JP3957580B2 - Self-temperature control type surface heater - Google Patents

Self-temperature control type surface heater Download PDF

Info

Publication number
JP3957580B2
JP3957580B2 JP2002206475A JP2002206475A JP3957580B2 JP 3957580 B2 JP3957580 B2 JP 3957580B2 JP 2002206475 A JP2002206475 A JP 2002206475A JP 2002206475 A JP2002206475 A JP 2002206475A JP 3957580 B2 JP3957580 B2 JP 3957580B2
Authority
JP
Japan
Prior art keywords
heating element
temperature
self
control type
planar heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002206475A
Other languages
Japanese (ja)
Other versions
JP2004047393A (en
Inventor
喜一 亀田
Original Assignee
株式会社カメダデンキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カメダデンキ filed Critical 株式会社カメダデンキ
Priority to JP2002206475A priority Critical patent/JP3957580B2/en
Publication of JP2004047393A publication Critical patent/JP2004047393A/en
Application granted granted Critical
Publication of JP3957580B2 publication Critical patent/JP3957580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自己温度制御特性を備えた面状ヒータの改良に関するものであり、低温の被加熱体を接触させた側の温度を迅速且つ斑なく上昇させることができ、被加熱体を斑なく均一に加熱することを可能にした自己温度制御型面状ヒータに関するものである。
【0002】
【従来の技術】
所謂面状ヒータは融雪器や保温器等の発熱体として広く利用されており、その中でも、正の抵抗温度係数を備えた発熱体を用いた自己温度制御型の面状ヒータは、安全性に優れているため広く実用に供されている。
【0003】
而して、この種面状ヒータとしては、薄板状の導電性プラスチック(導電性プラスチックシート)の両側表層部に金属シート状の電極板を固設した構造のものや、薄板状の導電性プラスチック(導電性プラスチックシート)の両側表層部に、複数本の金属線条(又は金属網体)から成る電極板を固設した構造のものが開発され、実用化されている。
また、前記導電性プラスチック材としては可撓性を有する耐熱性樹脂材にカーボン等を混合したものが多く利用されており、且つその厚さは1mm〜3mmに選定されている。
更に、前記導電性プラスチック材は耐熱性や伝熱性に優れており、通常は正の抵抗温度係数を具備していて、所謂自己温度制御特性を備えている。
【0004】
上記従前の自己温度制御型面状ヒータは、被加熱体の外表面の囲繞性や密着性に優れているだけでなく、安全性が高いと云う優れた実用的効用を有するものである。
しかし、当該自己温度制御型面状ヒータにも解決すべき多くの問題が残されており、その中でも発熱体の両側表面の放熱条件に大きな差異があると、昇温したい側の発熱量が減少して温度が迅速に上昇しなかったり、或いは、昇温したい側の発熱量に部分的な斑が生じると云う問題が、早急に解決すべき問題点として残されている。
【0005】
例えば、いま図6に示すように、自己温度制御型面状ヒータAの発熱体(導電性プラスチック)Hが、抵抗ra(Ω)のHa部分と抵抗rb(Ω)のHb部分とから構成されており、その両側表層部に固設した電極板B1 ・B2 に電源電圧(図示省略)が印加されているとする。また、この発熱体Hは図7に示すような抵抗温度特性を具備しており、発熱体Hは自己温度制御型の特性を備えているものとする。
【0006】
この自己温度制御型面状ヒータに被加熱体を接触させない状態下で通電(E=1(v))することにより、発熱体Hは図7のra=rb=1(Ω)の点で熱的に平衡しているとする。
この状態下に於ける発熱体HのHa部分の発熱量Paは、Pa=I2 ×ra=(1/2)2 ×1=0.25(w)となり、また、Hb部分の発熱量Pbは、Pb=I2 ×rb=(1/2)2 ×1=0.25(w)となる。
【0007】
次に、面状ヒータAの一側面(Hb側)に低温の被加熱体Cを接触させることにより、発熱体HのHb部分の温度が低下し、その結果Hb部分の抵抗rbが1/3に低下したとする。
この状態下に於ける発熱体HのHa部分の発熱量Pa′は、Pa′=(3/4)2 ×1=0.75(w)となり、また、Hb部分の発熱量Pb′は、Pb′=(3/4)2 ×1/3=0.18(w)となる。即ち、発熱体Ha部分の発熱量は増加して温度が急上昇するのに対して、発熱体Hb部分の発熱量は減少するため、急激な温度上昇が生じない。
【0008】
一方、前記発熱体Ha部分の温度が上昇すると、Ha部分の抵抗raが上昇し、その値ra′がra′=2(Ω)に増加したとする。同様に、発熱体Hb部分の温度が若干低下することにより、Hb部分の抵抗rbが低下し、その値rb′がrb′=1/2(Ω)に低下したとする。
