JPH07118369B2 - Self temperature control heater - Google Patents
Self temperature control heaterInfo
- Publication number
- JPH07118369B2 JPH07118369B2 JP63284499A JP28449988A JPH07118369B2 JP H07118369 B2 JPH07118369 B2 JP H07118369B2 JP 63284499 A JP63284499 A JP 63284499A JP 28449988 A JP28449988 A JP 28449988A JP H07118369 B2 JPH07118369 B2 JP H07118369B2
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- self
- temperature
- heater
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Resistance Heating (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、周囲温度あるいは放熱条件に応じて出力の調
節を行うことが可能な自己温度制御性ヒータに関する。Description: TECHNICAL FIELD The present invention relates to a self-temperature controllable heater capable of adjusting output according to ambient temperature or heat radiation conditions.
一般に、ニクロム線と呼ばれる高抵抗線や弱抵抗線のコ
イル抵抗を利用したヒータは、供給する電圧が一定であ
る限り、その電圧に相応した電力を消費し続けるので、
エネルギーの無駄が大きい。さらに、一定の温度を保持
する必要のあるときは温度調節器を備える必要がある。Generally, a heater that uses coil resistance of high resistance wire or weak resistance wire called nichrome wire continues to consume electric power corresponding to that voltage as long as the supplied voltage is constant.
A lot of energy is wasted. Furthermore, it is necessary to provide a temperature controller when it is necessary to maintain a constant temperature.
これに対して、自己温度制御性ヒータは、発熱体の温度
上昇に伴って抵抗が増大するPTC特性を有する発熱素子
を利用したものであり、予め設定した温度に達すれば発
熱体の抵抗が増大し電流が流れなくなり、自らが出力を
制限し、一定の温度を保持するといった自己制御機能を
有する。On the other hand, the self-temperature controllable heater uses a heating element having a PTC characteristic in which the resistance increases as the temperature of the heating element rises, and when the temperature reaches a preset temperature, the resistance of the heating element increases. However, it has a self-control function of limiting the output by itself and keeping a constant temperature.
PTC特性とは、正特性温度係数(ポジティブサーミス
タ)であり、第8図に示すように、温度が上昇するに従
って抵抗が増大して次第に電流を制限する機能を有する
抵抗素子の働きをいう。その抵抗素子を発熱体とするヒ
ータが「自己温度制御性ヒータ」である。The PTC characteristic is a positive temperature coefficient (positive thermistor), and as shown in FIG. 8, it means the function of a resistance element having a function of increasing the resistance as the temperature rises and gradually limiting the current. A heater having the resistance element as a heating element is a "self-temperature controllable heater".
自己温度制御性ヒータは、周囲温度あるいは放熱条件に
応じた出力を自由自在に調節するので、過出力防止装置
がなくても自動的に温度を調節する。従って、折り曲げ
などによって重なる部分、またはテープ状ヒータの2重
巻き、たすき掛け等の重なる部分は、自己温度制御機能
によって発熱量を調節するので極めて便利である。Since the self-temperature controllable heater freely adjusts the output according to the ambient temperature or the heat radiation condition, the temperature is automatically adjusted even without the over-output prevention device. Therefore, the overlapping portion due to bending or the like, or the overlapping portion such as double winding or crossing of the tape-shaped heater is extremely convenient because the amount of heat generation is adjusted by the self-temperature control function.
従来の自己温度制御性ヒータは、結晶性の高い高分子化
合物を基材として、カーボンブラック、グラファイト又
は金属粉等の導電性物質を大量に混入した抵抗体を発熱
体とし、温度上昇によって発熱体の体積膨張変化や導電
性粒子のトンネル電導効果の盛衰によって電流を調節す
るものであった。その動作原理は次のとおりである。The conventional self-temperature controllable heater uses a highly crystalline polymer compound as a base material and a resistor containing a large amount of conductive material such as carbon black, graphite or metal powder as a heating element, and the heating element is heated by the temperature rise. The current was controlled by the change in volume expansion and the rise and fall of the tunnel conduction effect of the conductive particles. The operating principle is as follows.
(イ)常温に於いては、高分子基材の中に分散された導
電性粒子の重なった部分をトンネル電導効果で電子が通
り抜けることにより導電性を得る。(A) At room temperature, electrons pass through the overlapping portions of the conductive particles dispersed in the polymer substrate due to the tunnel conduction effect to obtain conductivity.
(ロ)導電性となった高分子混合物は抵抗体であるから
通電すれば発熱する。(B) Since the polymer mixture that becomes conductive is a resistor, it generates heat when energized.
(ハ)温度が上昇すれば、高分子基材は膨張して重なり
合っていた導電性粒子の間隔が離れるので、次第に抵抗
は増大して電流は流れなくなる。電流が流れなくなると
温度が低下して高分子基材は収縮し、導電性粒子は接近
するので電流が流れるようになる。この動作の繰り返し
によって一定の温度を保持する。即ち、発熱体は素子自
身の温度に比例した熱量を放熱し、発熱量と放熱量とが
釣り合った温度で平行に達する。(C) When the temperature rises, the polymer base material expands and the overlapping conductive particles are separated from each other, so that the resistance gradually increases and the current stops flowing. When the electric current stops flowing, the temperature lowers, the polymer base material contracts, and the conductive particles approach each other, so that the electric current flows. A constant temperature is maintained by repeating this operation. That is, the heating element radiates a heat amount proportional to the temperature of the element itself, and reaches a parallel temperature at which the heat generation amount and the heat radiation amount are balanced.
