JPH02129885A - Self-temperature controllable heater - Google Patents

Self-temperature controllable heater

Info

Publication number
JPH02129885A
JPH02129885A JP28449988A JP28449988A JPH02129885A JP H02129885 A JPH02129885 A JP H02129885A JP 28449988 A JP28449988 A JP 28449988A JP 28449988 A JP28449988 A JP 28449988A JP H02129885 A JPH02129885 A JP H02129885A
Authority
JP
Japan
Prior art keywords
heating element
self
temperature
temperature control
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28449988A
Other languages
Japanese (ja)
Other versions
JPH07118369B2 (en
Inventor
Norichika Takebe
武部 憲親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63284499A priority Critical patent/JPH07118369B2/en
Publication of JPH02129885A publication Critical patent/JPH02129885A/en
Publication of JPH07118369B2 publication Critical patent/JPH07118369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To obtain a self-temperature controllable heater, by providing electrodes in a heating body having its positive temperature coefficient, prepared through the process of dispersing and mixing tetracyanoquinodimethane and a nonionic activator or an anionic activator respectively into a high molecular compound or a composite high molecular compound, such as a plastic, etc., and adding carbon black, etc., to the resultant composition. CONSTITUTION:The resistance value of a heating body 1 is suitably set in accordance with the amount of carbon black being added, and yet its mixture ratio is kept small with the density of conductive carriers set to a low level, while the specific amount of tetracyanoquinodimethane functioning as an acceptor and the specific amount of a nonionic activator or an anionic activator functioning as a donor are respectively used to form a charge-transfer complex, and then the mobility of the conductive carriers is heightened accordingly as the heating body 1 becomes higher in temperature. The addition amount of the nonionic activator or the anionic activator is adjusted to set the mobility of the conductive carriers so that a characteristic which increases in resistance with the rise of temperature in the heating body 1 is adjusted. Electrode conductors 4 are respectively provided to be unified with the heating body 1. The heating body 1 keeps softness as well a flexibility, so that it is formed into a desired cross section for being permitted to quickly cover a water pipe 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、周囲温度あるいは放熱条件に応じて出力の調
節を行うことが可能な自己温度制御性ヒータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a self-temperature control heater whose output can be adjusted according to ambient temperature or heat dissipation conditions.

〔従来の技術と発明が解決しようとする課題〕一般に、
ニクロム線と呼ばれる高抵抗線や弱抵抗線のコイル抵抗
を利用したヒータは、供給する電圧が一定である限り、
その電圧に相応した電力を消費し続けるので、エネルギ
ーの無駄が大きい。
[Problems to be solved by conventional techniques and inventions] Generally,
Heaters that use the coil resistance of high-resistance wires called nichrome wires or low-resistance wires can be used as long as the supplied voltage is constant.
Since power continues to be consumed in proportion to the voltage, there is a large waste of energy.

さらに、一定の温度を保持する必要のあるときは温度調
節器を備える必要がある。
Furthermore, when it is necessary to maintain a constant temperature, it is necessary to provide a temperature regulator.

これに対して、自己温度制御性ヒータは、発熱体の温度
上昇に伴って抵抗が増大するPTC特性を有する発熱素
子を利用したものであり、予め設定した温度に達すれば
発熱体の抵抗が増大し電流が流れなくなり、自らが出力
を制限し、一定の温度を保持するといった自己制御機能
を有する。
On the other hand, self-temperature control heaters utilize a heating element that has a PTC characteristic in which the resistance increases as the temperature of the heating element rises, and when the temperature reaches a preset temperature, the resistance of the heating element increases. It has a self-control function such that current stops flowing, limits output, and maintains a constant temperature.

PTC特性とは、正特性温度係数(ポジティブサーミス
タ)であり、第8図に示すように、温度が上昇するに従
って抵抗が増大して次第に電流を制限する機能を有する
抵抗素子の働きをいう。その抵抗素子を発熱体とするヒ
ータが「自己温度制御性ヒータ」である。
The PTC characteristic is a positive temperature coefficient (positive thermistor), and as shown in FIG. 8, it refers to the function of a resistance element whose resistance increases as the temperature rises and has the function of gradually limiting the current. A heater that uses the resistance element as a heating element is a "self-temperature control heater."

自己温度制御性ヒータは、周囲温度あるいは放熱条件に
応じた出力を自由自在に調節するので、過出力防止装置
がなくても自動的に温度を調節する。従って、折り曲げ
などによって重なる部分、またはテープ状ヒータの2重
巻き、たすき掛は等の重なる部分は、自己温度制御機能
によって発熱量を調節するので極めて便利である。
Since the self-temperature control heater freely adjusts its output according to the ambient temperature or heat radiation conditions, it automatically adjusts its temperature even without an overoutput prevention device. Therefore, the overlapping portions due to bending or the like, or the overlapping portions such as double wrapping or cross-over of the tape heater, are extremely convenient because the heat generation amount can be adjusted by the self-temperature control function.

従来の自己温度制御性ヒータは、結晶性の高い高分子化
合物を基材として、カーボンブラック、グラファイト又
は金属粉等の導電性物質を大量に混入した抵抗体を発熱
体とし、温度上昇によって発熱体の体積膨張変化や導電
性粒子のトンネル電導効果の盛衰によって電流を調節す
るものであった。その動作原理は次のとおりである。
Conventional self-temperature control heaters use a resistor made of a highly crystalline polymer compound as a base material, mixed with a large amount of conductive material such as carbon black, graphite, or metal powder, as a heating element. The current was adjusted by changes in the volume expansion of the conductive particles and the rise and fall of the tunnel conduction effect of the conductive particles. Its operating principle is as follows.

(イ)常温に於いては、高分子基材の中に分散された導
電性粒子の重なった部分をトンネル電導効果で電子が通
り抜けることにより導電性を得る。
(a) At room temperature, conductivity is obtained by electrons passing through the overlapping portions of conductive particles dispersed in the polymer base material due to the tunnel conduction effect.

