparent conductive film separation region 14 c are not conductive.
  • the entire surface (entire area) of the EC film 16 is disposed at a position offset from the outer peripheral end of the transparent substrate 12.
  • the terminals 28, 30 are joined to the EC mirror 40 of FIG. 10 as in FIG. That is, the terminal 30 is joined by the solder 31 to the region 18 b ′ that constitutes the electrode extraction region of the metal reflection film 18 (second region 18 b). Further, the terminal 28 is joined with the solder 29 to the first region 18 a constituting the electrode lead-out region of the transparent conductive film 14.
  • the sealing glass 36 is bonded to the surface of the EC mirror 40 on which the laminated film 19 is formed by the sealing resin 34, and the laminated film 19 is sealed.
  • the manufacturing process of the EC mirror 40 having the configuration of the second embodiment is the manufacturing process of the EC mirror 10 described in the first embodiment (FIGS. 2, 3, 4, 1, 6, 7, 8 and 9).
  • the following points differ with respect to the order.
  • the transparent conductive film 14 is laser cut to form continuous separation lines 42, thereby forming the transparent conductive film separation region 14c.
  • the area 26a is removed from the opening 26 of the masking jig 22 of FIG. 5 as a masking jig (ie, the entire circumference of the opening 26 is a recess Use the offset from the outer edge of 24).
  • the EC film 16 without the EC film extended portion 16a of FIG. 1 is formed.
  • the EC film 16 is formed on the transparent conductive film 14 so as to straddle the separation line 42 (that is, to form a region 44 where the EC film 16 and the transparent conductive film separation region 14c overlap).
  • Third Embodiment 11A, B, and C show Embodiment 3 of the solid-state EC mirror of the present invention.
  • the EC mirror 50 is different from the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment in the structure for forming the electrode extraction region of the metal reflection film 18 (second region 18b). It is.
  • the remaining structure of the EC mirror 50 is the same as that of the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment.
  • parts common to the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment use the same reference numerals as those used in the first and second embodiments. The explanation is omitted.
  • the laminated film 19 of the transparent conductive film 14, the solid EC film 16, and the metal reflection film 18 on the transparent substrate 12 It has a laminated membrane separation region 19 a separated by a separation line 52.
  • the separation line 52 is formed by laser cutting the laminated film 19 into a U shape from one end position of the outer periphery of the laminated film 19 (that is, the outer periphery of the transparent substrate 12) to another end position. There is. The separation line 52 is formed over the entire thickness of the laminated film 19.
  • the laminated film separation region 19a is a lamination of the separation regions 14c, 16b, and 18c obtained by separating the transparent conductive film 14, the solid EC film 16, and the metal reflection film 18 constituting the laminated film 19 by the separation line 52. Composed of a membrane.
  • the EC film 16 is formed in a region whose entire area is offset from the outer peripheral end of the transparent substrate 12.
  • the dividing line 20 is connected to the separating line 52. Thereby, the first region 18a, the second region 18b, and the laminated film separation region 19a become nonconductive to each other.
  • a conductive member 54 is joined to the second region 18b of the metal reflection film 18 and the metal reflection film separation region 18c of the laminated film separation region 19a so as to connect the two regions 18b and 18c. As a result, the two regions 18b and 18c conduct each other.
  • the metal reflection film separation area 18c of the laminated film separation area 19a constitutes an electrode extraction area of the metal reflection film 18 (second area 18b).
  • the conductive member 54 constitutes a terminal of the metal reflection film 18 (second region 18 b).
  • the conductive member 56 is also bonded to the first region 18 a constituting the electrode lead-out region of the transparent conductive film 14.
  • the conductive member 56 constitutes a terminal of the transparent conductive film 14.
  • the conductive members 54 and 56 are made of, for example, a conductive metal foil adhesive tape.
  • the conductive metal foil pressure-sensitive adhesive tape has a structure in which a conductive pressure-sensitive adhesive is applied to one surface of a metal foil such as copper to form a conductive pressure-sensitive adhesive layer. Thereby, the conductive metal foil adhesive tape has conductivity in the surface direction and the thickness direction.
  • the conductive metal foil pressure-sensitive adhesive tape can be attached to the bonding site at normal temperature.
  • the conductive metal foil adhesive tape is electrically connected to the bonding site (conductive) by the attachment.
  • a commercially available conductive metal foil adhesive tape for example, there is a conductive copper foil adhesive tape No. 8323 manufactured by Teraoka Seisakusho Co., Ltd.
  • the metal reflective film separation area 18c of the laminated film separation area 19a is connected to the transparent conductive film separation area 14c of the laminated film separation area 19a, but the transparent conductive film separation area 14c is another separation line 52 of the transparent conductive film 14 It is separated from the region (region other than the transparent conductive film separation region 14c). Therefore, the second region 18 b and the region of the transparent conductive film 14 other than the transparent conductive film separation region 14 c are not conductive.
  • the entire surface of the EC film 16 is disposed at a position offset from the outer peripheral end of the transparent substrate 12. Further, after forming the laminated film 19, the separation line 52 and the dividing line 20 can be formed in a continuous process.
  • the sealing glass 36 is bonded to the surface of the EC mirror 50 on which the laminated film 19 is formed with the sealing resin 34, as in FIG. 8, and the laminated film 19 is sealed.
  • conductive metallic foil adhesive tape is used for the terminal, conductive metallic foil adhesive tape is thin (for example, metallic metallic terminal is 0.1 mm thick or more, conductive metallic foil adhesive tape is 0.07 mm thick or less Therefore, the transparent substrate 12 and the sealing glass 36 are joined approximately in parallel by the sealing resin 34. As a result, the layer thickness of the sealing resin 34 becomes substantially uniform all around the EC mirror 50.
  • the conductive metal foil adhesive tape is thin, the difference in level between the conductive metal foil adhesive tape and the periphery thereof is small, the wraparound of the sealing resin 34 is good, and the sealing failure hardly occurs.
  • soldering metal terminals it is necessary at about 200 degrees Celsius, but since the conductive metal foil adhesive tape can be attached at room temperature, the degradation of the EC film 16 is suppressed when the conductive metal foil adhesive tape is used An effect is also obtained.
  • the manufacturing process of the EC mirror 50 of the configuration of the third embodiment is the manufacturing process of the EC mirror 10 described in the first embodiment (FIGS. 2, 3, 4, 1, 6, 7, 8 and 9).
  • the following points differ with respect to the order.
  • the step of FIG. 4 deposition of the EC film 16
  • the masking jig one in which the area 26a is removed from the opening 26 of the masking jig 22 of FIG. 5 is used.
  • the EC film 16 without the EC film extended portion 16a of FIG. 1 is formed.
  • the laminated film 19 is laser cut to form continuous separation lines 52, and the laminated film separation region 19a is formed.
  • the laser output is lowered and the metal reflection film 18 is laser cut to form a continuous dividing line 20.
  • the electrode extraction region of the metal reflection film (second region) is drawn to the outer peripheral end of the transparent substrate, but this is not necessarily required. That is, for example, it can be configured as follows. The entire area of the second area is surrounded to form a first area. A part of the circumferential direction of the first region is coated with an insulating resin. The conductive metal foil adhesive tape is pulled from the second area through the insulating coated top of the first area to the outside of the EC mirror. In this state, the conductive metal foil adhesive tape is attached to an EC mirror. Thereby, the conductive metal foil adhesive tape can be used as a terminal of the second region.
  • the dividing lines are formed using a laser beam in the above embodiment, the dividing lines may be formed using an electron beam, plasma, chemical etching or the like.
  • EC film extending portion 18: metal reflection film, 18a: first region, 18b: second region, 18b ': electrode extraction region of metal reflection film second region, 19: laminated film, 19a: laminated film separation region, Reference Signs List 20 dividing line 22 masking jig 24 recess of masking jig 26 opening of masking jig 26a area forming EC film extension of opening 28 terminal 29 Solder 30 terminal 31 solder 34 sealing resin 36 sealing glass 40 solid EC mirror 42 separation line 44 area where EC film and transparent conductive film separation region overlap 50. Solid EC mirror, 52 ... Contact break, 54, 56 ... conductive member

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

[Problem] To constitute a mirror surface in an electrode lead-out region by forming a reflective metal film constituting the reflection surface of a solid state EC mirror up to the electrode lead-out region of a transparent conductive film. [Solution] A solid state EC mirror 10 has a structure wherein a transparent conductive film 14, a solid state EC film 16, and a reflective metal film 18 are laminated on the rear surface of a transparent substrate 12. The transparent conductive film 14 includes an EC film laminated region 14b having the EC film 16 laminated thereon and a non-EC film laminated region 14a having no EC film 16 laminated thereon. The EC film laminated region 14b and the non-EC film laminated region 14a are electrically connected to each other. The reflective metal film 18 is formed over the region of the EC film 16 and the non-EC film laminated region 14a. The reflective metal film 18 includes a first region 18a and a second region 18b divided by a dividing line 20 passing through the region of the EC film 16. The first region 18a is electrically connected to the non-EC film laminated region 14a. The second region 18b is not electrically connected to the non-EC film laminated region 14a.