第10図に於いて、従来の自己温度制御性ヒータaの断面
図を示し、bは高分子化合物からなる基材にカーボンブ
ラックやグラファイト等を混入して構成した発熱体、c,
cは発熱体bの両側縁部に一体状に設けられた電極導
体、dはこれらを被覆する絶縁体である。In FIG. 10, a cross-sectional view of a conventional self-temperature controllable heater a is shown, and b is a heating element constructed by mixing carbon black, graphite or the like into a base material made of a polymer compound, c,
Reference numeral c is an electrode conductor integrally provided on both side edges of the heating element b, and d is an insulator covering them.
ところが、上記従来の自己温度制御性ヒータは、次のよ
うな欠点を有している。However, the above conventional self-temperature controllable heater has the following drawbacks.
(イ)導電性カーボンブラックは、加工時の剪断によっ
てストラクチャが破壊するため、加工条件によって抵抗
値が著しく変化しやすい。(A) Since the structure of conductive carbon black is destroyed by shearing during processing, the resistance value is likely to change remarkably depending on processing conditions.
(ロ)グラファイトは、ストラクチャ構造をもたないの
で加工による影響は少ない。しかし、グラファイトはカ
ーボンブラックに比べて粒子が大きいので通電中に電気
的破壊を生ずる危険性があり、さらに、グラファイトは
カーボンブラックに比べて導電性が低いので大量に混入
する必要があり、そのため発熱体が硬くて脆くなり、可
撓性を要請される用途には不向きである。しかも、脆い
ので薄膜を成型することは出来ない。(B) Since graphite does not have a structure structure, it is less affected by processing. However, since graphite has larger particles than carbon black, there is a risk of causing electrical breakdown during energization.Furthermore, graphite has lower conductivity than carbon black, so it is necessary to mix in a large amount, so heat generation The body becomes hard and brittle, and is not suitable for applications requiring flexibility. Moreover, since it is brittle, it cannot be molded into a thin film.
(ハ)導電性物質の混入が多くなると高分子基材とグラ
ファイト等の導電性物質との熱膨張の差が大きくなるた
め、抵抗値/温度特性の勾配が小さくなる傾向にあり、
自己温度調節機能が低下する。(C) When the amount of the conductive substance mixed in increases, the difference in thermal expansion between the polymer base material and the conductive substance such as graphite increases, so that the gradient of the resistance value / temperature characteristic tends to decrease.
The self-temperature regulation function deteriorates.
(ニ)従来品は、通電時に発熱体b中に局部的な異常高
熱による高温部が発生し易く、一旦、高温部が発生する
と、それが波及的に拡大し、温度は更に上昇して、つい
には発熱体の融点以上に達してヒートピークを起こし、
焼損する事故がしばしば発生した。このような局部的な
高温部の発生原因は、高分子基材に混入したカーボンブ
ラックやグラファイト等の導電性物質の分散不良、即
ち、発熱体の局部的抵抗のアンバランスによるものと考
えられる。高分子基材100重量部に対して50〜100重量部
といった大量の導電性物質を混入していた従来品は、そ
れを完全に分散させることは困難であった。(D) In the conventional product, a high temperature portion is likely to occur in the heating element b due to a local abnormally high heat when energized, and once the high temperature portion occurs, the high temperature portion spreads and spreads, and the temperature further rises. Finally, it reaches the melting point of the heating element or higher and causes a heat peak,
Accidents that burned out often occurred. It is considered that the cause of such localized high temperature portion is due to poor dispersion of the conductive material such as carbon black or graphite mixed in the polymer base material, that is, the imbalance of the local resistance of the heating element. It was difficult to completely disperse a conventional product in which a large amount of a conductive substance such as 50 to 100 parts by weight was mixed with 100 parts by weight of a polymer base material.
このヒートピークは、第9図に示すように、発熱体bの
一部に高温部eが発生すると、電極導体c,c間を流れる
電流のうち、通常は上記高温部eを流れるべき電流が、
抵抗の大きくなった高温部eを避けて迂回するので、そ
の周辺の電流密度が高くなって温度が急激に上昇する結
果、高温部が波及的に拡大する。図中、平行線の接近し
たfの部分はこのような迂回電流を示している。ヒート
ピークの発生頻度は、電極c,c間の距離が大きくなるほ
どに高くなる。即ち、電極間の距離が約100mmを越える
場合には、通電開始後、短時間でヒートピークが発生す
ることが知られている。従って、従来は電極間の距離が
100mm以上の自己温度制御性発熱素子は得られなかっ
た。As shown in FIG. 9, when the high temperature part e is generated in a part of the heating element b, this heat peak is the current that should normally flow through the high temperature part e among the currents flowing between the electrode conductors c and c. ,
Since the high-temperature part e having a large resistance is bypassed to bypass the high-temperature part e, the current density around the high-temperature part e becomes high and the temperature rises sharply. In the figure, the portions of the parallel lines that are close to each other show such a bypass current. The frequency of occurrence of heat peaks increases as the distance between the electrodes c increases. That is, it is known that when the distance between the electrodes exceeds about 100 mm, a heat peak occurs in a short time after the start of energization. Therefore, in the past, the distance between the electrodes was
No self-temperature controllable heating element of 100 mm or more was obtained.