(It)導電性となった高分子混合物は抵抗体であるか
ら通電すれば発熱する。
(It) Since the conductive polymer mixture is a resistor, it generates heat when energized.

(ハ)温度が上昇すれば、高分子基材は膨張して重なり
合っていた導電性粒子の間隔が離れるので、次第に抵抗
は増大して電流は流れなくなる。電流が流れな(なると
温度が低下して高分子基材は収縮し、導電性粒子は接近
するので電流が流れるようになる。この動作の繰り返し
によって一定の温度を保持する。即ち、発熱体は素子自
身の温度に比例した熱量を放熱し、発熱量と放熱量とが
釣り合った温度で平行に達する。
(c) When the temperature rises, the polymer base material expands and the overlapping conductive particles are spaced apart, so the resistance gradually increases and current no longer flows. When no current flows (when the temperature decreases, the polymer base material contracts, and the conductive particles approach each other, current begins to flow. By repeating this operation, a constant temperature is maintained. In other words, the heating element The amount of heat proportional to the temperature of the element itself is radiated, and the amount of heat generated and the amount of heat radiation reach a parallel temperature at which they are balanced.

第10図に於いて、従来の自己温度制御性ヒータaの断
面図を示し、bは高分子化合物からなる基材にカーボン
ブラックやグラファイト等を混入して構成した発熱体、
c、cは発熱体すの両側縁部に一体状に設けられた電極
導体、dはこれらを被覆する絶縁体である。
In FIG. 10, a cross-sectional view of a conventional self-temperature control heater a is shown, and b is a heating element composed of a base material made of a polymer compound mixed with carbon black, graphite, etc.;
c and c are electrode conductors integrally provided on both side edges of the heating element, and d is an insulator covering these.

=4 ところが、上記従来の自己温度制御性ヒータは、次のよ
うな欠点を存している。
=4 However, the above conventional self-temperature control heater has the following drawbacks.

(イ)導電性カーボンブラックは、加工時の剪断によっ
てストラフチャが破壊するため、加工条件によって抵抗
値が著しく変化しやすい。
(a) In conductive carbon black, the strutures are destroyed by shearing during processing, so the resistance value tends to change significantly depending on processing conditions.

(U)グラファイトは、ストラフチャ構造をもたないの
で加工による影響は少ない。しかし、グラファイトはカ
ーボンブラックに比べて粒子が大きいので通電中に電気
的破壊を生ずる危険性があり、さらに、グラファイトは
カーボンブラックに比べて導電性が低いので大量に混入
する必要があり、そのため発熱体が硬くて脆くなり、可
撓性を要請される用途には不向きである。しかも、脆い
ので薄膜を成型することは出来ない。
(U) Graphite does not have a striated structure, so it is less affected by processing. However, since the particles of graphite are larger than carbon black, there is a risk of electrical breakdown during energization.Furthermore, graphite has lower conductivity than carbon black, so it is necessary to mix it in large quantities, which causes heat generation. The body becomes hard and brittle, making it unsuitable for applications that require flexibility. Moreover, it is brittle and cannot be formed into a thin film.

(ハ)導電性物質の混入が多くなると高分子基材とグラ
ファイト等の導電性物質との熱膨張の差が大きくなるた
め、抵抗値/温度特性の勾配が小さくなる傾向にあり、
自己温度調節機能が低下する。
(c) As the amount of conductive material mixed in increases, the difference in thermal expansion between the polymer base material and the conductive material such as graphite increases, so the gradient of resistance value/temperature characteristics tends to decrease.
Self-temperature regulation function decreases.

(=)従来品は、通電時に発熱体す中に局部的な異常高
熱による高温部が発生し易く、−旦、高温部が発生する
と、それが波及的に拡大し、温度は更に上昇して、つい
には発熱体の融点以上に達してヒートピークを起こし、
焼損する事故がしばしば発生した。このような局部的な
高温部の発生原因は、高分子基材に混入したカーボンブ
ラックやグラファイト等の導電性物質の分散不良、即ち
、発熱体の局部的抵抗のアンバランスによるものと考え
られる。高分子基材100重量部に対して50〜100
重量部といった大量の導電性物質を混入していた従来品
は、それを完全に分散させることは困雛であった。
(=) With conventional products, when electricity is applied, a high-temperature area is likely to occur due to localized abnormal heat in the heating element, and once a high-temperature area occurs, it spreads and the temperature rises further. , eventually reaching the melting point of the heating element and causing a heat peak,
Accidents caused by fire often occurred. The cause of the occurrence of such localized high-temperature areas is thought to be due to poor dispersion of conductive substances such as carbon black and graphite mixed into the polymer base material, ie, local resistance imbalance of the heating element. 50 to 100 per 100 parts by weight of polymer base material
Conventional products contain a large amount of conductive material (parts by weight), making it difficult to completely disperse the material.

このヒートピークは、第9図に示すように、発熱体すの
一部に高温部eが発生すると、電極導体c、c間を流れ
る電流のうち、通常は上記高温部eを流れるべき電流が
、抵抗の大きくなった高温部eを避けて迂回するので、
その周辺の電流密度が高くなって温度が急激に上昇する
結果、高温部が波及的に拡大する。図中、平行線の接近
したfの部分はこのような迂回電流を示している。ヒー
トピークの発生頻度は、電極c、c間の距離が大きくな
るほどに高くなる。
As shown in FIG. 9, this heat peak occurs when a high-temperature area e occurs in a part of the heating element, and the current that should normally flow through the high-temperature area e out of the current flowing between the electrode conductors c and c is generated. , avoids and detours around the high-temperature part e where the resistance has increased, so
As the current density around the area increases and the temperature rises rapidly, the high temperature area expands. In the figure, a portion f where parallel lines are close together indicates such a detour current. The frequency of heat peak occurrence increases as the distance between the electrodes c and c increases.