Description

固体型ECミラーおよびその製造方法Solid state EC mirror and method of manufacturing the same
 この発明は、固体型EC(エレクトロクロミック)を用いたミラー(以下「ECミラー」と略称する場合がある)に関する。この発明は、ECミラーの反射面を構成する金属反射膜を透明導電膜の電極取出領域にまで成膜して、該電極取出領域に鏡面を構成できるようにしたものである。 The present invention relates to a mirror using solid-state EC (electrochromic) (hereinafter sometimes abbreviated as "EC mirror"). According to the present invention, the metal reflection film constituting the reflection surface of the EC mirror is formed up to the electrode extraction region of the transparent conductive film so that a mirror surface can be formed in the electrode extraction region.
 従来の固体型ECミラーとして、透明基板の裏面(視点が配置される側と反対側の面)に透明導電膜、固体型EC膜、電極を兼ねる金属反射膜を順次積層した構造を有するものがある。このECミラーは、透明導電膜と金属反射膜との間に電圧を印加してEC膜の透過率を変化させることにより、透明基板のおもて面側から透明基板および透明導電膜およびEC膜を透過して見た金属反射膜の反射率が変化する。このような構造を有する従来の固体型ECミラーにおいては、透明導電膜の電極取出領域で透明導電膜と金属反射膜が接触(短絡)しないように、金属反射膜は透明導電膜の電極取出領域を除けて成膜されていた(例えば下記特許文献1の図2参照)。このため広い鏡面面積が得られなかった。そこで、透明導電膜の電極取出領域にも鏡面を構成して広い鏡面面積が得られるようにした従来の固体型ECミラーとして、本出願人の出願に係る下記特許文献2で提案されたものがあった。このECミラーは、透明導電膜の電極取出領域にハンダ層を面状に拡げて塗布したものである。ハンダ層は透明導電膜と電気的に接続して透明導電膜に対して給電を行う給電路を構成する。また、ハンダ層は電極取出領域を透過してECミラーの前面側から視認され、ECミラーの通常の使用状態で、ECミラーの鏡面の一部を構成する。その結果、広い鏡面面積が得られ、視界が広くなる。 A conventional solid-type EC mirror having a structure in which a transparent conductive film, a solid-type EC film, and a metal reflection film that doubles as an electrode are sequentially laminated on the back surface of the transparent substrate (surface opposite to the side where the viewpoint is disposed) is there. The EC mirror applies a voltage between the transparent conductive film and the metal reflection film to change the transmittance of the EC film, thereby the transparent substrate, the transparent conductive film, and the EC film from the front surface side of the transparent substrate. Changes the reflectance of the metal reflection film seen through it. In the conventional solid-type EC mirror having such a structure, the metal reflection film is an electrode extraction region of the transparent conductive film so that the transparent conductive film and the metal reflection film do not contact (short circuit) in the electrode extraction region of the transparent conductive film. Film formation except for (see, for example, FIG. 2 of Patent Document 1 below). Therefore, a large mirror surface area was not obtained. Therefore, as a conventional solid-type EC mirror having a mirror surface configured to obtain a large mirror surface area also in the electrode extraction region of a transparent conductive film, the one proposed in the following Patent Document 2 according to the application of the present applicant there were. In this EC mirror, a solder layer is spread in a planar shape and applied to the electrode extraction region of the transparent conductive film. The solder layer is electrically connected to the transparent conductive film to form a feed path for feeding power to the transparent conductive film. In addition, the solder layer passes through the electrode extraction region and is viewed from the front side of the EC mirror, and constitutes a part of the mirror surface of the EC mirror in the normal use state of the EC mirror. As a result, a large mirror surface area is obtained, and the field of view is wide.
実開平5-2128号公報Japanese Utility Model Application 5-2128 特開2015-194561号公報JP, 2015-194561, A
 特許文献2に記載のECミラーによれば、透明導電膜の電極取出領域に鏡面を構成するために、ハンダ材料が必要であった。また、透明導電膜の電極取出領域にハンダ層を塗布する際に、ハンダ層が金属反射膜と接触(短絡)しないように、ハンダ層と金属反射膜との間には比較的広幅の隙間を設ける必要があった。このため、ハンダ層と金属反射膜の継ぎ目(隙間)が視覚上目立ち、金属反射膜による鏡面とハンダ層による鏡面との連続感が得られず、意匠性が低かった。 According to the EC mirror described in Patent Document 2, a solder material is required to form a mirror surface in the electrode extraction region of the transparent conductive film. Also, when applying the solder layer to the electrode extraction region of the transparent conductive film, a relatively wide gap is provided between the solder layer and the metal reflection film so that the solder layer does not contact (short circuit) with the metal reflection film. It had to be provided. As a result, the joint (gap) between the solder layer and the metal reflection film is visually noticeable, and a sense of continuity between the mirror surface by the metal reflection film and the mirror surface by the solder layer can not be obtained, and the designability is low.
 この発明は前記従来の技術における問題点を解決して、ECミラーの反射面を構成する金属反射膜を透明導電膜の電極取出領域にまで成膜して、該電極取出領域に鏡面を構成できるようにした固体型ECミラーおよびその製造方法を提供するものである。 The present invention solves the problems in the above-mentioned prior art, can form a metal reflection film constituting the reflection surface of the EC mirror to the electrode extraction region of the transparent conductive film, and can form a mirror surface in the electrode extraction region The present invention provides a solid-state EC mirror and a method of manufacturing the same.
 この発明の固体型ECミラーは、透明基板の裏面に透明導電膜、固体型EC膜、金属反射膜を積層した構造を有し、前記透明導電膜と前記金属反射膜との間に電圧を印加して前記EC膜の透過率を変化させることにより、前記透明基板のおもて面側から前記透明基板および前記透明導電膜および前記EC膜を透過して見た前記金属反射膜の反射率が変化するように構成した固体型ECミラーにおいて、前記透明導電膜は、前記EC膜が積層されたEC膜積層領域と、前記EC膜が積層されていないEC膜非積層領域を有し、前記EC膜積層領域と前記EC膜非積層領域は相互に導通しており、前記金属反射膜は前記EC膜の領域および前記EC膜非積層領域にかけて成膜されており、前記金属反射膜は、前記EC膜の領域内を通る分割線で分割された第1領域と第2領域を有し、前記第1領域は前記EC膜非積層領域に導通し、前記第2領域は前記EC膜非積層領域に非導通である、そのようなものである。この発明によれば、金属反射膜の第1領域と第2領域の間に電圧を印加することにより、ECミラーの反射率を変化させることができる。また、金属反射膜の第1領域は透明導電膜の電極取出領域を透過してECミラーの前面側から視認されるので、ECミラーの通常の使用状態で、透明導電膜の電極取出領域はECミラーの鏡面の一部を構成することができる。その結果、広い鏡面面積が得られ、視界が広くなる。 The solid-state EC mirror of the present invention has a structure in which a transparent conductive film, a solid-type EC film, and a metal reflection film are laminated on the back surface of a transparent substrate, and a voltage is applied between the transparent conductive film and the metal reflection film. By changing the transmittance of the EC film, the reflectance of the metal reflection film seen through the transparent substrate, the transparent conductive film, and the EC film from the front surface side of the transparent substrate is In the solid state EC mirror configured to change, the transparent conductive film has an EC film laminated region in which the EC film is laminated, and an EC film non-stacked region in which the EC film is not laminated, The film lamination region and the EC film non-stacking region are electrically connected to each other, the metal reflection film is formed over the region of the EC film and the EC film non-stacking region, and the metal reflection film is the EC At a dividing line passing through the membrane area Such as having a split first region and a second region, the first region conducting to the EC film non-stacking region and the second region non-conducting to the EC film non-stacking region It is. According to this invention, the reflectance of the EC mirror can be changed by applying a voltage between the first region and the second region of the metal reflective film. In addition, since the first region of the metal reflection film passes through the electrode extraction region of the transparent conductive film and is viewed from the front side of the EC mirror, the electrode extraction region of the transparent conductive film is EC in the normal use state of the EC mirror. It can constitute part of the mirror surface of the mirror. As a result, a large mirror surface area is obtained, and the field of view is wide.
 この発明の固体型ECミラーにおいて、前記透明導電膜は前記透明基板の裏面の全面に成膜されており、前記EC膜は全周が、または前記第2領域の電極取出領域を形成する領域を除く概ね全周が、前記透明基板の外周端部からオフセットした領域に成膜されており、前記金属反射膜は前記透明基板の裏面の全面に成膜されており、前記分割線は全周が、または前記第2領域の電極取出領域を形成する領域を除く概ね全周が、前記EC膜の外周端部からオフセットした位置に形成されているものとすることができる。これによれば、金属反射膜の全面に鏡面を構成することができる。また、透明導電膜および金属反射膜を透明基板の全面に成膜するので、透明導電膜および金属反射膜を成膜する際に成膜を行わない領域を設定するマスキング治具を不要とすることができる。 In the solid state EC mirror according to the present invention, the transparent conductive film is formed on the entire surface of the back surface of the transparent substrate, and the EC film has an entire periphery or a region forming the electrode extraction region of the second region. Almost the entire circumference except for the film is formed in a region offset from the outer peripheral edge of the transparent substrate, the metal reflection film is formed on the entire surface of the back surface of the transparent substrate, and the dividing line is the entire periphery Alternatively, substantially the entire periphery of the second region excluding the region for forming the electrode lead-out region may be formed at a position offset from the outer peripheral end of the EC film. According to this, it is possible to form a mirror surface on the entire surface of the metal reflection film. In addition, since the transparent conductive film and the metal reflection film are formed on the entire surface of the transparent substrate, when forming the transparent conductive film and the metal reflection film, there is no need to use a masking jig for setting a region where film formation is not performed. Can.
 この発明の固体型ECミラーにおいて、前記EC膜は前記オフセットした領域の一部から前記透明基板の外周端部に達して形成されたEC膜延設部を有し、前記分割線の両端は前記EC膜延設部に進入して該EC膜延設部内で前記透明基板の外周端部に開放されているものとすることができる。これによれば、分割線の両端が透明基板の外周端部に開放された位置で、該開放された位置の分割線に挟まれかつ透明基板の外周端部に達して配置されている金属反射膜の領域は第2領域の電極取出領域を構成することができる。 In the solid state EC mirror according to the present invention, the EC film has an EC film extending portion formed by reaching the outer peripheral end of the transparent substrate from a part of the offset region, and both ends of the dividing line are the above It can enter into the EC film extending portion and be open at the outer peripheral end of the transparent substrate in the EC film extending portion. According to this, the metal reflection disposed at the position where both ends of the dividing line are open to the outer peripheral end of the transparent substrate, is sandwiched by the dividing line at the open position and reaches the outer peripheral end of the transparent substrate The area of the membrane can constitute the electrode removal area of the second area.
 この発明の固体型ECミラーにおいて、前記透明導電膜は外周部の一部に他の領域から分離線で分離された透明導電膜分離領域を有し、前記EC膜は全域が前記透明基板の外周端部からオフセットした領域に成膜されており、前記EC膜の一部の領域は前記透明導電膜分離領域に重なり、前記分割線の両端は前記EC膜の領域から前記EC膜と前記透明導電膜分離領域が重なる領域に進入して該透明導電膜分離領域内で前記透明基板の外周端部に開放されているものとすることができる。これによれば、分割線の両端が透明基板の外周端部に開放された位置で、該開放された位置の分割線に挟まれかつ透明基板の外周端部に達して配置されている金属反射膜の領域は第2領域の電極取出領域を構成することができる。また、EC膜の全域を、透明基板の外周端部からオフセットした位置に配置することができるので、EC膜を外気から遮断して、EC膜の劣化を防止することができる。 In the solid-type EC mirror of the present invention, the transparent conductive film has a transparent conductive film separation region separated from another region by a separation line in a part of the outer peripheral portion, and the EC film has the entire region of the outer periphery of the transparent substrate. The film is formed in a region offset from the end, and a partial region of the EC film overlaps the transparent conductive film separation region, and both ends of the dividing line are the region of the EC film from the EC film and the transparent conductive It is possible for the membrane separation region to enter the overlapping region and be open at the outer peripheral end of the transparent substrate in the transparent conductive film separation region. According to this, the metal reflection disposed at the position where both ends of the dividing line are open to the outer peripheral end of the transparent substrate, is sandwiched by the dividing line at the open position and reaches the outer peripheral end of the transparent substrate The area of the membrane can constitute the electrode removal area of the second area. Further, since the entire area of the EC film can be disposed at a position offset from the outer peripheral end of the transparent substrate, the EC film can be shielded from the outside air to prevent deterioration of the EC film.
 この発明の固体型ECミラーにおいて、前記透明基板上の前記透明導電膜、前記固体型EC膜、前記金属反射膜による積層膜は外周部の一部に他の領域から分離線で分離された積層膜分離領域を有し、前記EC膜は全域が前記透明基板の外周端部からオフセットした領域に成膜されており、前記分割線の両端は前記分離線に繋がっており、前記第2領域と前記積層膜分離領域の前記金属反射膜とを導通させる導電性部材を有するものとすることができる。これによれば、積層膜分離領域の金属反射膜は第2領域の電極取出領域を構成することができる。また、EC膜の全域を透明基板の外周端部からオフセットした位置に配置することができる。また、積層膜を成膜した後に分離線と分割線を形成できるので、分離線と分割線を連続した工程で形成することができる。 In the solid state EC mirror according to the present invention, the transparent conductive film on the transparent substrate, the solid state EC film, and the laminated film by the metal reflection film are laminated in a part of the outer peripheral portion and separated from other regions by separation lines. A film separation region is formed, and the EC film is deposited on the entire region offset from the outer peripheral edge of the transparent substrate, and both ends of the dividing line are connected to the dividing line, and the second region It is possible to have a conductive member that brings the laminated film separation area into conduction with the metal reflective film. According to this, the metal reflective film of the laminated film separation area can constitute the electrode extraction area of the second area. Further, the entire area of the EC film can be disposed at a position offset from the outer peripheral end of the transparent substrate. In addition, since the separation line and the dividing line can be formed after the laminated film is formed, the separation line and the dividing line can be formed in a continuous process.
 この発明の固体型ECミラーは、前記第1領域に第1ターミナルが接続され、前記第2領域に第2ターミナルが接続されているものとすることができる。これによれば、第1ターミナルおよび第2ターミナルを通してEC膜に駆動電圧を印加することができる。 In the solid state EC mirror according to the present invention, the first terminal may be connected to the first area, and the second terminal may be connected to the second area. According to this, a drive voltage can be applied to the EC film through the first terminal and the second terminal.
 この発明の固体型ECミラーの製造方法は、前記金属反射膜をレーザーカットして前記分割線を形成するものである。これによれば、金属反射膜から第1領域と第2領域を容易に分割することができる。また、分割線を細幅に形成して第1領域と第2領域の境界を視覚上目立ちにくくすることができ、意匠性を向上させることができる。 In the method of manufacturing a solid state EC mirror according to the present invention, the metal reflection film is laser cut to form the dividing line. According to this, it is possible to easily divide the first region and the second region from the metal reflection film. Further, the dividing line can be formed to be narrow so that the boundary between the first region and the second region can be made less visible visually, and the design can be improved.
 この発明の固体型ECミラーの製造方法は、前記透明導電膜をレーザーカットして該透明導電膜から前記透明導電膜分離領域を分離するものである。これによれば、透明導電膜から透明導電膜分離領域を容易に分離することができる。 In the method of manufacturing a solid state EC mirror according to the present invention, the transparent conductive film is laser cut to separate the transparent conductive film separation region from the transparent conductive film. According to this, the transparent conductive film separation area can be easily separated from the transparent conductive film.