(ホ)従来の自己温度制御性ヒータは、概して経時的劣
化が早く、長期的安定性に欠ける。その原因は明らかで
はないが次のように推測することが出来る。即ち、導電
性物質を多量に混入することによって導電性物質の分散
不良や、高分子基材と導電性物質との熱膨張係数のアン
バランスから空間的な隙間が発生する。又は、吸湿その
他の化学変化による気泡が発生し、接触抵抗の増加によ
って界面でのミクロ的スパークが発生して高分子組成を
破壊し、もしくは電極を破壊することが考えられる。(E) Conventional self-temperature controllable heaters generally deteriorate rapidly with time and lack long-term stability. The cause is not clear, but it can be inferred as follows. That is, when a large amount of the conductive substance is mixed in, a spatial gap is generated due to poor dispersion of the conductive substance and imbalance in thermal expansion coefficient between the polymer base material and the conductive substance. Alternatively, it is conceivable that bubbles are generated due to moisture absorption or other chemical changes, and microscopic sparks are generated at the interface due to an increase in contact resistance to destroy the polymer composition or destroy the electrode.
上述のように、電極間の距離を大きく出来ないので、使
用上等に於いても、種々の不都合が生じ、例えば、水道
管等の凍結防止用として用いる場合には、第11図に示す
ように、テープ状に形成した自己温度制御性ヒータaを
螺旋状に巻付けなければならず非常に面倒であった。As described above, since the distance between the electrodes cannot be increased, various inconveniences may occur during use. For example, when using it for freeze prevention of water pipes, etc., as shown in FIG. Furthermore, the self-temperature controllable heater a formed in a tape shape has to be wound in a spiral shape, which is very troublesome.
本発明は、上記問題点を解決した自己温度制御性ヒータ
を提供することを目的としている。It is an object of the present invention to provide a self-temperature controllable heater that solves the above problems.
上述の目的を達成するために、プラスチック等の高分子
化合物又は複合高分子化合物からなる基材に、100重量
部の該基材に対する比率が2.5〜10重量部のアクセプタ
ーとしてのテトラシアノキノジメタンを分散混合すると
共に0〜3重量部のドナーとしてのノニオン活性材又は
アニオン活性材を分散混合し、且つ、5〜20重量部のカ
ーボンブラック等の導電助剤を添加することにより構成
した正温度係数特性を有する発熱体を備え、さらに、該
発熱体と一体状に電極導体を設けたものである。In order to achieve the above-mentioned object, a base material composed of a polymer compound or a composite polymer compound such as plastic is added to 100 parts by weight of tetracyanoquinodimethane as an acceptor in a ratio of 2.5 to 10 parts by weight to the base material. A positive temperature which is obtained by dispersing and mixing 0 to 3 parts by weight of a nonionic active material or anionic active material as a donor, and adding 5 to 20 parts by weight of a conductive auxiliary agent such as carbon black. A heating element having coefficient characteristics is provided, and an electrode conductor is provided integrally with the heating element.
発熱体は、一箇所に不連続部を有する横断面略円環状と
し、且つ、電極導体を該発熱体の両側縁部に該発熱体と
一体化して設ける。The heating element has a substantially circular cross section having a discontinuous portion at one location, and electrode conductors are provided integrally with the heating element on both side edges of the heating element.
また、発熱体の形状については、横断面矩形状乃至長楕
円状に形成し、且つ、電極導体を該発熱体の両側縁部に
該発熱体と一体化して設けてもよい。Regarding the shape of the heating element, the heating element may be formed to have a rectangular cross section or an oblong shape, and the electrode conductors may be provided integrally with the heating element on both side edges of the heating element.
発熱体を平板状に形成してもよく、この場合、電極導体
を該発熱体の両側縁部に該発熱体と一体化して設けるこ
とが出来る。The heating element may be formed in a flat plate shape. In this case, the electrode conductors may be provided on both side edges of the heating element so as to be integrated with the heating element.
発熱体を横断面略円環状に形成してもよく、この場合、
一方の電極導体を該発熱体の横断面における中心部側に
設けると共に他方の電極導体を該発熱体の横断面におけ
る外径側に設けて該発熱体と一体化して設ける。The heating element may be formed in a substantially circular cross section, and in this case,
One electrode conductor is provided on the central portion side in the cross section of the heating element, and the other electrode conductor is provided on the outer diameter side in the cross section of the heating element so as to be integrated with the heating element.
アクセプターとしてのテトラシアノキノジメタンは、正
孔を生成してPTCへの方向付けを行なうことができる。
ドナーは自由電子を生成し、または熱イオンを励起しN
(ネガ)型イオン伝動を発生させるので、その添加量の
加減によってPTCの強度を調節することができる。即
ち、設定温度においてP(ポジ)とN(ネガ)との平衡
点を索定する。Tetracyanoquinodimethane as an acceptor can generate holes and direct it to the PTC.
Donors generate free electrons or excite thermionic ions
Since (negative) type ion transmission is generated, the strength of PTC can be adjusted by adjusting the addition amount. That is, the equilibrium point between P (positive) and N (negative) at the set temperature is determined.
また、助剤としてのカーボンブラック等は、導電キャリ
アの濃度を調節することができる。即ち、添加量を増減
することによって発熱素子の抵抗値を加減することがで
きる。Further, carbon black or the like as an auxiliary agent can adjust the concentration of the conductive carrier. That is, the resistance value of the heating element can be adjusted by increasing or decreasing the amount of addition.