即ち、電極間の距離が約100 mmを越える場合には
、通電開始後、短時間でヒートピークが発生することが
知られている。従って、従来は電極間の距離が100m
m以上の自己温度制御性発熱素子は得られなかった。
That is, it is known that when the distance between the electrodes exceeds about 100 mm, a heat peak occurs in a short time after the start of current application. Therefore, conventionally the distance between the electrodes was 100 m.
A self-temperature-controlling heating element with a temperature of m or more was not obtained.

(ネ)従来の自己温度制御性ヒータは、概して経時的劣
化が早く、長期的安定性に欠ける。その原因は明らかで
はないが次のように推測することが出来る。即ち、導電
性物質を多量に混入することによって導電性物質の分散
不良や、高分子基材と導電性物質との熱膨張係数のアン
バランスから空間的な隙間が発生する。又は、吸湿その
他の化学変化による気泡が発生し、接触抵抗の増加によ
って界面でのミクロ的スパークが発生して高分子組成を
破壊し、もしくは電極を破壊することが考えられる。
(f) Conventional self-temperature control heaters generally deteriorate quickly over time and lack long-term stability. Although the cause is not clear, it can be inferred as follows. That is, when a large amount of conductive material is mixed, spatial gaps are generated due to poor dispersion of the conductive material and imbalance in the coefficient of thermal expansion between the polymer base material and the conductive material. Alternatively, bubbles may be generated due to moisture absorption or other chemical changes, and an increase in contact resistance may generate microscopic sparks at the interface, destroying the polymer composition or destroying the electrode.

上述のように、電極間の距離を大きく出来ないので、使
用上等に於いても、種々の不都合が生じ、例えば、水道
管等の凍結防止用として用いる場合には、第11図に示
すように、テープ状に形成した自己温度制御性ヒータa
を螺旋状に巻付けなければならず非常に面倒であった。
As mentioned above, since it is not possible to increase the distance between the electrodes, various problems arise in terms of use. For example, when used to prevent freezing of water pipes, etc. A self-temperature control heater a formed into a tape shape
It was very troublesome as it had to be wound spirally.

本発明は、上記問題点を解決した自己温度制御性ヒータ
を提供することを目的としている。
An object of the present invention is to provide a self-temperature control heater that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の自己温度制御性ヒ
ータに於いては、プラスチック等からなる高分子化合物
又は複合高分子化合物の基材に、アクセプターとしての
テトラシアノキノジメタンとドナーとしてのノニオン活
性材又はアニオン活性材を分散混合し、且つ、カーボン
ブラック等の導電助剤を添加することにより構成した正
温度係数特性を有する発熱体を備え、さらに、該発熱体
と一体化している電極導体を設けたものである。
In order to achieve the above object, in the self-temperature-controlling heater of the present invention, tetracyanoquinodimethane as an acceptor and tetracyanoquinodimethane as a donor are added to a base material of a polymer compound or a composite polymer compound made of plastic or the like. An electrode comprising a heating element having a positive temperature coefficient characteristic formed by dispersing and mixing a nonionic active material or an anionic active material and adding a conductive additive such as carbon black, and further integrated with the heating element. It is equipped with a conductor.

また、プラスチック等の高分子化合物からなる基材に、
100重量部の該基材に対する比率が2.5〜10重量
部のテトラシアノキノジメタンを分散混合すると共に0
〜3重量部のノニオン活性材を分散混合し、且つ、5〜
20重量部のカーボンブラック等の導電助剤を添加して
構成した発熱体を備え、さらに、該発熱体と一体化して
いる電極導体を設けたものである。
In addition, on base materials made of polymer compounds such as plastics,
While dispersing and mixing 2.5 to 10 parts by weight of tetracyanoquinodimethane to 100 parts by weight of the base material,
~3 parts by weight of nonionic active material is dispersed and mixed, and 5~
It is equipped with a heating element constructed by adding 20 parts by weight of a conductive additive such as carbon black, and further provided with an electrode conductor integrated with the heating element.

発熱体は、一箇所に不連続部を有する横断面略円環状と
し、且つ、電極導体を該発熱体の両側縁部に該発熱体と
一体化して設ける。
The heating element has a substantially annular cross section with a discontinuous portion at one location, and electrode conductors are provided on both side edges of the heating element integrally with the heating element.

また、発熱体の形状については、横断面矩形状乃至長楕
円状に形成し、且つ、電極導体を該発熱体の両側縁部に
該発熱体と一体化して設けてもよい。
Further, the shape of the heating element may be rectangular or oblong in cross section, and electrode conductors may be provided at both side edges of the heating element integrally with the heating element.

発熱体を平板状に形成してもよく、この場合、電極導体
を該発熱体の両側縁部に該発熱体と一体化して設けるこ
とが出来る。
The heating element may be formed into a flat plate, and in this case, electrode conductors can be provided on both side edges of the heating element integrally with the heating element.

発熱体を横断面略円環状に形成してもよく、この場合、
一方の電極導体を該発熱体の横断面における中心部側に
設けると共に他方の電極導体を該発熱体の横断面におけ
る外径側に設けて該発熱体と一体化して設ける。
The heating element may be formed to have a substantially annular cross section; in this case,
One electrode conductor is provided on the center side in the cross section of the heating element, and the other electrode conductor is provided on the outer diameter side in the cross section of the heating element so as to be integrated with the heating element.