 この発明の固体型ECミラーの製造方法は、前記積層膜をレーザーカットして該積層膜から前記積層膜分離領域を分離するものである。これによれば、積層膜から積層膜分離領域を容易に分離することができる。 In the method of manufacturing a solid state EC mirror according to the present invention, the laminated film is laser cut to separate the laminated film separation area from the laminated film. According to this, the laminated film separation area can be easily separated from the laminated film.
この発明の固体型ECミラーの実施の形態1を示す図で、該ECミラーの製造工程5を示す平面図である。It is a figure which shows Embodiment 1 of the solid-type EC mirror of this invention, and is a top view which shows the manufacturing process 5 of this EC mirror. 図1AのA-A矢視模式断面図である。It is an AA arrow typical cross section figure of FIG. 1A. 図1AのB-B矢視模式断面図である。It is a BB arrow typical cross section figure of Drawing 1A. 図1のECミラーの製造工程1を示す平面図である。It is a top view which shows the manufacturing process 1 of the EC mirror of FIG. 図2AのC-C矢視模式断面図である。FIG. 2C is a schematic cross-sectional view taken along the line CC in FIG. 2A. 図1のECミラーの製造工程2を示す平面図である。It is a top view which shows the manufacturing process 2 of the EC mirror of FIG. 図3AのD-D矢視模式断面図である。FIG. 3B is a schematic cross-sectional view taken along the line DD in FIG. 3A. 図1のECミラーの製造工程3を示す平面図である。It is a top view which shows the manufacturing process 3 of the EC mirror of FIG. 図4AのE-E矢視模式断面図である。It is an EE arrow schematic cross section of FIG. 4A. 図1のECミラーの製造工程3においてEC膜の成膜に使用されるマスキング治具を示す平面図である。It is a top view which shows the masking jig | tool used for film-forming of EC film | membrane in manufacturing process 3 of EC mirror of FIG. 図5Aのマスキング治具のF-F矢視端面図である。It is an FF arrow end view of the masking jig of FIG. 5A. 図1のECミラーの製造工程4を示す平面図である。It is a top view which shows the manufacturing process 4 of the EC mirror of FIG. 図6AのG-G矢視模式断面図である。FIG. 6B is a schematic sectional view taken along the line GG in FIG. 6A. 図1のECミラーの製造工程6(後工程1)を示す平面図である。It is a top view which shows the manufacturing process 6 (post process 1) of the EC mirror of FIG. 図7AのH-H矢視模式断面図である。It is the HH arrow typical cross section figure of FIG. 7A. 図7AのI-I矢視模式断面図である。FIG. 7B is a schematic cross-sectional view taken along the line II in FIG. 7A. 図1のECミラーの製造工程7(後工程2)を示す平面図である。It is a top view which shows the manufacturing process 7 (post process 2) of the EC mirror of FIG. 図8AのJ-J矢視模式断面図である。It is a JJ arrow typical cross section figure of Drawing 8A. 実施の形態1のECミラーの複数サンプルを使用して、積層膜に様々な出力のレーザーを照射して分割線を形成した場合の、各サンプルの積層膜の除去幅(すなわち、分割線の幅)および電圧印加による着色性能(すなわち、反射率可変性能)の測定結果を示す線図である。The removal width of the laminated film of each sample (ie, the width of the dividing line when forming dividing lines by irradiating the laminated film with lasers of various outputs using a plurality of samples of the EC mirror of Embodiment 1) And a graph showing the measurement results of coloring performance (that is, variable reflectance performance) by voltage application. この発明の固体型ECミラーの実施の形態2を示す平面図である。It is a top view which shows Embodiment 2 of the solid-type EC mirror of this invention. 図10AのK-K矢視模式断面図である。FIG. 10B is a schematic cross-sectional view taken along the line K-K in FIG. 10A. 図10AのL-L矢視模式断面図である。FIG. 10B is a schematic cross-sectional view taken along the line LL in FIG. 10A. この発明の固体型ECミラーの実施の形態3を示す平面図である。It is a top view which shows Embodiment 3 of the solid-type EC mirror of this invention. 図11AのM-M矢視模式断面図である。FIG. 11B is a schematic cross-sectional view taken along the line MM in FIG. 11A. 図11AのN-N矢視模式断面図である。11B is a schematic cross-sectional view taken along the line NN in FIG. 11A.
《実施の形態1》
 この発明の固体型ECミラーの実施の形態1を図1(A,B,C)に示す。このECミラー10は例えば車両用ECミラーを構成するものである。ECミラー10は、ガラス板等の透明基板12の裏面(すなわち、視点が配置される側と反対側の面)に積層膜19を形成した構造を有する。積層膜19は、透明基板12の裏面に、透明導電膜14、固体型EC膜16、電極を兼ねる金属反射膜18を順次積層して構成される。ECミラー10は、透明基板12を透過して積層膜19を見る向きにした姿勢で、使用される。透明導電膜14はITO(酸化インジウムスズ)、FTO(フッ素ドープ酸化スズ)、酸化スズ等で構成されている。固体型EC膜16は、対向電極層、固体電解質層、還元発色層の3層を順次積層した全固体積層膜で構成される。このうち対向電極層はIr-SnOx(イリジウム-酸化スズ)、NiO(酸化ニッケル)、CoO(酸化コバルト)等で構成される。固体電解質層はTa25、ZrO2、Nb25等で構成される。還元発色層はWO3等で構成される。金属反射膜18はAl(アルミニウム)、Ag(銀)合金、Rh(ロジウム)等で構成される。透明導電膜14は透明基板12の全面に成膜されている。EC膜16の一部の領域(後述するEC膜延設部16a)を除き、EC膜16は透明基板12の外周端部から内周側に一定距離オフセットした領域に成膜されている。これにより、透明導電膜14には、EC膜16が積層されていないEC膜非積層領域14aと、EC膜16が積層されたEC膜積層領域14bが形成される。EC膜非積層領域14aとEC膜積層領域14bは相互に導通している。金属反射膜18はEC膜16の全面を覆うように透明基板12の全面に成膜されている。すなわち、金属反射膜18はEC膜16の全領域および透明導電膜14のEC膜非積層領域14aの全領域にかけて成膜されている。金属反射膜18は、EC膜16の領域内を通りかつEC膜16の領域外を通らない分割線20で、第1領域18aと第2領域18bに分割されている。分割線20は、例えばレーザービームの走査によるレーザーカットで、連続的に形成されている。第1領域18aは、EC膜非積層領域14aに接合されてEC膜非積層領域14aに導通して、EC膜積層領域14bに対する給電路を構成する。第2領域18bはEC膜16を挟んでEC膜積層領域14bに対面する。第2領域18bはEC膜非積層領域14aに非導通である。EC膜16の全周の一部の領域は、透明基板12の外周端部に達して形成されている。該一部の領域はEC膜延設部16aを構成する。分割線20はEC膜16の一般領域(すなわち、EC膜延設部16aを除く領域)からEC膜延設部16aに進入している。そして、分割線20の両端はEC膜延設部16a内で透明基板12の外周端部に達して開放されている。すなわち、分割線20はその全長にわたりEC膜16の領域内に形成されている。金属反射膜18の領域18b’は、分割線20の両端が透明基板12の外周端部に開放された位置で、該開放された位置の分割線20に挟まれかつ透明基板12の外周端部に達して配置されている領域である。この領域18b’は金属反射膜18(第2領域18b)の電極取出領域を構成する。領域18b’には、ターミナル30(図7A、図7B)が接続される。電極取出領域18b’の幅(透明基板12の周方向の長さ)は数mm程度である。第1領域18aは透明導電膜14の電極取出領域を構成する。第1領域18aにはターミナル28(図7A、図7C)が接続される。両ターミナル28,30間に着色電圧を印加する。すなわち、対向電極層側のターミナル28を正極にし、還元発色層側のターミナル30を負極にして、両ターミナル28,30間に電圧を印加する。これにより、EC膜16の全領域のうち第2領域18bに対面する領域が着色して、その領域の透過率が低下する。その結果、透明基板12のおもて面(視点が配置される側の面)側から透明基板12および透明導電膜14およびEC膜16を透過して見た金属反射膜18(第2領域18b)の反射率が低下する。この着色した状態から、今度は両ターミナル28,30間に消色電圧を印加する。すなわち、対向電極層側のターミナル28を負極にし、還元発色層側のターミナル30を正極にして、両ターミナル28,30間に電圧を印加する。または両ターミナル28,30間を短絡する。これにより、着色していた領域が消色して、その領域の透過率が上昇する。その結果、透明基板12のおもて面側から透明基板12および透明導電膜14およびEC膜16を透過して見た金属反射膜18(第2領域18b)の反射率が上昇し、該反射率は第1領域18aの反射率に近くなる。なお、第1領域18aは反射率は変化しないものの、鏡面の一部を構成する。したがって、ECミラー10はその全面が鏡面を構成するので、広い視界が得られる。分割線20はレーザーカットにより、容易には視認できない程度の細線(例えば0.1mm幅の線)で形成されているので、第1領域18aと第2領域18bの継ぎ目(すなわち、分割線20)は視覚上目立たない。したがって、第1領域18aによる鏡面と第2領域18bによる鏡面の連続性が良好なので、意匠性が高いECミラー10が得られる。また、抵抗値が高い透明導電膜14のほぼ全周(すなわち、EC膜非積層領域14a)に、抵抗値が低い金属反射膜18(第1領域18a)が接続されているので、EC膜積層領域14bへの通電がEC膜積層領域14bのほぼ全周から同時に行われる。したがって、ECミラー10の着色/消色の応答性が向上する。また、分割線20を形成する際のEC膜16に対するレーザービームの接触時間(照射時間)は短いので、特許文献2に記載の技術のように、透明導電膜上にハンダを塗布してハンダ層を形成する場合に比べて、熱によるEC膜16のダメージが少なく、EC膜16の品質が安定する。また、レーザービームによる分割線20の形成は、ハンダの塗布によるハンダ層の形成に比べて処理速度が速く、生産性が向上する。また、透明導電膜14および金属反射膜18は透明基板12の全面に成膜すればよいので、製造工程において、透明導電膜14および金属反射膜18の成膜にマスキング治具は不要であり、爪治具(透明基板12を外周両側から爪で挟み付けて保持する治具)等の汎用治具を使用できる。したがって、外形が異なる複数種類のECミラーを製造する場合には、成膜用マスキング治具として、EC膜16の成膜用マスキング治具だけ個別に用意すれば足りる。
Embodiment 1
Embodiment 1 of the solid state EC mirror of the present invention is shown in FIG. 1 (A, B, C). The EC mirror 10 constitutes, for example, an EC mirror for a vehicle. The EC mirror 10 has a structure in which a laminated film 19 is formed on the back surface of a transparent substrate 12 such as a glass plate (that is, the surface opposite to the side on which a viewpoint is disposed). The laminated film 19 is configured by sequentially laminating a transparent conductive film 14, a solid EC film 16, and a metal reflection film 18 which also serves as an electrode on the back surface of the transparent substrate 12. The EC mirror 10 is used in a posture in which the transparent film 12 is seen through the transparent substrate 12. The transparent conductive film 14 is made of ITO (indium tin oxide), FTO (fluorine-doped tin oxide), tin oxide or the like. The solid type EC film 16 is formed of an all solid laminated film in which three layers of a counter electrode layer, a solid electrolyte layer, and a reduction coloring layer are sequentially laminated. Among them, the counter electrode layer is made of Ir-SnO x (iridium-tin oxide), NiO (nickel oxide), CoO (cobalt oxide) or the like. The solid electrolyte layer is composed of Ta 2 O 5 , ZrO 2 , Nb 2 O 5 or the like. The reduced coloring layer is composed of WO 3 or the like. The metal reflection film 18 is made of Al (aluminum), Ag (silver) alloy, Rh (rhodium) or the like. The transparent conductive film 14 is formed on the entire surface of the transparent substrate 12. The EC film 16 is formed in a region offset by a predetermined distance from the outer peripheral end of the transparent substrate 12 to the inner peripheral side except for a partial region of the EC film 16 (an EC film extended portion 16a described later). As a result, in the transparent conductive film 14, the EC film non-stacking region 14 a in which the EC film 16 is not stacked and the EC film stacking region 14 b in which the EC film 16 is stacked are formed. The EC film non-stacked region 14a and the EC film stacked region 14b are electrically connected to each other. The metal reflection film 18 is formed on the entire surface of the transparent substrate 12 so as to cover the entire surface of the EC film 16. That is, the metal reflection film 18 is formed over the entire region of the EC film 16 and the entire region of the EC film non-laminated region 14 a of the transparent conductive film 14. The metal reflection film 18 is divided into a first region 18 a and a second region 18 b at a dividing line 20 which passes through the region of the EC film 16 and does not pass outside the region of the EC film 16. The dividing line 20 is continuously formed, for example, by laser cutting by scanning of a laser beam. The first region 18a is joined to the EC film non-stacked region 14a and is conducted to the EC film non-stacked region 14a to form a feed path to the EC film stacked region 14b. The second region 18 b faces the EC film laminated region 14 b with the EC film 16 interposed therebetween. The second region 18 b is nonconductive to the EC film non-laminated region 14 a. A partial region of the entire circumference of the EC film 16 is formed to reach the outer peripheral end of the transparent substrate 12. The partial region constitutes an EC film extending portion 16a. The dividing line 20 enters the EC film extending portion 16a from the general area of the EC film 16 (that is, the region excluding the EC film extending portion 16a). Then, both ends of the dividing line 20 reach the outer peripheral end of the transparent substrate 12 in the EC film extending portion 16 a and are opened. That is, the dividing line 20 is formed in the region of the EC film 16 over the entire length thereof. The region 18 b ′ of the metal reflective film 18 is sandwiched by the parting line 20 at the open position at a position where both ends of the parting line 20 are open to the outer peripheral end of the transparent substrate 12 and the outer peripheral end of the transparent substrate 12 It is an area which is arranged to reach. This region 18 b ′ constitutes an electrode lead-out region of the metal reflection film 18 (second region 18 b). The terminal 30 (FIGS. 7A and 7B) is connected to the area 18b '. The width (length in the circumferential direction of the transparent substrate 12) of the electrode lead-out area 18b 'is about several mm. The first region 18 a constitutes an electrode lead-out region of the transparent conductive film 14. The terminal 28 (FIGS. 7A and 7C) is connected to the first region 18a. A coloring voltage is applied between both terminals 28 and 30. That is, with the terminal 28 on the opposite electrode layer side as the positive electrode and the terminal 30 on the reduction coloring layer side as the negative electrode, a voltage is applied between the two terminals 28 and 30. As a result, the area facing the second area 18b of the entire area of the EC film 16 is colored, and the transmittance of the area is reduced. As a result, the metal reflection film 18 (second region 18 b) seen through the transparent substrate 12, the transparent conductive film 14, and the EC film 16 from the front surface (the surface on which the viewpoint is arranged) side of the transparent substrate 12. The reflectance of) decreases. From this colored state, a decoloring voltage is applied between the terminals 28 and 30 this time. That is, with the terminal 28 on the opposite electrode layer side as the negative electrode and the terminal 30 on the reducing color layer side as the positive electrode, a voltage is applied between the two terminals 28 and 30. Or short circuit between both terminals 28 and 30. As a result, the area that has been colored disappears, and the transmittance of that area is increased. As a result, the reflectance of the metal reflection film 18 (second region 18 b) seen through the transparent substrate 12 and the transparent conductive film 14 and the EC film 16 from the front surface side of the transparent substrate 12 is increased, and the reflection is The rate is close to the reflectance of the first region 18a. Although the first region 18a does not change the reflectance, it constitutes a part of the mirror surface. Therefore, the entire surface of the EC mirror 10 constitutes a mirror surface, so a wide field of view can be obtained. Since the dividing line 20 is formed by a thin line (for example, a line with a width of 0.1 mm) which is not easily visible by laser cutting, the joint (that is, dividing line 20) of the first region 18a and the second region 18b is Not visually noticeable. Therefore, since the continuity of the mirror surface by the 1st field 18a and the mirror surface by the 2nd field 18b is good, EC mirror 10 with high designability is obtained. In addition, since the metal reflection film 18 (first region 18a) having a low resistance value is connected to substantially the entire periphery of the transparent conductive film 14 having a high resistance value (that is, the EC film non-laminated region 14a), the EC film lamination is performed. Electricity is supplied to the region 14b simultaneously from substantially the entire periphery of the EC film laminated region 14b. Therefore, the response of coloring / decoloring of the EC mirror 10 is improved. Further, since the contact time (irradiation time) of the laser beam to the EC film 16 at the time of forming the dividing line 20 is short, as in the technique described in Patent Document 2, the solder is applied on the transparent conductive film As compared with the case of forming the film, the damage to the EC film 16 due to heat is less, and the quality of the EC film 16 is stabilized. Further, the formation of the dividing line 20 by the laser beam has a faster processing speed than that of the formation of the solder layer by the application of the solder, and the productivity is improved. In addition, since the transparent conductive film 14 and the metal reflection film 18 may be formed on the entire surface of the transparent substrate 12, a masking jig is not necessary for forming the transparent conductive film 14 and the metal reflection film 18 in the manufacturing process. A general-purpose jig such as a claw jig (a jig for holding and holding the transparent substrate 12 with claws from both sides of the outer periphery) can be used. Therefore, when manufacturing a plurality of types of EC mirrors having different outer shapes, it is sufficient to individually prepare only the film forming masking jig for the EC film 16 as a film forming masking jig.
 以上説明した図1のECミラー10の製造工程を説明する。