しかして、請求項2記載の自己温度制御性ヒータによれ
ば、全体形状が長手方向の嵌込用開口部を有する筒体で
あるので、嵌込用開口部を拡開させれば、この拡開した
嵌込用開口部を介して、このヒータを水道管等に装着す
ることができ、請求項3記載の自己温度制御性ヒータに
よれば、長尺の帯状体とすることができ、請求項4記載
の自己温度制御性ヒータによれば、面積が広い平板状と
することができ、請求項5記載の自己温度制御性ヒータ
によれば、断面円形の電線・ケーブル状とすることがで
きる。According to the self-temperature controllable heater of the second aspect, the entire shape is a tubular body having the fitting opening in the longitudinal direction. Therefore, if the fitting opening is expanded, this expansion is achieved. The heater can be attached to a water pipe or the like through the opened fitting opening, and the self-temperature controllable heater according to claim 3 can form a long strip. According to the self-temperature controllable heater of item 4, it can be made into a flat plate shape having a large area, and according to the self-temperature controllable heater of claim 5, it can be made into a wire / cable shape having a circular cross section. .
実施例について図面を参照して説明すると、第1図に於
いて、本発明に係る自己温度制御性ヒータ3を略円筒状
に形成した場合を示し、9は長手方向に設けられた嵌込
用開口部である。1は発熱体であって、該発熱体1は一
箇所に不連続部2を有する横断面略円環状に形成されて
いる。4,4は電極導体であって、該電極体4,4は発熱体1
の両側縁部5,5に発熱体1と一体化して設けられる。発
熱体1の表面は絶縁体7により被覆されている。An embodiment will be described with reference to the drawings. FIG. 1 shows a case where a self-temperature controllable heater 3 according to the present invention is formed in a substantially cylindrical shape, and 9 is a fitting provided in a longitudinal direction. It is an opening. Reference numeral 1 is a heating element, and the heating element 1 is formed in a substantially annular cross section having a discontinuous portion 2 at one location. 4, 4 are electrode conductors, and the electrode bodies 4, 4 are heating elements 1
Are provided integrally with the heating element 1 on both side edge portions 5, 5. The surface of the heating element 1 is covered with an insulator 7.
しかして、発熱体1は、プラスチック等からなる高分子
化合物の基材に、アクセプターとしてのテトラシアノキ
ノジメタン(以下「TCNQ」と呼ぶ)とドナーとしてのノ
ニオン活性材を分散混合し、且つ、カーボンブラック等
の導電助剤を添加して構成したものであり、その構成比
率は100重量部の該基材に対し、TCNQの比率を3重量部
に、ノニオン活性材の比率を1重量部に、導電助剤とし
てのカーボンブラックの比率を8重量部に、同様に導電
助剤としてのグラファイトの比率を8重量部に夫々設定
している。Thus, the heating element 1 is obtained by dispersing and mixing tetracyanoquinodimethane (hereinafter referred to as “TCNQ”) as an acceptor and a nonionic active material as a donor in a base material of a polymer compound such as plastic, and It is composed by adding a conductive auxiliary agent such as carbon black. The composition ratio is 100 parts by weight of the base material, the ratio of TCNQ is 3 parts by weight, and the ratio of the nonionic active material is 1 part by weight. The ratio of carbon black as a conductive additive is set to 8 parts by weight, and the ratio of graphite as a conductive additive is set to 8 parts by weight.
本発明に於いては、高分子化合物の導電率を高めるため
に、導電キャリアの移動度を大きくする方法を採り、有
機金属半導体のTCNQを電荷移動錯体として用いたもので
ある。また、基材として用いる高分子化合物は絶縁体で
ある。絶縁体は誘電体であり、これに電場を印加すると
分極現象を起こし誘電性の導電体となる。更に高分子中
に含まれているイオン性不純物の活動によってイオン伝
動性が支配的となる。温度が上昇すると熱イオンの活動
がいよいよ活発となり、抵抗値は次第に減少して、いわ
ゆるNTC(ネガティブサーミスタ)現象となる。従っ
て、基材に用いる高分子化合物は特に双極子能率の小さ
いものを選ぶことが肝心である。In the present invention, in order to increase the conductivity of the polymer compound, a method of increasing the mobility of conductive carriers is used, and TCNQ of an organometallic semiconductor is used as a charge transfer complex. Further, the polymer compound used as the base material is an insulator. The insulator is a dielectric, and when an electric field is applied to the insulator, it causes a polarization phenomenon and becomes a dielectric conductor. Furthermore, the ionic conductivity becomes dominant due to the activity of ionic impurities contained in the polymer. When the temperature rises, the activity of thermions becomes more active, and the resistance value gradually decreases, resulting in the so-called NTC (negative thermistor) phenomenon. Therefore, it is important to select a polymer compound having a low dipole efficiency as the base material.
次に、実験方法及びその結果について説明する。Next, the experimental method and the result thereof will be described.