〔作用] 導電助剤として添加するカーボンブラック等の導電物質
の量の大小により導電キャリヤの濃度が定まり、これの
添加量を増減することによって発熱体の抵抗値を適宜の
ものに設定することが出来る。そして、導電物質である
カーボンブランク等の混合比率を小さく、つまり、導電
キャリヤの濃度を低く設定しつつ、しかも、発熱体とし
て機能させるために、テトラシアノキノジメタンとノニ
オン活性材又はアニオン活性材を発熱体内に分散混合し
、導電キャリヤの移動度を高めることとしたものである
。即ち、アクセプターとしてのテトラシアノキノジメタ
ンと、トナーとしてのノニオン活性材又はアニオン活性
材とによって電荷移動錯体を形成せしめ、発熱体が高温
度となるに従い導電キャリヤの移動度を高めるように構
成したものである。一方、ドナーとしてのノニオン活性
材又はアニオン活性材の添加量を調節することによって
、上記導電キャリヤの移動度を適宜設定し、発熱体の温
度上昇に伴って抵抗が増大するPTC特性の強度を調節
することが出来る。
[Function] The concentration of the conductive carrier is determined by the amount of conductive material such as carbon black added as a conductive aid, and by increasing or decreasing the amount added, the resistance value of the heating element can be set to an appropriate value. I can do it. The mixing ratio of carbon blank, etc., which is a conductive substance, is set to be low, that is, the concentration of the conductive carrier is set low, and in addition, in order to function as a heating element, tetracyanoquinodimethane and a nonionic active material or an anionic active material are set. is dispersed and mixed in a heating element to increase the mobility of conductive carriers. That is, a charge transfer complex is formed by tetracyanoquinodimethane as an acceptor and a nonionic active material or an anionic active material as a toner, and the mobility of the conductive carrier is increased as the temperature of the heating element increases. It is something. On the other hand, by adjusting the amount of nonionic active material or anionic active material added as a donor, the mobility of the conductive carrier can be set appropriately, and the strength of the PTC characteristic, in which the resistance increases as the temperature of the heating element increases, can be adjusted. You can.

電子の移動は金属的性質を有する電荷移動錯体により行
われるので、カーボンブラック等の分散不良によるヒー
トピークを生じる戊がなく、また、導電性物質の添加量
を小さくすることが可能であり、従って、電極導体間の
距離を大きく設定することが出来る。従って、全体形状
を平面状とすることも可能であり、また、全体形状を一
箇所に不連続部を有する横断面略円環状に形成すれば、
パイプ外周面を被覆するのに、螺旋状に何度も巻回しな
がら行うことなく、不連続部を拡開させるようにして迅
速に装着することが出来る。
Since electron transfer is carried out by a charge transfer complex with metallic properties, there is no heat peak caused by poor dispersion of carbon black, etc., and it is possible to reduce the amount of conductive material added. , the distance between the electrode conductors can be set large. Therefore, it is possible to make the overall shape planar, and if the overall shape is formed to have a substantially annular cross section with a discontinuous portion at one place,
To cover the outer circumferential surface of the pipe, it is possible to quickly install the pipe by expanding the discontinuous portion without having to wind it spirally many times.

〔実施例] 実施例について図面を参照して説明すると、第1図に於
いて、本発明に係る自己温度制御性ヒータ3を略円筒状
に形成した場合を示し、9は長手方向に設けられた嵌込
用開口部6である。1は発熱体であって、該発熱体1は
一箇所に不連続部2を有する横断面略円環状に形成され
ている。44は電極導体であって、該電極体4.4は発
熱体1の両側縁部5,5に発熱体1と一体化して設けら
れる。発熱体1の表面は絶縁体7により被覆されている
[Example] An example will be described with reference to the drawings. Fig. 1 shows a case where the self-temperature control heater 3 according to the present invention is formed into a substantially cylindrical shape, and 9 is provided in the longitudinal direction. This is a fitting opening 6. Reference numeral 1 denotes a heating element, and the heating element 1 has a substantially annular cross section with a discontinuous portion 2 at one location. Reference numeral 44 denotes an electrode conductor, and the electrode body 4.4 is provided on both side edges 5, 5 of the heating element 1 integrally with the heating element 1. The surface of the heating element 1 is covered with an insulator 7.

しかして、発熱体1は、プラスチック等からなる高分子
化合物の基材に、アクセプターとしてのテトラシアノキ
ノジメタン(以下「TCNQ」と呼ぶ)とドナーとして
のノニオン活性材を分散混合し、且つ、カーボンブラッ
ク等の導電助剤を添加して構成したものであり、その構
成比率は100重量部の該基材に対し、TCNQの比率
を3重量部に、ノニオン活性材の比率を1重量部に、導
電助剤としてのカーボンブラックの比率を8重量部に、
同様に導電助剤としてのグラファイトの比率を8重量部
に夫々設定している。
Thus, the heating element 1 is made by dispersing and mixing tetracyanoquinodimethane (hereinafter referred to as "TCNQ") as an acceptor and a nonionic active material as a donor in a base material of a polymer compound made of plastic or the like, and It is composed by adding a conductive additive such as carbon black, and its composition ratio is 100 parts by weight of the base material, the ratio of TCNQ is 3 parts by weight, and the ratio of the nonionic active material is 1 part by weight. , the ratio of carbon black as a conductive aid to 8 parts by weight,
Similarly, the ratio of graphite as a conductive aid is set at 8 parts by weight.

本発明に於いては、高分子化合物の導電率を高めるのに
、導電キャリヤの移動度を大きくする方法を採り、有機
金属半導体のTCNQを電荷移動錯体として用いたもの
である。また、基材として用いる高分子化合物は絶縁体
である。絶縁体は誘電体であり、これに電場を印加する
と分極現象を起こし誘電性の導電体となる。更に高分子
中に含まれているイオン性不純物の活動によってイオン
伝動性が支配的となる。温度が上昇すると熱イオンの活
動がいよいよ活発となり、抵抗値は次第に減少して、い
わゆるNTC(ネガティブサーミスタ)現象となる。従
って、基材に用いる高分子化合物は特に双極子能率の小
さいものを選ぶことが肝心である。
In the present invention, in order to increase the conductivity of a polymer compound, a method of increasing the mobility of conductive carriers is adopted, and TCNQ, an organometallic semiconductor, is used as a charge transfer complex. Further, the polymer compound used as the base material is an insulator. An insulator is a dielectric material, and when an electric field is applied to it, a polarization phenomenon occurs and it becomes a dielectric conductor. Furthermore, ionic conductivity becomes dominant due to the activity of ionic impurities contained in the polymer. As the temperature rises, thermionic activity becomes more active, and the resistance value gradually decreases, resulting in a so-called NTC (negative thermistor) phenomenon. Therefore, it is important to select a polymer compound used for the base material that has a particularly low dipole efficiency.