[工程1](図2A,B)
 透明基板(ガラス基板)12をECミラー10の面形状に切断し、面取りし、洗浄する。

[工程2](図3A,B)
 透明基板12の裏面の全面に透明導電膜14を成膜する。透明導電膜14は透明基板12の全面に成膜すればよいので、透明導電膜14の成膜にはマスキング治具は不要である。したがって、透明導電膜14の成膜は、爪治具を用いた蒸着や、平置きスパッタ等で行うことができる。なお、切断前の透明基板12の全面に予め透明導電膜14を成膜してから、透明基板12をECミラー10の面形状に切断することもできる。

[工程3](図4A,B)
 透明導電膜14の上にEC膜16を構成する3層(対向電極層、固体電解質層、還元発色層)を蒸着で順次成膜する。この成膜には図5A,Bのマスキング治具22を使用する。このマスキング治具22は、凹所24と、凹所24内の開口部26を有する。凹所24には透明基板12が、EC膜16を成膜する面を開口部26に対面させて、がたつきなく保持される。開口部26は凹所24の外周端部から所定幅で内周側にオフセットした位置から、その内周側に形成されている。開口部26の外周部の一部の領域26aは凹所24の外周端部に達して形成されている。このマスキング治具22を使用することにより、透明基板12の透明導電膜14が形成された面に、EC膜16が、透明基板12の外周端部から内周側にオフセットした領域に成膜される。また、開口部26の一部の領域26aによりEC膜延設部16aが成膜される。EC膜16の成膜により、透明導電膜14は、EC膜16が積層されていないEC膜非積層領域14aと、EC膜16が積層されたEC膜積層領域14bに区分けされる。

[工程4](図6A,B)
 透明基板12の全面に金属反射膜18を成膜する。これにより、EC膜16に金属反射膜18が積層され、EC膜16は全面が金属反射膜18で覆われる。金属反射膜18の外周部(すなわち、EC膜16が成膜されていない領域)は透明導電膜14のEC膜非積層領域14aに積層される。金属反射膜18は透明基板12の全面に成膜すればよいので、マスキング治具は不要である。したがって、金属反射膜18の成膜は爪治具を用いた蒸着や、平置きスパッタ等で行うことができる。なお、金属反射膜18をマスキング治具なしで透明基板12の全面に成膜すると、EC膜延設部16aにおいて、成膜時に発生する蒸発金属の一部がEC膜延設部16aの端面を越えて透明導電膜14に達し、金属反射膜18と透明導電膜14とが短絡する可能性が考えられる。その対策として、例えば、金属反射膜18の成膜後に、EC膜延設部16aの端面をコンパウンドフィルム等で削ることが考えられる。このようにすれば、金属反射膜18の成膜により、EC膜延設部16aにおいて、金属反射膜18と透明導電膜14とが仮に短絡しても、その短絡状態を解消させることができる。