実験1 本発明は、高分子化合物からなる基材に単独にてTCNQを
ドープしたところ、第4図に示すようなPTC反応を生じ
たことが端緒となった。TCNQは効力の高いアクセプター
であり、このアクセプターをドープすることによって正
孔が生成し、PTC特性を現したものと考えられる。従っ
て、実験は、先ず、TCNQを単独で高分子基材に混入する
ことから開始し、基材としてのポリオレフィン100重量
部に対して、TCNQを1重量部添加して実験用の発熱体1
とし、これから第3図に示す線状ヒータを作成し、試料
8とした。第3図に於いては、発熱体1を横断面略円形
状に形成し、且つ、一方の電極導体4を発熱体1の横断
面における中心部側(内径側)に設けると共に、他方の
電極導体4を発熱体1の外径側に設けて、発熱体1と一
体化したものである。7は外径側の電極導体4の外周面
を被覆している絶縁体である。Experiment 1 The present invention was started when a PCN reaction as shown in FIG. 4 occurred when TCNQ was singly doped into a base material made of a polymer compound. TCNQ is a highly effective acceptor, and it is considered that holes were generated by doping this acceptor and exhibited PTC characteristics. Therefore, the experiment was started by first mixing TCNQ alone into the polymer base material, and adding 1 part by weight of TCNQ to 100 parts by weight of the polyolefin as the base material to prepare the heating element 1 for the experiment.
Then, the linear heater shown in FIG. 3 was prepared and used as sample 8. In FIG. 3, the heating element 1 is formed in a substantially circular cross section, and one electrode conductor 4 is provided on the center side (inner diameter side) in the cross section of the heating element 1 and the other electrode is formed. The conductor 4 is provided on the outer diameter side of the heating element 1 and integrated with the heating element 1. Reference numeral 7 is an insulator covering the outer peripheral surface of the electrode conductor 4 on the outer diameter side.
抵抗試験は、上記試料8を恒温槽に入れ、20℃から徐々
に温度を上げながら抵抗値(インピーダンス)の変化を
測定するものであり、第4図中の直線Aの如く、20℃に
おける抵抗値は7000KΩであった。In the resistance test, the sample 8 is placed in a constant temperature bath and the change in resistance value (impedance) is measured while gradually raising the temperature from 20 ° C. As shown by the straight line A in Fig. 4, the resistance at 20 ° C is measured. The value was 7,000 KΩ.
次に、TCNQの添加量を3重量部に増加したところ、第4
図中の直線Bの如く、20℃における抵抗値は2000KΩに
減少した。しかるに、該試料8の発熱体1をヒータとし
て機能させるには、20℃における抵抗値を100KΩ以下に
しなければならない。そのためには、TCNQを少なくとも
10重量部添加する必要が生じてくる。ところが、TCNQは
極めて高価であり、コスト高となるので大量に用いるこ
とは出来ない。Next, when the amount of TCNQ added was increased to 3 parts by weight,
As indicated by the straight line B in the figure, the resistance value at 20 ° C decreased to 2000 KΩ. However, in order for the heating element 1 of the sample 8 to function as a heater, the resistance value at 20 ° C. must be 100 KΩ or less. To do that, at least TCNQ
It becomes necessary to add 10 parts by weight. However, TCNQ is extremely expensive and costly, so it cannot be used in large quantities.
実験2 TCNQに種々の活性材や導電性物質を併用してみるなど試
行錯誤の末、次に掲げる比率とすることにより、上記の
壁を突破することが出来た。Experiment 2 After trial and error, such as using various active materials and conductive materials in combination with TCNQ, it was possible to break through the above wall by using the following ratios.
基材(ポリオレフィン)…………100重量部 アクセプター(TCNQ)………3重量部 ドナー(ノニオン活性材)………1重量部 導電助材(カーボンブラック)…8重量部 導電助材(グラファイト)………8重量部 この配合比率による発熱体1を、実験1と同様に第3図
に示す線状ヒータに形成して試料8とし、これの温度変
化による抵抗値を測定したところ第4図中のCに示すよ
うに、20℃における抵抗値は20KΩであった。Base material (polyolefin) 100 parts by weight Acceptor (TCNQ) 3 parts by weight Donor (nonionic active material) 1 part by weight Conductive auxiliary material (carbon black) 8 parts by weight Conductive auxiliary material (graphite) ) ....... 8 parts by weight The heating element 1 having this blending ratio was formed into the linear heater shown in FIG. 3 in the same manner as in Experiment 1 to obtain a sample 8, and the resistance value due to the temperature change thereof was measured. As indicated by C in the figure, the resistance value at 20 ° C. was 20 KΩ.
この場合の各種材料の役割については次のとおりであ
る。The roles of various materials in this case are as follows.
アクセプタとしてのTCNQは、正孔を生成してPTCへの方
向付を行う。ドナーとしてのノニオン活性材は、自由電
子を生成し、又は熱イオンを励起しN(ネガ)型イオン
伝導を発生させるので、その添加量の加減によってPTC
特性の強度を調節する。つまり、第7図に示すように、
所望の設定温度T℃に於いてP(ポジ)とN(ネガ)と
の平衡点を索定する。導電助剤のカーボンブラック及び
グラファイトは導電キャリヤの濃度を調節する。即ち、
添加量を増減することによって発熱体1の抵抗値を加減
する。重要なことは、TCNQを除いてカーボンブラック及
びグラファイトを10〜20重量部用いても発熱体として機
能する導電性は得られない。極めて少量のTCNQを鼻薬と
して加えることによって、導電キャリヤの移動度を大き
くしたものである。TCNQ as an acceptor generates holes and directs them to PTC. The nonionic active material as a donor generates free electrons or excites thermal ions to generate N (negative) type ionic conduction.
Adjust the strength of the property. That is, as shown in FIG.