次に、実験方法及びその結果について説明する。Next, the experimental method and its results will be explained.

実験上 本発明は、TCNQを高分子化合物からなる基材に単独
にてTCNQをドープしたところ、第4図に示すような
PTC反応を生じたことが端緒となった。TCNQは効
力の高いアクセプターであり、このアクセプターをドー
プすることによって正孔が生成し、PTC特性を現した
ものと考えられる。従って、実験は、先ず、TCNQを
単独で高分子基材に混入することから開始し、基材とし
てのポリオレフィン100重量部に対して、TCNQを
1重量部添加して実験用の発熱体1とし、これから第3
図に示す線状ヒータを作成し、試料8とした。第3図に
於いては、発熱体1を横断面略円形状に形成し、且つ、
一方の電極導体4を発熱体1の横断面における中心部側
(内径側)に設けると共に、他方の電極導体4を発熱体
1の外径側に設けて、発熱体1と一体化したものである
。7は外径側の電極導体4の外周面を被覆している絶縁
体である。
Experimentally, the invention began with the fact that when TCNQ was doped alone into a base material made of a polymer compound, a PTC reaction as shown in FIG. 4 occurred. TCNQ is a highly effective acceptor, and it is thought that by doping this acceptor, holes are generated and the PTC characteristic is exhibited. Therefore, the experiment started by mixing TCNQ alone into a polymer base material, and then added 1 part by weight of TCNQ to 100 parts by weight of polyolefin as a base material to form heating element 1 for the experiment. , from now on, the third
The linear heater shown in the figure was created and designated as Sample 8. In FIG. 3, the heating element 1 is formed to have a substantially circular cross section, and
One electrode conductor 4 is provided on the center side (inner diameter side) in the cross section of the heating element 1, and the other electrode conductor 4 is provided on the outer diameter side of the heating element 1, so that it is integrated with the heating element 1. be. Reference numeral 7 denotes an insulator that covers the outer peripheral surface of the electrode conductor 4 on the outer diameter side.

抵抗試験は、上記試料8を恒温槽に入れ、20°Cから
徐々に温度を上げながら抵抗値(インピーダンス)の変
化を測定するものであり、第4図中の直線Aの如<、2
0°Cにおける抵抗値は7000 KΩであった。
In the resistance test, the above sample 8 is placed in a thermostatic oven and the change in resistance value (impedance) is measured while gradually raising the temperature from 20°C.
The resistance value at 0°C was 7000 KΩ.

次に、TCNQの添加量を3重量部に増加したところ、
第4図中の直線Bの如<、20°Cにおける抵抗値は2
000 KΩに減少した。しかるに、該試料8の発熱体
1をヒータとして機能させるには、20°Cにおける抵
抗値を10OKΩ以下にしなければならない。そのため
には、TCNQを少なくとも10重量部添加する必要が
生じてくる。ところが、TCNQは極めて高価であり、
コスト高となるので大量に用いることは出来ない。
Next, when the amount of TCNQ added was increased to 3 parts by weight,
As shown by straight line B in Figure 4, the resistance value at 20°C is 2.
000 KΩ. However, in order for the heating element 1 of the sample 8 to function as a heater, the resistance value at 20°C must be 10 OKΩ or less. For this purpose, it becomes necessary to add at least 10 parts by weight of TCNQ. However, TCNQ is extremely expensive,
Due to the high cost, it cannot be used in large quantities.

実験I TCNQに種々の活性材や導電性物質を併用してみるな
ど試行錯誤の末、次に掲げる比率とすることにより、上
記の壁を突破することが出来た。
Experiment I After trial and error, such as using various active materials and conductive substances in combination with TCNQ, we were able to break through the above wall by setting the following ratio.

基材(ポリオレフィン)・・・・旧・・・・・100重
量部アクセプター(TCNQ)・・・・・・・・・ 3
重量部ドナー(ノニオン活性材)・・・・旧・・ 1重
量部導電助材(カーボンブラック)・・・ 8重量部導
電助材(グラフアイ日・・・・旧・・ 8重量部この配
合比率による発熱体1を、実験1と同様に第3図に示す
線状ヒータに形成して試料8とし、これの温度変化によ
る抵抗値を測定したところ第4図中のCに示すように、
20°Cにおける抵抗値は20にΩであった。
Base material (polyolefin): Old: 100 parts by weight Acceptor (TCNQ): 3
Parts by weight Donor (nonionic active material): Old... 1 part by weight Conductive additive (carbon black): 8 parts by weight Conductive additive (Graphai: Former: 8 parts by weight) The heating element 1 based on the ratio was formed into a linear heater shown in FIG. 3 in the same manner as in Experiment 1 to form sample 8, and the resistance value due to temperature change was measured, as shown in C in FIG. 4.
The resistance value at 20°C was 20Ω.

この場合の各種材料の役割については次のとおりである
The roles of various materials in this case are as follows.

アクセプタとしてのTCNQは、正孔を生成してPTC
への方向付を行う。ドナーとしてのノニオン活性材は、
自由電子を生成し、又は熱イオンを励起しN(ネガ)型
イオン伝導を発生させるので、その添加量の加減によっ
てPTC特性の強度を調節する。つまり、第7図に示す
ように、所望の設定温度T’Cに於いてP(ポジ)とN
(ネガ)との平衡点を索定する。導電助剤のカーボンブ
ラック及びグラファイトは導電キャリヤの濃度を調節す
る。即ち、添加量を増減することによって発熱体1の抵
抗値を加減する。重要なことは、TCNQを除いてカー
ボンブラック及びグラファイトを10〜20重量部用い
ても発熱体として機能する導電性は得られない。極めて
少量のTCNQを鼻薬として加えることによって、導電
キャリヤの移動度を大きくしたものである。
TCNQ as an acceptor generates holes and converts PTC
Provide direction to The nonionic active material as a donor is
Since it generates free electrons or excites thermal ions to generate N (negative) type ion conduction, the strength of the PTC characteristic can be adjusted by adjusting the amount added. In other words, as shown in FIG. 7, at the desired set temperature T'C, P (positive) and N
Find the equilibrium point with (negative). The conductivity aids carbon black and graphite adjust the concentration of conductive carriers. That is, the resistance value of the heating element 1 is adjusted by increasing or decreasing the amount added. Importantly, using 10 to 20 parts by weight of carbon black and graphite other than TCNQ does not provide conductivity to function as a heating element. The mobility of the conductive carriers is increased by adding a very small amount of TCNQ as a nasal spray.