[工程5](図1A,B,C)
 金属反射膜18をレーザーカットして、連続した分割線20を形成する。分割線20はEC膜16の領域内に形成される。これにより、金属反射膜18は第1領域18aと第2領域18bに分割される。第2領域18bの一部には金属反射膜18(第2領域18b)の電極取出領域18b’が形成される。この工程では透明導電膜14がレーザーで切断されないようにレーザー出力を加減する。EC膜16はカットされても、カットされなくてもECミラー10の性能には影響ない。以上により、図1に示すECミラー10が得られる。なお、レーザーに対して金属反射膜18は反射および吸収が大きいので、レーザーエネルギーの多くは金属反射膜18で吸収または反射され、吸収されたエネルギーは金属反射膜18の切断に使われる。また、金属反射膜18で吸収または反射されずに残ったレーザーはEC膜16および透明導電膜14に達する。しかし、EC膜16および透明導電膜14は透過率が高くしかもレーザーエネルギーが既に小さくなっているので、EC膜16および透明導電膜14は切断されにくい。したがって、レーザー出力を好適に調整することにより、金属反射膜18のみが切断され、透明導電膜14およびEC膜16は切断されず、結果として金属反射膜18のみに分割線20が形成される、という加工状態が得られる。

[工程6(後工程1)](図7A,B,C)
 図1に示すECミラー10が得られたら、金属反射膜18(第2領域18b)の電極取出領域を構成する領域18b’に金属製のターミナル30をハンダ31で接合する。また、透明導電膜14の電極取出領域を構成する第1領域18aに金属製のターミナル28をハンダ29で接合する。

[工程7(後工程2)](図8A,B)
 ECミラー10の積層膜19(透明導電膜14、固体型EC膜16、金属反射膜18)が形成されている側の面に封止ガラス36を封止樹脂34で接合して、積層膜19を封止する。このECミラー10は、通常の使用状態で、その周縁部にミラーホルダーの縁部が被らず、ECミラー10の全面が鏡面を構成する。したがって、広い鏡面面積が得られる。また、特許文献2に記載のECミラーにおいては、透明基板の周方向の一部の領域にハンダ層で鏡面が構成されている。この場合、ターミナル厚とハンダ層厚を加えた厚さにより、透明基板と封止ガラスが非平行な姿勢で封止樹脂により接合される。このため、封止樹脂層の厚さがECミラーの周方向で不均一になる。これに対し、実施の形態1のECミラー10によれば、ハンダ層が無い分、封止樹脂層の厚さをECミラー10の周方向で均一化することができる。
The manufacturing process of the EC mirror 10 of FIG. 1 described above will be described.

[Step 1] (FIG. 2A, B)
The transparent substrate (glass substrate) 12 is cut into a surface shape of the EC mirror 10, chamfered, and cleaned.

[Step 2] (FIG. 3A, B)
The transparent conductive film 14 is formed on the entire back surface of the transparent substrate 12. Since the transparent conductive film 14 may be formed on the entire surface of the transparent substrate 12, no masking jig is necessary for forming the transparent conductive film 14. Therefore, the film formation of the transparent conductive film 14 can be performed by vapor deposition using a claw jig, flat placement sputtering, or the like. The transparent conductive film 14 can be formed in advance on the entire surface of the transparent substrate 12 before cutting, and then the transparent substrate 12 can be cut into the surface shape of the EC mirror 10.

[Step 3] (FIG. 4A, B)
Three layers (a counter electrode layer, a solid electrolyte layer, and a reduction coloring layer) constituting the EC film 16 are sequentially formed on the transparent conductive film 14 by vapor deposition. The masking jig 22 of FIG. 5A and 5B is used for this film-forming. The masking jig 22 has a recess 24 and an opening 26 in the recess 24. The transparent substrate 12 is held in the recess 24 with the surface on which the EC film 16 is formed facing the opening 26 without looseness. The opening 26 is formed on the inner peripheral side from a position offset to the inner peripheral side by a predetermined width from the outer peripheral end of the recess 24. A partial area 26 a of the outer peripheral portion of the opening 26 is formed to reach the outer peripheral end of the recess 24. By using this masking jig 22, the EC film 16 is formed on the surface of the transparent substrate 12 on which the transparent conductive film 14 is formed, in a region offset from the outer peripheral end of the transparent substrate 12 to the inner peripheral side. Ru. Further, the EC film extended portion 16 a is formed by the region 26 a of the opening portion 26. By forming the EC film 16, the transparent conductive film 14 is divided into an EC film non-stacking region 14 a where the EC film 16 is not stacked and an EC film stacking region 14 b where the EC film 16 is stacked.

[Step 4] (FIG. 6A, B)
The metal reflection film 18 is formed on the entire surface of the transparent substrate 12. Thus, the metal reflection film 18 is stacked on the EC film 16, and the entire surface of the EC film 16 is covered with the metal reflection film 18. An outer peripheral portion of the metal reflection film 18 (that is, a region where the EC film 16 is not formed) is stacked on the EC film non-laminated region 14 a of the transparent conductive film 14. Since the metal reflection film 18 may be formed on the entire surface of the transparent substrate 12, a masking jig is unnecessary. Therefore, the film formation of the metal reflection film 18 can be performed by vapor deposition using a claw jig, flat placement sputtering, or the like. When the metal reflection film 18 is formed on the entire surface of the transparent substrate 12 without the masking jig, in the EC film extended portion 16a, a part of the evaporated metal generated at the time of film formation corresponds to the end face of the EC film extended portion 16a. There is a possibility that the light may reach the transparent conductive film 14 and short circuit between the metal reflective film 18 and the transparent conductive film 14. As a countermeasure, for example, it is conceivable to scrape the end face of the EC film extended portion 16 a with a compound film or the like after the film formation of the metal reflection film 18. In this way, by forming the metal reflection film 18, even if the metal reflection film 18 and the transparent conductive film 14 are short-circuited in the EC film extended portion 16a, the short-circuited state can be eliminated.

[Step 5] (FIGS. 1A, B, C)
The metal reflection film 18 is laser cut to form a continuous dividing line 20. The dividing line 20 is formed in the region of the EC film 16. Thereby, the metal reflection film 18 is divided into the first region 18a and the second region 18b. An electrode lead-out area 18b 'of the metal reflection film 18 (second area 18b) is formed in a part of the second area 18b. In this process, the laser output is adjusted so that the transparent conductive film 14 is not cut by the laser. Even if the EC film 16 is cut or not cut, the performance of the EC mirror 10 is not affected. Thus, the EC mirror 10 shown in FIG. 1 is obtained. It is to be noted that the metal reflection film 18 has large reflection and absorption with respect to the laser, so most of the laser energy is absorbed or reflected by the metal reflection film 18 and the absorbed energy is used for cutting the metal reflection film 18. Also, the laser remaining without being absorbed or reflected by the metal reflection film 18 reaches the EC film 16 and the transparent conductive film 14. However, since the EC film 16 and the transparent conductive film 14 have high transmittance and laser energy is already small, the EC film 16 and the transparent conductive film 14 are hard to be cut. Therefore, by suitably adjusting the laser output, only the metal reflection film 18 is cut, the transparent conductive film 14 and the EC film 16 are not cut, and as a result, the dividing line 20 is formed only in the metal reflection film 18. Processing state is obtained.

[Step 6 (Post-step 1)] (FIGS. 7A, B, C)
When the EC mirror 10 shown in FIG. 1 is obtained, the metal terminal 30 is joined with the solder 31 to the area 18 b ′ which constitutes the electrode extraction area of the metal reflection film 18 (second area 18 b). Further, the metal terminal 28 is joined with the solder 29 to the first region 18 a constituting the electrode extraction region of the transparent conductive film 14.

[Step 7 (Post-Step 2)] (FIGS. 8A and 8B)
A sealing glass 36 is joined with a sealing resin 34 to the surface on which the laminated film 19 (transparent conductive film 14, solid EC film 16, metal reflective film 18) of the EC mirror 10 is formed. Seal. In the normal use state, the edge of the mirror holder does not cover the periphery of the EC mirror 10, and the entire surface of the EC mirror 10 constitutes a mirror surface. Therefore, a large mirror surface area can be obtained. Further, in the EC mirror described in Patent Document 2, a mirror surface is configured by a solder layer in a partial region in the circumferential direction of the transparent substrate. In this case, the transparent substrate and the sealing glass are joined by the sealing resin in a non-parallel posture by the thickness obtained by adding the terminal thickness and the solder layer thickness. For this reason, the thickness of the sealing resin layer becomes uneven in the circumferential direction of the EC mirror. On the other hand, according to the EC mirror 10 of the first embodiment, the thickness of the sealing resin layer can be made uniform in the circumferential direction of the EC mirror 10 due to the absence of the solder layer.
 ここで、前記工程5において、レーザーで分割線20を形成する際に、金属反射膜18をカットし、かつ透明導電膜14をカットしないための、レーザー出力の具体例について説明する。ここでは次の実験を行った。同一構成のECミラー10の複数サンプルを使用して、各サンプルの積層膜19に、サンプルごとに異なる様々な出力のレーザーを照射して分割線を形成した。次いで、各サンプルの積層膜19の除去幅(すなわち、分割線20の幅)および電圧印加による着色性能(反射率可変性能)を測定した。測定結果を図9に示す。図9の実験の測定条件は次のとおりである。

(図9の実験の条件)
・透明基板12:板ガラス
・透明導電膜14:ITO、膜厚は220nm
・固体型EC膜16:対向電極層はIr-SnOx、固体電解質層はTa25、還元発色層はWO3。固体型EC膜16の全体の膜厚は1.2μm
・金属反射膜18:Al、膜厚は100nm
・レーザーの波長:1064nm
・レーザーの最大出力:25W
・レーザーの移動速度:400mm/s

 図9において、横軸はレーザー出力を最大出力(25W)に対する割合で示し、縦軸は積層膜19の除去幅を示す。図9によれば、レーザーの移動速度が一定であれば、レーザー出力が大きくなるほど積層膜19の除去幅が広くなることが分かる。図9の記号「○」「△」「×」はそれぞれ次のサンプルを示す。

「○」:電圧印加で良好に着色したサンプル
「△」:電圧印加で着色したが、着色の程度が「○」よりも低かったサンプル
「×」:電圧を印加しても着色しなかったサンプル

 図9によれば、次の各事項が言える。レーザー出力を最大出力の15%程度に設定して積層膜19をレーザーカットしたサンプル○は、金属反射膜18が完全にカットされて第1領域18aと第2領域18bに分割され、透明導電膜14がほぼカットされていない状態に加工されたと推測される。したがって、ECミラーとして十分に機能できることが分かる。
 レーザー出力を最大出力の20%程度に設定して積層膜19をレーザーカットしたサンプル△は、金属反射膜18が完全にカットされて第1領域18aと第2領域18bに分割され、透明導電膜14が一部カットされた状態に加工されたと推測される。したがって、ECミラーとしてある程度機能できることが分かる。
 レーザー出力を最大出力の25%以上に設定して積層膜19をレーザーカットしたサンプル×は、金属反射膜18およびEC膜16のみならず、透明導電膜14も完全にカットされた状態に加工されたと推測される。したがって、ECミラーとして機能できないことが分かる。
 以上から、上記条件のもとでは、レーザー出力を最大出力の15%程度に設定して積層膜19のレーザーカットを行えば、この発明による十分な性能のECミラー10が得られることが分かる。
 なお、上記実験では波長が1064nmのレーザーを使用したが、532nmのグリーンレーザー等、透明導電膜14およびEC膜16に対する透過率がより高く、金属反射膜18に対する反射および吸収がより大きい波長を使用すれば、金属反射膜18だけをカットする加工状態がより容易に得られることが期待できる。
Here, when forming the dividing line 20 with a laser in the step 5, a specific example of laser output for cutting the metal reflection film 18 and not cutting the transparent conductive film 14 will be described. The following experiment was performed here. Using multiple samples of the EC mirror 10 of the same configuration, the laminated film 19 of each sample was irradiated with lasers of different outputs different for each sample to form a parting line. Then, the removal width (that is, the width of the dividing line 20) of the laminated film 19 of each sample and the coloring performance (reflectance variable performance) by voltage application were measured. The measurement results are shown in FIG. The measurement conditions of the experiment of FIG. 9 are as follows.