The equilibrium point of P (positive) and N (negative) is found at the desired set temperature T ° C. The conductive aids carbon black and graphite control the concentration of conductive carriers. That is,
The resistance value of the heating element 1 is adjusted by increasing or decreasing the addition amount. Importantly, even if 10 to 20 parts by weight of carbon black and graphite other than TCNQ is used, the conductivity that functions as a heating element cannot be obtained. By adding a very small amount of TCNQ as a nasal drug, the mobility of the conductive carrier is increased.
発熱体1の各成分の構成比率については、その後の多大
の実験結果等に基づき次のように設定する。即ち、100
重量部の基材に対し、TCNQを2.5〜10重量部に、ドナー
としてのノニオン活性材を0〜3重量部に、導電助剤と
してのカーボンブラックを5〜20重量部に、同様に導電
助剤としてのグラファイトを0〜20重量部に、夫々設定
し、この範囲内に於いて定めても良好な結果が得られ
る。The composition ratio of each component of the heating element 1 is set as follows based on a large amount of experimental results thereafter. That is, 100
2.5 to 10 parts by weight of TCNQ, 0 to 3 parts by weight of nonionic activator as a donor, 5 to 20 parts by weight of carbon black as a conduction aid, and the same amount of conductivity aid per 100 parts by weight of the base material. Good results can be obtained even if graphite as an agent is set to 0 to 20 parts by weight and the amount is set within this range.
基材として、上記実験に於いては、ポリエチレン,ポリ
プロピレン等のポリオレフィン系のポリマーを用いた
が、その他のプラスチックやゴム又は複合高分子化合物
を用いてもよい。電荷移動錯体を構成するアクセプター
にはTCNQを、ドナーにはノニオン活性材を用いたが、ノ
ニオン活性材に代えてアニオン活性材を用いるも好まし
い。導電キャリヤの濃度を決定する導電助剤について
は、カーボンブラック及びグラファイトを共に用いるの
が望ましいが、カーボンブラックのみであってもよく、
また、これらに代えて、金属粉等を使用するも好まし
い。In the above experiment, a polyolefin-based polymer such as polyethylene or polypropylene was used as the base material, but other plastics, rubbers, or composite polymer compounds may be used. Although TCNQ was used as the acceptor and the nonionic active material was used as the donor in the charge transfer complex, it is also preferable to use the anionic active material instead of the nonionic active material. Regarding the conductive auxiliary agent that determines the concentration of the conductive carrier, it is desirable to use carbon black and graphite together, but carbon black alone may be used,
It is also preferable to use metal powder or the like instead of these.
本発明に係る自己温度制御性ヒータ3の全体形状を、第
1図に示すような円周方向における一箇所に嵌込用開口
部9を形成することにより、第2図に示すように、水道
管等の配管10にワンタッチにて弾発的に装着し、外周部
を被覆することが出来、また、ワンタッチで取外し可能
である。全体形状については、第5図に示すように、横
断面略長楕円状に形成しても差支えない。この場合、発
熱体1を横断面略長楕円状に形成し、且つ、電極導体4,
4を発熱体1の両側縁部5,5に発熱体1と一体化して設け
ている。勿論、発熱体1を横断面矩形状等の他の形状と
しても差し支えない。発熱体1の形状については、第6
図に示すように、平板状とするも好ましい。なお、図示
省略するがテープ状としてもよい。The entire shape of the self-temperature controllable heater 3 according to the present invention is such that the fitting opening 9 is formed at one location in the circumferential direction as shown in FIG. It can be elastically attached to the pipe 10 such as a pipe with one touch to cover the outer peripheral portion, and can be removed with one touch. Regarding the overall shape, as shown in FIG. 5, it does not matter if it is formed into a substantially elliptical cross section. In this case, the heating element 1 is formed in a substantially elliptical cross section, and the electrode conductors 4,
4 are provided on both side edges 5, 5 of the heating element 1 integrally with the heating element 1. Of course, the heating element 1 may have another shape such as a rectangular cross section. Regarding the shape of the heating element 1,
As shown in the figure, a flat plate shape is also preferable. It should be noted that although not shown, a tape shape may be used.
他にも、例えば、実験に用いた第3図の形状に形成して
も差し支えない。Besides, for example, the shape shown in FIG. 3 used in the experiment may be formed.
本発明に係る自己温度制御性ヒータは、パイプやタンク
の保温または凍結防止・機器の加熱または保温等の工業
用として、育苗床・家畜の保温・温室・発酵及び醸造等
の農業用として、ロードヒーティング等の融電用とし
て、水道管及び排水管の凍結防止・床暖房・ホットカー
ペット・足温器・アンカ・便器・ペットの保温等の家庭
用として適用可能である。The self-temperature controllable heater according to the present invention is used for industrial purposes such as heat retention or antifreezing of pipes and tanks, heating or heat retention of equipment, nursery beds, heat retention of livestock, agricultural greenhouses such as fermentation and brewing, and loading. It can be used for heat transfer such as heating, for household use such as antifreezing of water pipes and drainage pipes, floor heating, hot carpets, foot heaters, anchors, toilet bowls, and pets.
本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the effects described below.