発熱体lの各成分の構成比率については、その後の多大
の実験結果等に基づき次のように設定する。即ち、10
0重量部の基材に対し、TCNQを2.5〜10重量部
に、ドナーとしてのノニオン活性材を0〜3重量部に、
導電助剤としてのカーボンブラックを5〜20重量部に
、同様に導電助剤としてのグラファイトを0〜20重量
部に、夫々設定し、この範囲内に於いて定めても良好な
結果が得られる。
The composition ratio of each component of the heating element 1 is set as follows based on the results of numerous subsequent experiments. That is, 10
0 parts by weight of the base material, TCNQ in 2.5 to 10 parts by weight, nonionic active material as a donor in 0 to 3 parts by weight,
Good results can be obtained even if the carbon black as a conductive aid is set at 5 to 20 parts by weight and the graphite as a conductive aid is set at 0 to 20 parts by weight. .

基材として、上記実験に於いては、ポリエチレン、ポリ
プロピレン等のポリオレフィン系のポリマーを用いたが
、その他のプラスチックやゴム又は複合高分子化合物を
用いてもよい。電荷移動錯体を構成するアクセプターに
はTcNQを、ドナーにはノニオン活性材を用いたが、
ノニオン活性材に代えてアニオン活性材を用いるも好ま
しい。
In the above experiments, polyolefin polymers such as polyethylene and polypropylene were used as the base material, but other plastics, rubbers, or composite polymer compounds may also be used. TcNQ was used as the acceptor and a nonionic active material was used as the donor, which constitutes the charge transfer complex.
It is also preferable to use an anionic active material instead of a nonionic active material.

導電キャリヤの濃度を決定する導電助剤については、カ
ーボンブラック及びグラファイトを共に用いるのが望ま
しいが、カーボンブラックのみであってもよ(、また、
これらに代えて、金属粉等を使用するも好ましい。
Regarding the conductive additive that determines the concentration of the conductive carrier, it is desirable to use both carbon black and graphite, but carbon black alone may also be used.
It is also preferable to use metal powder or the like instead of these.

本発明に係る自己温度制御性ヒータ3の全体形状を、第
1図に示すような円周方向における一箇所に嵌込用開口
部9を形成することにより、第2図に示すように、水道
管等の配管10にワンタッチにて弾発的に装着し、外周
部を被覆することが出来、また、ワンタッチで取外し可
能である。全体形状については、第5図に示すように、
横断面略長楕円状に形成しても差支えない。この場合、
発熱体1を横断面略長楕円状に形成し、且つ、電極導体
4,4を発熱体1の両側縁部5,5に発熱体1と一体化
して設けている。勿論、発熱体1を横断面矩形状等の他
の形状としても差し支えない。
By forming the fitting opening 9 at one location in the circumferential direction as shown in FIG. 1, the overall shape of the self-temperature-controllable heater 3 according to the present invention can be changed to a water tap as shown in FIG. It can be elastically attached to piping 10 such as a pipe with a single touch to cover the outer periphery, and can be removed with a single touch. As for the overall shape, as shown in Figure 5,
There is no problem even if the cross section is formed into a substantially elongated oval shape. in this case,
The heating element 1 is formed to have a substantially oblong cross section, and electrode conductors 4, 4 are provided integrally with the heating element 1 at both side edges 5, 5 of the heating element 1. Of course, the heating element 1 may have other shapes such as a rectangular cross section.

発熱体1の形状については、第6図に示すように、平板
状とするも好ましい。なお、図示省略するがテープ状と
してもよい。
As for the shape of the heating element 1, it is preferable to have a flat plate shape as shown in FIG. Although not shown, it may be in the form of a tape.

他にも、例えば、実験に用いた第3図の形状に形成して
も差し支えない。
Alternatively, it may be formed into the shape shown in FIG. 3 used in the experiment, for example.

本発明に係る自己温度制御性ヒータは、パイプやタンク
の保温または凍結防止・機器の加熱または保温等の工業
用として、育苗床・家畜の保温・温室・発酵及び醸造等
の農業用として、ロードヒーティング等の融霜用として
、水道管及び配水管の凍結防止・床暖房・ホットカーペ
ット・足温器・アンカ・便器・ベットの保温等の家庭用
とじて適用可能である。
The self-temperature control heater according to the present invention can be used for industrial purposes such as keeping pipes and tanks warm or preventing freezing, heating equipment or keeping them warm, and for agricultural purposes such as nursery beds, keeping livestock warm, greenhouses, and fermentation and brewing. It can be used for defrosting purposes such as heating, preventing freezing of water pipes and distribution pipes, floor heating, hot carpets, foot warmers, anchors, toilet bowls, and keeping warm beds, etc. for household purposes.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

■ 導電キャリヤに、有機金属電荷移動錯体のTCNQ
を用いるので、カーボンブラック又はグラファイトの混
入は、極めて僅かでよい。従って、発熱体1が柔軟性及
び可撓性を有する。また、硬くならず、さらに、脆くな
らないので薄膜状に成形することが出来る。可撓性に冨
むので従来用いられなかった種々の用途に適用可能とな
り、製造も容易となる。
■ TCNQ, an organometallic charge transfer complex, is used as a conductive carrier.
Since carbon black or graphite is used, the amount of mixing of carbon black or graphite can be extremely small. Therefore, the heating element 1 has flexibility and flexibility. Furthermore, since it does not become hard or brittle, it can be formed into a thin film. Due to its high flexibility, it can be applied to various uses that have not been used before, and it is also easy to manufacture.