(Conditions of the experiment in FIG. 9)
· Transparent substrate 12: Flat glass · Transparent conductive film 14: ITO, film thickness 220 nm
Solid EC film 16: The counter electrode layer is Ir-SnO x , the solid electrolyte layer is Ta 2 O 5 , and the reduction coloring layer is WO 3 . The overall film thickness of the solid EC film 16 is 1.2 μm
· Metal reflective film 18: Al, film thickness 100 nm
・ Laser wavelength: 1064 nm
・ The maximum output of laser: 25 W
・ Moving speed of laser: 400 mm / s

In FIG. 9, the horizontal axis indicates the laser output in proportion to the maximum output (25 W), and the vertical axis indicates the removal width of the laminated film 19. According to FIG. 9, it can be seen that if the moving speed of the laser is constant, the removal width of the laminated film 19 becomes wider as the laser output becomes larger. The symbols “○” “Δ” “×” in FIG. 9 indicate the next samples, respectively.

"○": Sample colored well by voltage application "Δ": Sample colored by voltage application but with a degree of coloring lower than "○" sample "×": Sample not colored even if voltage is applied

According to FIG. 9, the following can be said. In the sample ○ where the laser output is set to about 15% of the maximum output and the laminated film 19 is laser cut, the metal reflection film 18 is completely cut and divided into the first region 18a and the second region 18b, and the transparent conductive film It is inferred that 14 was processed into an almost uncut state. Therefore, it turns out that it can fully function as an EC mirror.
The sample Δ obtained by cutting the laminated film 19 by setting the laser output to about 20% of the maximum output is completely cut by the metal reflection film 18 and divided into the first region 18a and the second region 18b, and a transparent conductive film It is presumed that 14 was processed into a partially cut state. Therefore, it can be seen that it can function to some extent as an EC mirror.
The sample X obtained by laser cutting the laminated film 19 with the laser output set at 25% or more of the maximum output is processed so that not only the metal reflective film 18 and the EC film 16 but also the transparent conductive film 14 is completely cut. It is guessed. Therefore, it turns out that it can not function as an EC mirror.
From the above, it can be seen that, under the above conditions, if the laser output is set to about 15% of the maximum output and laser cutting of the laminated film 19 is performed, the EC mirror 10 with sufficient performance according to the present invention can be obtained.
Although a laser with a wavelength of 1064 nm was used in the above experiment, a wavelength such as a green laser with a wavelength of 532 nm, which has higher transmittance to the transparent conductive film 14 and the EC film 16 and larger reflection and absorption to the metal reflective film 18 is used. If so, it can be expected that the processing state in which only the metal reflection film 18 is cut can be obtained more easily.
《実施の形態2》
 この発明の固体型ECミラーの実施の形態2を図10A,B,Cに示す。このECミラー40は、実施の形態1のECミラー10に対して、金属反射膜18(第2領域18b)の電極取出領域18b’を形成するための構造が相違するものである。ECミラー40のそれ以外の構造は、実施の形態1のECミラー10の構造と同じである。実施の形態2のECミラー40において、実施の形態1のECミラー10と共通する箇所には、実施の形態1で使用したものと同一の符号を用いてその説明を省略する。図10A,B,CのECミラー40において、透明導電膜14は外周部の一部の領域(すなわち、形成しようとする電極取出領域18b’が含まれる領域)に、分離線42で分離された透明導電膜分離領域14cを有する。分離線42は、透明導電膜14の外周(すなわち透明基板12の外周)の或る端部位置から別の端部位置にかけて、透明導電膜14を「コ」の字型にレーザーカットして形成されている。EC膜16は全域が透明基板12の外周端部からオフセットした領域に成膜されている。また、EC膜16の一部は透明導電膜分離領域14cに重なっている。領域44が、該重なった領域である。分割線20は、EC膜16の領域から、EC膜16と透明導電膜分離領域14cが重なる領域44に進入している。そして、分割線20の両端は、他の領域(透明導電膜分離領域14c以外の領域)を通ることなく、透明導電膜分離領域14c内で透明基板12の外周端部に開放されている。金属反射膜18(第2領域18b)の電極取出領域18b’は透明導電膜分離領域14cに接続されている。しかし、透明導電膜分離領域14cは分離線42で透明導電膜14の他の領域(透明導電膜分離領域14c以外の領域)から分離されている。したがって、第2領域18bと、透明導電膜分離領域14c以外の透明導電膜14の領域とは非導通である。以上の構成のECミラー40によれば、EC膜16の全面(全領域)が透明基板12の外周端部からオフセットした位置に配置される。図10のECミラー40には、図7と同様に、ターミナル28,30が接合される。すなわち、金属反射膜18(第2領域18b)の電極取出領域を構成する領域18b’にターミナル30がハンダ31で接合される。また、透明導電膜14の電極取出領域を構成する第1領域18aにターミナル28がハンダ29で接合される。さらに、図8と同様に、ECミラー40の積層膜19が形成されている面に封止ガラス36が封止樹脂34で接合されて、積層膜19が封止される。
Second Embodiment
Embodiment 2 of the solid-state EC mirror of the present invention is shown in FIGS. 10A, 10B, and 10C. The EC mirror 40 is different from the EC mirror 10 of the first embodiment in the structure for forming an electrode lead-out area 18b 'of the metal reflection film 18 (second area 18b). The remaining structure of the EC mirror 40 is the same as that of the EC mirror 10 of the first embodiment. In the EC mirror 40 of the second embodiment, the same reference numerals as those used in the first embodiment are used for the portions common to the EC mirror 10 of the first embodiment, and the description thereof is omitted. In the EC mirror 40 of FIGS. 10A, 10B, and 10C, the transparent conductive film 14 is separated by the separation line 42 into a partial region of the outer peripheral portion (that is, a region including the electrode extraction region 18b 'to be formed). It has a transparent conductive film separation region 14c. The separation line 42 is formed by laser cutting the transparent conductive film 14 into a U shape from one end position of the outer periphery of the transparent conductive film 14 (that is, the outer periphery of the transparent substrate 12) to another end position. It is done. The EC film 16 is formed in a region whose entire area is offset from the outer peripheral end of the transparent substrate 12. In addition, a part of the EC film 16 overlaps the transparent conductive film separation region 14 c. The area 44 is the overlapping area. The dividing line 20 enters from a region of the EC film 16 into a region 44 where the EC film 16 and the transparent conductive film separation region 14 c overlap. Then, both ends of the dividing line 20 are open at the outer peripheral end of the transparent substrate 12 in the transparent conductive film separation area 14 c without passing through the other area (area other than the transparent conductive film separation area 14 c). The electrode extraction area 18b 'of the metal reflection film 18 (second area 18b) is connected to the transparent conductive film separation area 14c. However, the transparent conductive film separation region 14 c is separated from the other region of the transparent conductive film 14 (the region other than the transparent conductive film separation region 14 c) by the separation line 42. Therefore, the second region 18 b and the region of the transparent conductive film 14 other than the transparent conductive film separation region 14 c are not conductive. According to the EC mirror 40 configured as described above, the entire surface (entire area) of the EC film 16 is disposed at a position offset from the outer peripheral end of the transparent substrate 12. The terminals 28, 30 are joined to the EC mirror 40 of FIG. 10 as in FIG. That is, the terminal 30 is joined by the solder 31 to the region 18 b ′ that constitutes the electrode extraction region of the metal reflection film 18 (second region 18 b). Further, the terminal 28 is joined with the solder 29 to the first region 18 a constituting the electrode lead-out region of the transparent conductive film 14. Furthermore, as in FIG. 8, the sealing glass 36 is bonded to the surface of the EC mirror 40 on which the laminated film 19 is formed by the sealing resin 34, and the laminated film 19 is sealed.
 実施の形態2の構成のECミラー40の製造工程は、実施の形態1で説明したECミラー10の製造工程(図2、図3、図4、図1、図6、図7、図8の順序)に対して次の点が相違する。

・図3の工程(透明導電膜14の成膜)の後に、透明導電膜14をレーザーカットして連続した分離線42を形成し、透明導電膜分離領域14cを構成する。

・図4の工程(EC膜16の成膜)では、マスキング治具として、図5のマスキング治具22の開口部26から領域26aを無くしたもの(すなわち、開口部26の全周が凹所24の外周端部からオフセットしているもの)を使用する。これにより、図1のEC膜延設部16aが無いEC膜16が形成される。EC膜16は透明導電膜14上に、分離線42を跨ぐ形で(すなわち、EC膜16と透明導電膜分離領域14cとが重なる領域44を形成するように)成膜される。
The manufacturing process of the EC mirror 40 having the configuration of the second embodiment is the manufacturing process of the EC mirror 10 described in the first embodiment (FIGS. 2, 3, 4, 1, 6, 7, 8 and 9). The following points differ with respect to the order.

After the process of FIG. 3 (film formation of the transparent conductive film 14), the transparent conductive film 14 is laser cut to form continuous separation lines 42, thereby forming the transparent conductive film separation region 14c.