導電キャリヤに、有機金属電荷移動錯体のTCNQを用
いているので、その助剤としてのカーボンブラック等の
混入は、僅か(例えば、10〜20重量部)で機能目的を達
する。従って、発熱素子が硬くならず、また、脆くなら
ないので、このヒータの厚さ(肉厚)を比較的薄くする
ことができる。Since TCNQ which is an organometallic charge transfer complex is used as the conductive carrier, the incorporation of carbon black or the like as an auxiliary agent achieves the functional purpose with a small amount (for example, 10 to 20 parts by weight). Therefore, since the heating element does not become hard and does not become brittle, the thickness (wall thickness) of this heater can be made relatively thin.
導電性物質の添加量が少ないので、基材と導電性物
質との熱膨張の差による悪影響を受けない。従って長期
的安定性が期待できる。Since the amount of the conductive substance added is small, it is not adversely affected by the difference in thermal expansion between the base material and the conductive substance. Therefore, long-term stability can be expected.
導電性物質の添加量が少ないので、界面でのミクロ
的なスパーク発生の恐れがなく、長期的安定性が期待で
きる。Since the amount of the conductive substance added is small, there is no fear of microscopic spark generation at the interface, and long-term stability can be expected.
導電性物質の添加量が少量であり、しかも、電子の
移動を金属的性質を有する電荷移動錯体を用いているの
で、従来のように、分散不良によるヒートピークの恐れ
がない。Since the amount of the conductive substance added is small and the charge transfer complex having a metallic property for electron transfer is used, there is no fear of heat peak due to poor dispersion as in the conventional case.
特に、請求項2記載の自己温度制御性ヒータによれ
ば、長手方向の嵌込用開口部9を介して、水道管等の配
管に簡単に外嵌することができ、配管被覆作業が極めて
容易である。Particularly, according to the self-temperature controllable heater of the second aspect, it is possible to easily fit on the pipe such as a water pipe through the fitting opening 9 in the longitudinal direction, and the pipe covering work is extremely easy. Is.
特に、請求項3記載の自己温度制御性ヒータによれ
ば、全体形状が横断面矩形状乃至長楕円状となり、従来
から繁用されている全体形状が横断面矩形状乃至長楕円
状のヒータとなって、用途が広い。Particularly, according to the self-temperature controllable heater of the third aspect, the entire shape is a rectangular cross section or a long ellipse shape, and the whole shape conventionally used is a rectangular cross section or a long ellipse shape. It has a wide range of uses.
特に、請求項4記載の自己温度制御性ヒータによれ
ば、電極間の距離が100mmを超える広い平面状のヒータ
を形成することができ、しかも、分散不良によるヒート
ピークの恐れがないので、局部的な高温部が発生しな
い。Particularly, according to the self-temperature controllable heater of the fourth aspect, it is possible to form a wide heater having a distance between electrodes of more than 100 mm, and there is no fear of heat peak due to poor dispersion. High temperature part does not occur.
特に、請求項5記載の自己温度制御性ヒータによれ
ば、全体形状が横断面円形となって、従来から繁用され
ている全体形状が横断面円形のヒータとなって、用途が
広い。In particular, according to the self-temperature controllable heater of the fifth aspect, the entire shape is a circular cross section, and the heater that has been conventionally used is a circular cross section, which is versatile.
第1図は本発明に係る自己温度制御性ヒータの一実施例
の拡大断面斜視図、第2図は使用方法説明図、第3図は
他の実施例の拡大横断面図、第4図は実験結果を示す特
性図、第5図は変形例を示す拡大横断面図、第6図は他
の実施例を示す拡大斜視図,第7図はPTC強度の平衡点
を設定する説明図である。第8図はPTC特性図、第9図
はヒートピークの発生状況を示す説明図、第10図は従来
例を示す拡大横断面図、第11図は使用方法説明図であ
る。 1……発熱体、2……不連続部、4……電極導体、5…
…側縁部。FIG. 1 is an enlarged cross-sectional perspective view of an embodiment of a self-temperature controllable heater according to the present invention, FIG. 2 is an explanatory view of a method of use, FIG. 3 is an enlarged cross-sectional view of another embodiment, and FIG. FIG. 5 is a characteristic diagram showing experimental results, FIG. 5 is an enlarged transverse sectional view showing a modified example, FIG. 6 is an enlarged perspective view showing another embodiment, and FIG. 7 is an explanatory diagram for setting an equilibrium point of PTC strength. . FIG. 8 is a PTC characteristic diagram, FIG. 9 is an explanatory diagram showing a heat peak occurrence state, FIG. 10 is an enlarged cross-sectional view showing a conventional example, and FIG. 11 is a usage explanatory diagram. 1 ... Heating element, 2 ... Discontinuous portion, 4 ... Electrode conductor, 5 ...
… Side edges.
Claims (5)
分子化合物からなる基材に、100重量部の該基材に対す
る比率が2.5〜10重量部のアクセプターとしてのテトラ
シアノキノジメタンを分散混合すると共に0〜3重量部
のドナーとしてのノニオン活性材又はアニオン活性材を
分散混合し、且つ、5〜20重量部のカーボンブラック等
の導電助剤を添加することにより構成した正温度係数特
性を有する発熱体1を備え、さらに、該発熱体1と一体
状に電極導体4,4を設けたことを特徴とする自己温度制
御性ヒータ。1. A base material made of a polymer compound or a composite polymer compound such as plastic, and 100 parts by weight of tetracyanoquinodimethane as an acceptor in a ratio of 2.5 to 10 parts by weight to the base material is dispersed and mixed. And 0 to 3 parts by weight of a nonionic active material or anionic active material as a donor are dispersed and mixed, and 5 to 20 parts by weight of a conductive auxiliary agent such as carbon black is added to have a positive temperature coefficient characteristic. A self-temperature controllable heater comprising a heating element (1) and electrode conductors (4, 4) integrally provided with the heating element (1).