■ 導電性物質であるカーボンブラック等の導電助剤の
添加量が少ないので、基材と導電性物質との熱膨張の差
が大きくなることに基づく悪影響を受けない。また、界
面でのミクロ的スパク発生の虞がない。従って、長期的
安定性を有し、また、信耗性が向上して安全である。
(2) Since the amount of a conductive additive such as carbon black, which is a conductive substance, is added, there is no adverse effect due to a large difference in thermal expansion between the base material and the conductive substance. Furthermore, there is no risk of microscopic sparks occurring at the interface. Therefore, it has long-term stability, has improved reliability, and is safe.

■ 従来は、電極導体4.4の間隔距離が100mmを
越える場合は、必ずヒートピークを起こすことから広い
平面状の自己温度制御性ヒータは存在しなかった。本発
明では、導電性物質の添加量が少量であり、しかも、電
子の移動は金属的性質を有する電荷移動錯体を用いてい
るので、従来のような分散不良によるヒートピークの発
生の虞がない。従って、全体形状を広い平面状やその他
の幅広形状とすることが出来るので、用途が従来より大
きく広がることになる。
(2) Conventionally, if the distance between the electrode conductors 4.4 exceeds 100 mm, a heat peak will always occur, so a wide planar self-temperature control heater has not existed. In the present invention, since the amount of the conductive substance added is small and a charge transfer complex having metallic properties is used for electron transfer, there is no risk of heat peaks occurring due to poor dispersion as in the conventional method. . Therefore, since the overall shape can be made into a wide planar shape or other wide shapes, the applications can be expanded to a greater extent than in the past.

■ 全体形状を、長手方向に嵌込用開口部9を有する横
断面略円環状に形成することにより、第2図のように、
水道管等の配管10を、容易且つ迅速に被覆することが
可能である。また、その他の形状に形成することも任意
であるから、工業用・家庭用等における従来以外の種々
の用途にも用いることが出来る。
■ By forming the overall shape into a substantially annular cross section with a fitting opening 9 in the longitudinal direction, as shown in Fig. 2,
It is possible to coat piping 10 such as a water pipe easily and quickly. In addition, since it can be formed into other shapes as desired, it can be used for various purposes other than conventional ones such as industrial and household use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自己温度制御性ヒータの一実施例
の拡大断面斜視図、第2図は使用方法説明図、第3図は
他の実施例の拡大横断面図、第4図は実験結果を示す特
性図、第5図は変形例を示す拡大横断面図、第6図は他
の実施例を示す拡大斜視図、第7図はPTC強度の平衡
点を設定する説明図である。第8図はPTC特性図、第
9図はヒートピークの発生状況を示す説明図、第10図
は従来例を示す拡大横断面図、第11図は使用方法説明
図である。 1・・・発熱体、2・・・不連続部、4・・・電極導体
、5・・・側縁部。
FIG. 1 is an enlarged cross-sectional perspective view of one embodiment of a self-temperature control heater according to the present invention, FIG. 2 is an explanatory diagram of how to use it, FIG. A characteristic diagram showing the experimental results, FIG. 5 is an enlarged cross-sectional view showing a modified example, FIG. 6 is an enlarged perspective view showing another example, and FIG. 7 is an explanatory diagram for setting the equilibrium point of PTC intensity. . FIG. 8 is a PTC characteristic diagram, FIG. 9 is an explanatory diagram showing the occurrence of heat peaks, FIG. 10 is an enlarged cross-sectional view showing a conventional example, and FIG. 11 is an explanatory diagram of usage. DESCRIPTION OF SYMBOLS 1... Heating element, 2... Discontinuous part, 4... Electrode conductor, 5... Side edge part.

Claims (1)