In the process of FIG. 4 (deposition of EC film 16), the area 26a is removed from the opening 26 of the masking jig 22 of FIG. 5 as a masking jig (ie, the entire circumference of the opening 26 is a recess Use the offset from the outer edge of 24). Thereby, the EC film 16 without the EC film extended portion 16a of FIG. 1 is formed. The EC film 16 is formed on the transparent conductive film 14 so as to straddle the separation line 42 (that is, to form a region 44 where the EC film 16 and the transparent conductive film separation region 14c overlap).
《実施の形態3》
 この発明の固体型ECミラーの実施の形態3を図11A,B,Cに示す。このECミラー50は、実施の形態1のECミラー10および実施の形態2のECミラー40に対して金属反射膜18(第2領域18b)の電極取出領域を形成するための構造が相違するものである。ECミラー50のそれ以外の構造は、実施の形態1のECミラー10および実施の形態2のECミラー40の構造と同じである。実施の形態3のECミラー50において実施の形態1のECミラー10および実施の形態2のECミラー40と共通する箇所には、実施の形態1,2で使用したものと同一の符号を用いてその説明を省略する。図11A,B,CのECミラー50において、透明基板12上の透明導電膜14、固体型EC膜16、金属反射膜18による積層膜19は、外周部の一部の領域に他の領域から分離線52で分離された積層膜分離領域19aを有する。分離線52は、積層膜19の外周(すなわち透明基板12の外周)の或る端部位置から別の端部位置にかけて、積層膜19を「コ」の字型にレーザーカットして形成されている。分離線52は積層膜19の厚み方向の全体にわたって形成される。すなわち、積層膜分離領域19aは、積層膜19を構成する透明導電膜14、固体型EC膜16、金属反射膜18を分離線52で分離して得られる各分離領域14c,16b,18cの積層膜で構成される。EC膜16は全域が透明基板12の外周端部からオフセットした領域に成膜されている。分割線20は分離線52に繋がっている。これにより、第1領域18a、第2領域18b、積層膜分離領域19aは相互に非導通となる。金属反射膜18の第2領域18bと積層膜分離領域19aの金属反射膜分離領域18cには、両領域18b,18cを繋ぐように導電性部材54が接合される。これにより両領域18b,18cは相互に導通する。積層膜分離領域19aの金属反射膜分離領域18cは金属反射膜18(第2領域18b)の電極取出領域を構成する。導電性部材54は金属反射膜18(第2領域18b)のターミナルを構成する。透明導電膜14の電極取出領域を構成する第1領域18aにも導電性部材56が接合される。導電性部材56は透明導電膜14のターミナルを構成する。導電性部材54,56は例えば導電性金属箔粘着テープで構成される。導電性金属箔粘着テープは、銅等の金属箔の片面に導電性粘着剤を塗布して導電性粘着剤層を形成した構造を有する。これにより、導電性金属箔粘着テープは、その面方向および厚み方向に導電性を有する。導電性金属箔粘着テープは常温で被接合箇所に貼り付け可能である。導電性金属箔粘着テープは該貼り付けにより該被接合箇所(導電性)と導通する。市販の導電性金属箔粘着テープとしては、例えば株式会社寺岡製作所製の導電性銅箔粘着テープNo.8323がある。積層膜分離領域19aの金属反射膜分離領域18cは積層膜分離領域19aの透明導電膜分離領域14cに接続されているが、透明導電膜分離領域14cは分離線52で透明導電膜14の他の領域(透明導電膜分離領域14c以外の領域)から分離されている。したがって、第2領域18bと、透明導電膜分離領域14c以外の透明導電膜14の領域とは非導通である。以上の構成のECミラー40によれば、EC膜16の全面が透明基板12の外周端部からオフセットした位置に配置される。また、積層膜19を成膜した後に分離線52と分割線20を連続した工程で形成することができる。ECミラー40には、図8と同様に、ECミラー50の積層膜19が形成されている面に封止ガラス36が封止樹脂34で接合されて、積層膜19が封止される。ターミナルに導電性金属箔粘着テープを使えば、導電性金属箔粘着テープは薄い(例えば、金属製ターミナルが0.1厚mm以上であるのに対し、導電性金属箔粘着テープは0.07mm厚以下である)ので、透明基板12と封止ガラス36は封止樹脂34でほぼ平行に接合される。その結果、封止樹脂34の層厚はECミラー50の全周でほぼ均一になる。また、導電性金属箔粘着テープは薄いので、該導電性金属箔粘着テープとその周囲との段差が小さく、封止樹脂34の回り込みが良好となり、封止不良が生じにくい。また、金属ターミナルをハンダ付けする場合は摂氏200度程度必要であるが、導電性金属箔粘着テープの貼り付けは室温で行えるため、導電性金属箔粘着テープを使うとEC膜16の劣化を抑える効果も得られる。
Third Embodiment
11A, B, and C show Embodiment 3 of the solid-state EC mirror of the present invention. The EC mirror 50 is different from the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment in the structure for forming the electrode extraction region of the metal reflection film 18 (second region 18b). It is. The remaining structure of the EC mirror 50 is the same as that of the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment. In the EC mirror 50 of the third embodiment, parts common to the EC mirror 10 of the first embodiment and the EC mirror 40 of the second embodiment use the same reference numerals as those used in the first and second embodiments. The explanation is omitted. In the EC mirror 50 of FIGS. 11A, 11B, and 11C, the laminated film 19 of the transparent conductive film 14, the solid EC film 16, and the metal reflection film 18 on the transparent substrate 12 It has a laminated membrane separation region 19 a separated by a separation line 52. The separation line 52 is formed by laser cutting the laminated film 19 into a U shape from one end position of the outer periphery of the laminated film 19 (that is, the outer periphery of the transparent substrate 12) to another end position. There is. The separation line 52 is formed over the entire thickness of the laminated film 19. That is, the laminated film separation region 19a is a lamination of the separation regions 14c, 16b, and 18c obtained by separating the transparent conductive film 14, the solid EC film 16, and the metal reflection film 18 constituting the laminated film 19 by the separation line 52. Composed of a membrane. The EC film 16 is formed in a region whose entire area is offset from the outer peripheral end of the transparent substrate 12. The dividing line 20 is connected to the separating line 52. Thereby, the first region 18a, the second region 18b, and the laminated film separation region 19a become nonconductive to each other. A conductive member 54 is joined to the second region 18b of the metal reflection film 18 and the metal reflection film separation region 18c of the laminated film separation region 19a so as to connect the two regions 18b and 18c. As a result, the two regions 18b and 18c conduct each other. The metal reflection film separation area 18c of the laminated film separation area 19a constitutes an electrode extraction area of the metal reflection film 18 (second area 18b). The conductive member 54 constitutes a terminal of the metal reflection film 18 (second region 18 b). The conductive member 56 is also bonded to the first region 18 a constituting the electrode lead-out region of the transparent conductive film 14. The conductive member 56 constitutes a terminal of the transparent conductive film 14. The conductive members 54 and 56 are made of, for example, a conductive metal foil adhesive tape. The conductive metal foil pressure-sensitive adhesive tape has a structure in which a conductive pressure-sensitive adhesive is applied to one surface of a metal foil such as copper to form a conductive pressure-sensitive adhesive layer. Thereby, the conductive metal foil adhesive tape has conductivity in the surface direction and the thickness direction. The conductive metal foil pressure-sensitive adhesive tape can be attached to the bonding site at normal temperature. The conductive metal foil adhesive tape is electrically connected to the bonding site (conductive) by the attachment. As a commercially available conductive metal foil adhesive tape, for example, there is a conductive copper foil adhesive tape No. 8323 manufactured by Teraoka Seisakusho Co., Ltd. The metal reflective film separation area 18c of the laminated film separation area 19a is connected to the transparent conductive film separation area 14c of the laminated film separation area 19a, but the transparent conductive film separation area 14c is another separation line 52 of the transparent conductive film 14 It is separated from the region (region other than the transparent conductive film separation region 14c). Therefore, the second region 18 b and the region of the transparent conductive film 14 other than the transparent conductive film separation region 14 c are not conductive. According to the EC mirror 40 configured as described above, the entire surface of the EC film 16 is disposed at a position offset from the outer peripheral end of the transparent substrate 12. Further, after forming the laminated film 19, the separation line 52 and the dividing line 20 can be formed in a continuous process. In the EC mirror 40, the sealing glass 36 is bonded to the surface of the EC mirror 50 on which the laminated film 19 is formed with the sealing resin 34, as in FIG. 8, and the laminated film 19 is sealed. If conductive metallic foil adhesive tape is used for the terminal, conductive metallic foil adhesive tape is thin (for example, metallic metallic terminal is 0.1 mm thick or more, conductive metallic foil adhesive tape is 0.07 mm thick or less Therefore, the transparent substrate 12 and the sealing glass 36 are joined approximately in parallel by the sealing resin 34. As a result, the layer thickness of the sealing resin 34 becomes substantially uniform all around the EC mirror 50. In addition, since the conductive metal foil adhesive tape is thin, the difference in level between the conductive metal foil adhesive tape and the periphery thereof is small, the wraparound of the sealing resin 34 is good, and the sealing failure hardly occurs. In addition, when soldering metal terminals, it is necessary at about 200 degrees Celsius, but since the conductive metal foil adhesive tape can be attached at room temperature, the degradation of the EC film 16 is suppressed when the conductive metal foil adhesive tape is used An effect is also obtained.
 実施の形態3の構成のECミラー50の製造工程は、実施の形態1で説明したECミラー10の製造工程(図2、図3、図4、図1、図6、図7、図8の順序)に対して次の点が相違する。

・図4の工程(EC膜16の成膜)では、実施の形態2と同様に、マスキング治具として、図5のマスキング治具22の開口部26から領域26aを無くしたものを使用する。これにより、図1のEC膜延設部16aが無いEC膜16が形成される。

・図6の工程(金属反射膜18が成膜されて積層膜19が完成)の後に、積層膜19をレーザーカットして、連続した分離線52を形成し、積層膜分離領域19aを構成する。その後引き続き、レーザー出力を下げて金属反射膜18をレーザーカットして連続した分割線20を形成する。
The manufacturing process of the EC mirror 50 of the configuration of the third embodiment is the manufacturing process of the EC mirror 10 described in the first embodiment (FIGS. 2, 3, 4, 1, 6, 7, 8 and 9). The following points differ with respect to the order.

In the step of FIG. 4 (deposition of the EC film 16), as in the second embodiment, as the masking jig, one in which the area 26a is removed from the opening 26 of the masking jig 22 of FIG. 5 is used. Thereby, the EC film 16 without the EC film extended portion 16a of FIG. 1 is formed.

After the step of FIG. 6 (the metal reflective film 18 is formed and the laminated film 19 is completed), the laminated film 19 is laser cut to form continuous separation lines 52, and the laminated film separation region 19a is formed. . Thereafter, the laser output is lowered and the metal reflection film 18 is laser cut to form a continuous dividing line 20.
 前記各実施の形態では金属反射膜(第2領域)の電極取出領域を透明基板の外周端部まで引き出すようにしたが、必ずしもその必要はない。すなわち、例えば次のように構成することができる。第2領域の全周を包囲して第1領域を形成する。第1領域の周方向の一部を絶縁性樹脂でコーティングする。導電性金属箔粘着テープを、第2領域から第1領域の絶縁性コーティングした上を通してECミラーの外側まで引き出す。この状態で該導電性金属箔粘着テープをECミラーに貼り付ける。これにより、導電性金属箔粘着テープを第2領域のターミナルとすることができる。また、前記実施の形態では分割線をレーザービームを使用して形成したが、これに限らず、電子ビーム、プラズマ、化学的エッチング等を使用して分割線を形成することも可能である。 In each of the above embodiments, the electrode extraction region of the metal reflection film (second region) is drawn to the outer peripheral end of the transparent substrate, but this is not necessarily required. That is, for example, it can be configured as follows. The entire area of the second area is surrounded to form a first area. A part of the circumferential direction of the first region is coated with an insulating resin. The conductive metal foil adhesive tape is pulled from the second area through the insulating coated top of the first area to the outside of the EC mirror. In this state, the conductive metal foil adhesive tape is attached to an EC mirror. Thereby, the conductive metal foil adhesive tape can be used as a terminal of the second region. Although the dividing lines are formed using a laser beam in the above embodiment, the dividing lines may be formed using an electron beam, plasma, chemical etching or the like.
 10…固体型ECミラー、12…透明基板、14…透明導電膜、14a…EC膜非積層領域、14b…EC膜積層領域、14c…透明導電膜分離領域、16…固体型EC膜、16a…EC膜延設部、18…金属反射膜、18a…第1領域、18b…第2領域、18b’…金属反射膜第2領域の電極取出領域、19…積層膜、19a…積層膜分離領域、20…分割線、22…マスキング治具、24…マスキング治具の凹所、26…マスキング治具の開口部、26a…開口部のEC膜延設部を形成する領域、28…ターミナル、29…ハンダ、30…ターミナル、31…ハンダ、34…封止樹脂、36…封止ガラス、40…固体型ECミラー、42…分離線、44…EC膜と透明導電膜分離領域が重なる領域、50…固体型ECミラー、52…分離線、54,56…導電性部材 DESCRIPTION OF SYMBOLS 10 solid type EC mirror, 12 ... transparent substrate, 14 ... transparent conductive film, 14a ... EC film non-stacking area, 14b ... EC film lamination area, 14c ... transparent conductive film separation area, 16 ... solid type EC film, 16a ... EC film extending portion, 18: metal reflection film, 18a: first region, 18b: second region, 18b ': electrode extraction region of metal reflection film second region, 19: laminated film, 19a: laminated film separation region, Reference Signs List 20 dividing line 22 masking jig 24 recess of masking jig 26 opening of masking jig 26a area forming EC film extension of opening 28 terminal 29 Solder 30 terminal 31 solder 34 sealing resin 36 sealing glass 40 solid EC mirror 42 separation line 44 area where EC film and transparent conductive film separation region overlap 50. Solid EC mirror, 52 ... Contact break, 54, 56 ... conductive member