断面略円環状に形成すると共に、電極導体4,4を該発熱
体1の両側縁部5,5に該発熱体1と一体化して設け、全
体形状を長手方向の嵌込用開口部9を有する筒体とした
請求項1記載の自己温度制御性ヒータ。2. A heating element (1) is formed in a substantially circular cross section having a discontinuous portion (2) at one location, and electrode conductors (4, 4) are provided on both side edge portions (5, 5) of the heating element (1). The self-temperature controllable heater according to claim 1, wherein the self-temperature controllable heater is integrally formed with the heater and has an overall shape of a tubular body having a fitting opening 9 in the longitudinal direction.
成し、且つ、電極導体4,4を該発熱体1の両側縁部5,5に
該発熱体1と一体化して設けた請求項1記載の自己温度
制御性ヒータ。3. A heating element 1 is formed in a rectangular or oblong cross section, and electrode conductors 4, 4 are provided on both side edges 5, 5 of the heating element 1 integrally with the heating element 1. The self-temperature controllable heater according to claim 1.
体4,4を該発熱体1の両側縁部5,5に該発熱体1と一体化
して設けた請求項1記載の自己温度制御性ヒータ。4. The heating element 1 is formed in a flat plate shape, and the electrode conductors 4, 4 are provided on both side edge portions 5, 5 of the heating element 1 integrally with the heating element 1. Self-temperature controllable heater.
つ、一方の電極導体4を該発熱体1の横断面における中
心部側に設けると共に他方の電極導体4を該発熱体1の
横断面における外径側に設けて該発熱体1と一体化した
請求項1記載の自己温度制御性ヒータ。5. The heating element 1 is formed in a substantially circular cross section, and one electrode conductor 4 is provided on the center side in the cross section of the heating element 1 while the other electrode conductor 4 is provided in the heating element 1. The self-temperature controllable heater according to claim 1, wherein the heater is integrated with the heating element 1 by being provided on the outer diameter side of the cross section of the heater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63284499A JPH07118369B2 (en) | 1988-11-09 | 1988-11-09 | Self temperature control heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63284499A JPH07118369B2 (en) | 1988-11-09 | 1988-11-09 | Self temperature control heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02129885A JPH02129885A (en) | 1990-05-17 |
JPH07118369B2 true JPH07118369B2 (en) | 1995-12-18 |
Family
ID=17679306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63284499A Expired - Lifetime JPH07118369B2 (en) | 1988-11-09 | 1988-11-09 | Self temperature control heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07118369B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0503891D0 (en) * | 2005-02-25 | 2005-04-06 | Allen Group Ltd | Electrically-heated pipes |
KR101328353B1 (en) * | 2009-02-17 | 2013-11-11 | (주)엘지하우시스 | Heating sheet using carbon nano tube |
DE102011075383A1 (en) * | 2011-05-06 | 2012-11-08 | Evonik Degussa Gmbh | Temperable pipeline for offshore applications |
JP7091249B2 (en) * | 2016-03-02 | 2022-06-27 | ワットロー・エレクトリック・マニュファクチャリング・カンパニー | Heater operation flow bypass |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528515A (en) * | 1975-07-11 | 1977-01-22 | Hitachi Ltd | Inner lined vessel |
JPS60189887A (en) * | 1984-03-12 | 1985-09-27 | 松下電器産業株式会社 | Self-temperature control heater |
-
1988
- 1988-11-09 JP JP63284499A patent/JPH07118369B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02129885A (en) | 1990-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4910389A (en) | Conductive polymer compositions | |
EP0417097B1 (en) | Heating element and method for making such a heating element | |
US4629869A (en) | Self-limiting heater and resistance material | |
US4543474A (en) | Layered self-regulating heating article | |
US3858144A (en) | Voltage stress-resistant conductive articles | |
US4246468A (en) | Electrical devices containing PTC elements | |
US4388607A (en) | Conductive polymer compositions, and to devices comprising such compositions | |
JPH06202744A (en) | Electric circuit provided with ptc element | |
JPH07118369B2 (en) | Self temperature control heater | |
US4629584A (en) | Composition of heat-sensitive electrosensitive substances and a panel heater made therefrom | |
US5122641A (en) | Self-regulating heating cable compositions therefor, and method | |
JPH11282548A (en) | Temperature controlling heater | |
KR0151677B1 (en) | Heating treatment method of conductivity heating element | |
JPS59122524A (en) | Composition having positive temperature characteristics of resistance | |
CA1133085A (en) | Temperature sensitive electrical device | |
JPH07235370A (en) | Heater | |
JP2548202B2 (en) | Circuit protection element | |
JP2719936B2 (en) | Self temperature control low temperature heating element | |
JPH10223406A (en) | Ptc composition and ptc element employing it | |
JP2003343868A (en) | Floor heating device | |
JP2936788B2 (en) | Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor | |
JP2846530B2 (en) | Thermal fuse characteristics Polymer semiconductor | |
JPH1079287A (en) | Far-infrared ray radiating heater element for interior material and interior material fitted wit space heater | |
JPH02234380A (en) | Positive-resistance temperature coefficient heating body | |
JPH0317265Y2 (en) |