【特許請求の範囲】 1、プラスチック等からなる高分子化合物又は複合高分
子化合物の基材に、アクセプターとしてのテトラシアノ
キノジメタンとドナーとしてのノニオン活性材又はアニ
オン活性材を分散混合し、且つ、カーボンブラック等の
導電助剤を添加することにより構成した正温度係数特性
を有する発熱体1を備え、さらに、該発熱体1と一体状
に電極導体4、4を設けたことを特徴とする自己温度制
御性ヒータ。 2、プラスチック等の高分子化合物からなる基材に、1
00重量部の該基材に対する比率が2.5〜10重量部
のテトラシアノキノジメタンを分散混合すると共に0〜
3重量部のノニオン活性材を分散混合し、且つ、5〜2
0重量部のカーボンブラック等の導電助剤を添加して構
成した発熱体1を備え、さらに、該発熱体1と一体状に
電極導体4、4を設けたことを特徴とする自己温度制御
性ヒータ。 3、発熱体1を一箇所に不連続部2を有する横断面略円
環状に形成すると共に、電極導体4、4を該発熱体1の
両側縁部5、5に該発熱体1と一体化して設けたことを
特徴とする請求項1記載の自己温度制御性ヒータ。 4、発熱体1を横断面矩形状乃至長楕円状に形成し、且
つ、電極導体4、4を該発熱体1の両側縁部5、5に該
発熱体1と一体化して設けたことを特徴とする請求項1
記載の自己温度制御性ヒータ。 5、発熱体1を平板状に形成し、且つ、電極導体4、4
を該発熱体1の両側縁部5、5に該発熱体1と一体化し
て設けたことを特徴とする請求項1記載の自己温度制御
性ヒータ。 6、発熱体1を横断面略円形状に形成し、且つ、一方の
電極導体4を該発熱体1の横断面における中心部側に設
けると共に他方の電極導体4を概発熱体1の横断面にお
ける外径側に設けて該発熱体1と一体化したことを特徴
とする請求項1記載の自己温度制御性ヒータ。
[Scope of Claims] 1. Tetracyanoquinodimethane as an acceptor and a nonionic active material or an anionic active material as a donor are dispersed and mixed in a base material of a polymer compound or a composite polymer compound made of plastic or the like, and It is characterized by comprising a heating element 1 having a positive temperature coefficient characteristic constructed by adding a conductive additive such as carbon black, and further comprising electrode conductors 4, 4 integrally provided with the heating element 1. Self-temperature control heater. 2. On a base material made of a polymer compound such as plastic, 1
Tetracyanoquinodimethane is dispersed and mixed at a ratio of 2.5 to 10 parts by weight to the base material of 0 to 0.0 parts by weight.
3 parts by weight of nonionic active material is dispersed and mixed, and 5 to 2 parts by weight of
Self-temperature control characterized by comprising a heating element 1 configured by adding 0 parts by weight of a conductive aid such as carbon black, and further comprising electrode conductors 4, 4 integrally provided with the heating element 1. heater. 3. The heating element 1 is formed to have a substantially annular cross section with a discontinuous portion 2 at one place, and electrode conductors 4, 4 are integrated with the heating element 1 at both side edges 5, 5 of the heating element 1. 2. The self-temperature control heater according to claim 1, further comprising: a self-temperature control heater; 4. The heating element 1 is formed to have a rectangular or oblong cross section, and the electrode conductors 4, 4 are provided on both side edges 5, 5 of the heating element 1 integrally with the heating element 1. Claim 1
Self-temperature control heater described. 5. The heating element 1 is formed into a flat plate shape, and the electrode conductors 4, 4
2. A self-temperature control heater according to claim 1, wherein said heating element is integrally formed with said heating element on both side edges 5, 5 of said heating element. 6. The heating element 1 is formed to have a substantially circular cross section, and one electrode conductor 4 is provided on the center side in the cross section of the heating element 1, and the other electrode conductor 4 is provided approximately in the cross section of the heating element 1. 2. The self-temperature control heater according to claim 1, wherein the heater is provided on the outer diameter side of the heater and is integrated with the heating element.
JP63284499A 1988-11-09 1988-11-09 Self temperature control heater Expired - Lifetime JPH07118369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284499A JPH07118369B2 (en) 1988-11-09 1988-11-09 Self temperature control heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284499A JPH07118369B2 (en) 1988-11-09 1988-11-09 Self temperature control heater

Publications (2)

Publication Number Publication Date
JPH02129885A true JPH02129885A (en) 1990-05-17
JPH07118369B2 JPH07118369B2 (en) 1995-12-18

Family

ID=17679306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284499A Expired - Lifetime JPH07118369B2 (en) 1988-11-09 1988-11-09 Self temperature control heater

Country Status (1)

Country Link
JP (1) JPH07118369B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423686A (en) * 2005-02-25 2006-08-30 Allen Group Ltd Electrically-heated pipes
JP2012516536A (en) * 2009-02-17 2012-07-19 エルジー・ハウシス・リミテッド Carbon nanotube heating sheet
JP2012233581A (en) * 2011-05-06 2012-11-29 Evonik Degussa Gmbh Temperature-controllable pipe suitable for offshore applications
CN108886835A (en) * 2016-03-02 2018-11-23 沃特洛电气制造公司 Heating element is as the temperature controlled sensor of transient system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528515A (en) * 1975-07-11 1977-01-22 Hitachi Ltd Inner lined vessel
JPS60189887A (en) * 1984-03-12 1985-09-27 松下電器産業株式会社 Self-temperature control heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528515A (en) * 1975-07-11 1977-01-22 Hitachi Ltd Inner lined vessel
JPS60189887A (en) * 1984-03-12 1985-09-27 松下電器産業株式会社 Self-temperature control heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423686A (en) * 2005-02-25 2006-08-30 Allen Group Ltd Electrically-heated pipes
WO2006090182A1 (en) * 2005-02-25 2006-08-31 Allen Group Limited Electrically-heated pipes
JP2012516536A (en) * 2009-02-17 2012-07-19 エルジー・ハウシス・リミテッド Carbon nanotube heating sheet
JP2012233581A (en) * 2011-05-06 2012-11-29 Evonik Degussa Gmbh Temperature-controllable pipe suitable for offshore applications
CN108886835A (en) * 2016-03-02 2018-11-23 沃特洛电气制造公司 Heating element is as the temperature controlled sensor of transient system

Also Published As

Publication number Publication date
JPH07118369B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US5057674A (en) Self limiting electric heating element and method for making such an element
US4629869A (en) Self-limiting heater and resistance material
US4543474A (en) Layered self-regulating heating article
US4238812A (en) Circuit protection devices comprising PTC elements
US4329726A (en) Circuit protection devices comprising PTC elements
US4177376A (en) Layered self-regulating heating article
US4330703A (en) Layered self-regulating heating article
US4654511A (en) Layered self-regulating heating article
JPH02129885A (en) Self-temperature controllable heater
JP3317895B2 (en) Temperature self-control function heater
JPH1060959A (en) Piping with heater
US5122641A (en) Self-regulating heating cable compositions therefor, and method
JP2524988B2 (en) Complex heat storage
JP3957580B2 (en) Self-temperature control type surface heater
JP2719936B2 (en) Self temperature control low temperature heating element
JP3038310U (en) Self-temperature control type laminated sheet heater
JPH10223406A (en) Ptc composition and ptc element employing it
JPH0351914Y2 (en)
JPS6240394Y2 (en)
JP2003343868A (en) Floor heating device
JPH0311581A (en) Temperature self-controlling heat generator
JPH01304684A (en) Temperature self controlling heat radiating composition
JPH1151408A (en) Energy minimum conservation type face heating method, face heater and power controller
JPH04345785A (en) Manufacture of resistor with positive resistance temperature coefficient and heating element employing it
FI63848B (en) SKIKTAT ELEKTRISKT MOTSTAONDSELEMENT SAMT ANVAENDNING AV DETSAMMA FOER OEVERDRAGNING AV EN UNDERLAGSYTA