Claims (9)

  1.  透明基板の裏面に透明導電膜、固体型EC膜、金属反射膜を積層した構造を有し、前記透明導電膜と前記金属反射膜との間に電圧を印加して前記EC膜の透過率を変化させることにより、前記透明基板のおもて面側から前記透明基板および前記透明導電膜および前記EC膜を透過して見た前記金属反射膜の反射率が変化するように構成した固体型ECミラーにおいて、
     前記透明導電膜は、前記EC膜が積層されたEC膜積層領域と、前記EC膜が積層されていないEC膜非積層領域を有し、
     前記EC膜積層領域と前記EC膜非積層領域は相互に導通しており、
     前記金属反射膜は前記EC膜の領域および前記EC膜非積層領域にかけて成膜されており、
     前記金属反射膜は、前記EC膜の領域内を通る分割線で分割された第1領域と第2領域を有し、
     前記第1領域は前記EC膜非積層領域に導通し、
     前記第2領域は前記EC膜非積層領域に非導通である、
     そのような固体型ECミラー。
    A transparent conductive film, a solid EC film, and a metal reflection film are laminated on the back surface of a transparent substrate, and a voltage is applied between the transparent conductive film and the metal reflection film to measure the transmittance of the EC film. A solid type EC configured to change the reflectance of the metal reflection film seen through the transparent substrate, the transparent conductive film, and the EC film from the front surface side of the transparent substrate by changing it. At the mirror
    The transparent conductive film has an EC film laminated region in which the EC film is laminated, and an EC film non-stacked region in which the EC film is not laminated.
    The EC film laminated region and the EC film non-stacked region are electrically connected to each other,
    The metal reflection film is formed over the region of the EC film and the EC film non-laminated region,
    The metal reflective film has a first region and a second region divided by a dividing line passing through the region of the EC film,
    The first region conducts to the EC film non-stacked region,
    The second region is nonconductive to the EC film non-stacked region,
    Such solid EC mirror.
  2.  前記透明導電膜は前記透明基板の裏面の全面に成膜されており、
     前記EC膜は全周が、または前記第2領域の電極取出領域を形成する領域を除く概ね全周が、前記透明基板の外周端部からオフセットした領域に成膜されており、
     前記金属反射膜は前記透明基板の裏面の全面に成膜されており、
     前記分割線は全周が、または前記第2領域の電極取出領域を形成する領域を除く概ね全周が、前記EC膜の外周端部からオフセットした位置に形成されている、
     請求項1に記載の固体型ECミラー。
    The transparent conductive film is formed on the entire back surface of the transparent substrate,
    The entire circumference of the EC film, or substantially the entire circumference of the second region excluding the region for forming the electrode extraction region, is formed in a region offset from the outer peripheral edge of the transparent substrate,
    The metal reflection film is formed on the entire back surface of the transparent substrate,
    The dividing line is formed such that the entire circumference or the entire circumference excluding the area forming the electrode extraction area of the second area is offset from the outer peripheral end of the EC film.
    The solid-state EC mirror according to claim 1.
  3.  前記EC膜は前記オフセットした領域の一部から前記透明基板の外周端部に達して形成されたEC膜延設部を有し、
     前記分割線の両端は前記EC膜延設部に進入して該EC膜延設部内で前記透明基板の外周端部に開放されている、
     請求項2に記載の固体型ECミラー。
    The EC film has an EC film extending portion formed by reaching an outer peripheral end of the transparent substrate from a part of the offset region,
    Both ends of the dividing line enter the EC film extending portion and are open at the outer peripheral end of the transparent substrate in the EC film extending portion.
    The solid state EC mirror according to claim 2.
  4.  前記透明導電膜は外周部の一部に他の領域から分離線で分離された透明導電膜分離領域を有し、
     前記EC膜は全域が前記透明基板の外周端部からオフセットした領域に成膜されており、
     前記EC膜の一部の領域は前記透明導電膜分離領域に重なり、
     前記分割線の両端は前記EC膜の領域から前記EC膜と前記透明導電膜分離領域が重なる領域に進入して該透明導電膜分離領域内で前記透明基板の外周端部に開放されている、
     請求項2に記載の固体型ECミラー。
    The transparent conductive film has a transparent conductive film separation region separated by a separation line from another region in a part of the outer peripheral portion,
    The EC film is formed in a region whose entire area is offset from the outer peripheral edge of the transparent substrate,
    A partial region of the EC film overlaps the transparent conductive film separation region,
    Both ends of the dividing line enter the area where the EC film and the transparent conductive film separation area overlap with each other from the area of the EC film, and are opened at the outer peripheral end of the transparent substrate in the transparent conductive film separation area.
    The solid state EC mirror according to claim 2.
  5.  前記透明基板上の前記透明導電膜、前記固体型EC膜、前記金属反射膜による積層膜は外周部の一部に他の領域から分離線で分離された積層膜分離領域を有し、
     前記EC膜は全域が前記透明基板の外周端部からオフセットした領域に成膜されており、
     前記分割線の両端は前記分離線に繋がっており、
     前記第2領域と前記積層膜分離領域の前記金属反射膜とを導通させる導電性部材を有する、
     請求項2に記載の固体型ECミラー。
    The transparent conductive film, the solid EC film, and the laminated film of the metal reflection film on the transparent substrate have a laminated film separation region separated from other regions by a separation line in a part of the outer peripheral portion,
    The EC film is formed in a region whose entire area is offset from the outer peripheral edge of the transparent substrate,
    Both ends of the dividing line are connected to the separating line,
    A conductive member for electrically connecting the second region and the metal reflective film of the laminated film separation region;
    The solid state EC mirror according to claim 2.
  6.  前記第1領域に第1ターミナルが接続され、
     前記第2領域に第2ターミナルが接続されている、
     請求項1から5のいずれか1つに記載の固体型ECミラー。
    A first terminal is connected to the first area,
    A second terminal is connected to the second area,
    The solid state EC mirror according to any one of claims 1 to 5.
  7.  請求項1から6のいずれか1つに記載の固体型ECミラーを製造する方法において、
     前記金属反射膜をレーザーカットして前記分割線を形成する方法。
    A method of producing a solid state EC mirror according to any one of claims 1 to 6,
    A method of laser cutting the metal reflection film to form the dividing line.
  8.  請求項4に記載の固体型ECミラーを製造する方法において、
     前記透明導電膜をレーザーカットして該透明導電膜から前記透明導電膜分離領域を分離する方法。
    In the method of manufacturing a solid state EC mirror according to claim 4,
    A method of laser cutting the transparent conductive film to separate the transparent conductive film separation region from the transparent conductive film.
  9.  請求項5に記載の固体型ECミラーを製造する方法において、
     前記積層膜をレーザーカットして該積層膜から前記積層膜分離領域を分離する方法。
    In the method of manufacturing a solid state EC mirror according to claim 5,
    A method of laser cutting the laminated film to separate the laminated film separation region from the laminated film.
PCT/JP2017/005655 2016-03-31 2017-02-16 Solid state ec mirror and manufacturing method therefor WO2017169243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508555A JPWO2017169243A1 (en) 2016-03-31 2017-02-16 Solid-type EC mirror and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070526 2016-03-31
JP2016070526 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169243A1 true WO2017169243A1 (en) 2017-10-05

Family

ID=59964144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005655 WO2017169243A1 (en) 2016-03-31 2017-02-16 Solid state ec mirror and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2017169243A1 (en)
WO (1) WO2017169243A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634521U (en) * 1986-06-25 1988-01-13
JPS63306429A (en) * 1987-06-09 1988-12-14 Ichikoh Ind Ltd Manufacture of ec nonglaring mirror for automobile
JP2006501524A (en) * 2002-09-30 2006-01-12 ジェンテックス コーポレイション Electrochromic device with no position offset between substrates
JP2012524290A (en) * 2009-04-16 2012-10-11 セイジ・エレクトロクロミクス,インコーポレイテッド Transparency controlled electrochromic device
WO2014013759A1 (en) * 2012-07-17 2014-01-23 株式会社ホンダロック Anti-glare mirror, vehicle and method for producing anti-glare mirror
JP2014081566A (en) * 2012-10-18 2014-05-08 Honda Lock Mfg Co Ltd Electrochromic mirror
US20140340731A1 (en) * 2011-12-12 2014-11-20 View, Inc. Thin-film devices and fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634521U (en) * 1986-06-25 1988-01-13
JPS63306429A (en) * 1987-06-09 1988-12-14 Ichikoh Ind Ltd Manufacture of ec nonglaring mirror for automobile
JP2006501524A (en) * 2002-09-30 2006-01-12 ジェンテックス コーポレイション Electrochromic device with no position offset between substrates
JP2012524290A (en) * 2009-04-16 2012-10-11 セイジ・エレクトロクロミクス,インコーポレイテッド Transparency controlled electrochromic device
US20140340731A1 (en) * 2011-12-12 2014-11-20 View, Inc. Thin-film devices and fabrication
WO2014013759A1 (en) * 2012-07-17 2014-01-23 株式会社ホンダロック Anti-glare mirror, vehicle and method for producing anti-glare mirror
JP2014081566A (en) * 2012-10-18 2014-05-08 Honda Lock Mfg Co Ltd Electrochromic mirror

Also Published As

Publication number Publication date
JPWO2017169243A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP7000581B2 (en) Non-luminous variable transmissive device and how to form it
JP6408577B2 (en) Electrochromic device contact
EP2419788B1 (en) Electrochromic device with controlled transmission
US8693078B2 (en) Electrochromic devices
US9013777B2 (en) Integrated device architectures for electrochromic devices
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
EP3457205B1 (en) Electrochromic element
US11994781B2 (en) Electrochromic structure and method of separating electrochromic structure
US20180252976A1 (en) Electrical device including a substrate and a transparent conductive layer and a process of forming the same
JPH0983001A (en) Integrated thin film solar battery
EP3025192B1 (en) Electrochromic devices having improved structure for reducing current leakage across portions of the lower transparent conductor layer
WO2022048615A1 (en) Electrochromic device and electronic device
WO2013054898A1 (en) Chip resistor, mounting structure for chip resistor, and manufacturing method for chip resistor
WO2017169243A1 (en) Solid state ec mirror and manufacturing method therefor
JP7512739B2 (en) Laminated plate, movable body, and method for manufacturing laminated plate
JP3111820B2 (en) Manufacturing method of thin film solar cell
JP7369304B2 (en) Laminated pane with multiple functional elements and busbars on barrier film
JPH0936397A (en) Integrated solar cell and its manufacture
WO2012172827A1 (en) Thin film solar cell and method for manufacturing same
WO2019004002A1 (en) Glass with film and method for producing glass with film
JP3924103B2 (en) Electrochromic mirror
JPH02129906A (en) Manufacture of film capacitor
JP2009189194A (en) Actuator and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508555

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773791

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773791

Country of ref document: EP

Kind code of ref document: A1