この状態下に於ける発熱体HのHa部分の発熱量Pa″=(2/5)2 ・2=0.32(w)となる。また、発熱体HのHb部分の発熱量Pb″は、Pb″=(2/5)2 ・1/2=0.08(w)となり、発熱体HのHa部分とHb部分の温度差がより大きくなることになる。
【0009】
勿論、発熱体HのHa部分からHb部分への熱移動があるため、上記Ha部分とHb部分との温度差は時間の経過と共に平衡値に達することになるが、低温の被加熱体Cの接触により、面状ヒータAの片側面の温度が急激に下降すると、被加熱体Cと接触しない他側面の温度が急激に上昇するのに反して、被加熱体Cが接触する加温したい側の温度が逆に低下して、被加熱体Cの加熱が困難になると云う上記の如き事象は、屡々見られる現象である。
【0010】
【発明が解決しようとする課題】
本発明は、従前の自己温度制御型面状ヒータに於ける上記の如き問題、即ち低温の被加熱体を接触させた場合に、加熱したい側の温度がなかなか上昇せずに、逆に、被加熱体が接触する側とは反対側の温度が上昇すると云う問題を解決せんとするものであり、低温の被加熱体を接触させた場合に、被加熱体が接触する側の温度を直ちに斑なく上昇させ得るようにした自己温度制御型面状ヒータを提供せんとするものである。
【0011】
【課題を解決するための手段】
而して、自己温度制御型面状ヒータに於ける上記の如き事象の発生を防止するには、面状ヒータAを形成する発熱体Hの熱伝導率を高めること、発熱体Hの厚みを可能な限り薄くすること及び発熱体Hの抵抗温度特性の変化率を適宜に選定すること等の対策が考えられ、これ等の対策を取り入れした多くの面状ヒータAが開発されている。
本願発明者は、従前の面状ヒータを構成する発熱体Hの抵抗温度特性の利用範囲に関する思考方法を完全に破棄し、加熱温度の低い範囲に於いては発熱体Hに負の抵抗温度特性を具備せしめ、また、逆に加熱温度の高い範囲に於いては、発熱体Hに正の抵抗温度特性を具備せしめることを新たに想到し、これ等の条件を満たす抵抗温度特性を備えた各種の発熱体Hを開発し製作すると共に、これを用いた面状ヒータAについて数多くの加熱特性試験を実施した。
【0012】
本発明は、上述の如き多数の面状ヒータに係る試験の結果に基づいて創作されたものであり、請求項1に記載の発明は、高熱伝導性と耐熱性を有する合成樹脂とカーボン粉末の混合体から形成した導電性合成樹脂から成る板状発熱体と、当該発熱体の一側に固設した金属製の平板状電極と、前記発熱体の他側に固設した金属製の網状電極とから構成した自己温度制御型面状ヒータに於いて、前記発熱体を形成する合成樹脂をPEEK樹脂とすると共にカーボン粉体の含有率を35〜50wt%とし、発熱体が略U字形又は略V字形の抵抗温度特性曲線を具備するものとしたことを発明の基本構成とするものである。
【0013】
請求項2の発明は、請求項1の発明に於いて、平板状電極をステンレス鋼板製とすると共に、網状電極を銅製網体とするようにしたものである。
【0014】
請求項3の発明は、請求項1又は請求項2の発明に於いて、カーボン粉体の含有率を40〜43wt%とすると共に網状電極を発熱体の一側の表層部へ埋設固定し、更に発熱体の網状電極側の外表面へ被加熱体を接触させるようにしたものである。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明の実施形態に係る自己温度制御型面状ヒータの断面概要図の一部を示すものであり、図に於いて1は面状ヒータ、1aは面状ヒータの発熱体、1bは被加熱体2の側に位置する網状電極、1cは平板状電極である。
【0016】
当該面状ヒータ1は、例えば図1に示すように、前記網状電極1b側の外表面が被加熱体(缶体その他)2に接触するか、若しくは被加熱体2の外表面を囲繞する状態で使用され、両電極1b・1c間に所定の電圧が印加される。
【0017】
前記発熱体1aは厚さ約1.0〜2mmの四角状のシート体に形成されており、一辺の寸法は100mm〜200mm程度に選定されている。
また、当該発熱体1aは、耐熱・高熱伝導性の合成樹脂にカーボン粉体を混練した混合体を原料とし、これをシート状に圧縮成形することにより形成されている。
更に当該発熱体1aを形成する前記混合体の合成樹脂とカーボン粉体の混合率は、発熱体1aの抵抗温度特性が、図2に示す略U字形(又は略V字形)となるように選定されている。
【0018】
前記発熱体1aの構成材である合成樹脂材としては、熱伝導性と耐熱性を有し、更に炭素粉体の混入により導電性が賦与され且つ抵抗温度特性が略U字形又は略V字形になるものであれば、如何なる合成樹脂であってもよく、本実施形態に於いては所謂PEEK樹脂が使用されている。
尚、前記PEEK樹脂は、ポリエーテルエーテルケトン樹脂の略称であり、下記のような構造式で表わされる分子構造を有するものである。また、当該PEEK樹脂は、英国のアイ・シー・アイ社が1977年に合成に成功し、且つ英国のビクトレックス社が現在製造・販売をしている熱可塑性の超耐熱樹脂である。
【0019】
【化1】

Figure 0003957580
【0020】
更に、当該PEEEK樹脂の諸物性値は、比重が1.3、吸水率が0.14%(23℃、24時間)、引張強度990kg/cm2 (23℃)、420kg/cm2 (200℃)、圧縮強度1300kg/cm2 (23℃)、熱変形温度152℃(18.6kg/cm2 )、融点334℃、熱伝導率6×10-6cal/sec・cm・℃、比熱0.32cal/℃・g、誘電率3.2〜3.3(0℃〜150℃、50Hz〜1010Hz)、体積固有抵抗1015(Ω・cm)等である。
【0021】
また、前記被加熱体2側に位置する網状電極1bとしては、ステンレスや銅等の線条を網状に編成加工したものでも、或いはステンレスや銅等の線条を格子状に一定間隔で並列配置したものであってもよく、本実施形態では銅線からなる平面状の網状体が電極1bとして使用されている。
尚、当該網状電極1bは、混合体から発熱体1aを成形加工する時に予かじめ発熱体1a内へ若干入り込んだ位置に配設しておくことにより、発熱体1aと一体化されており、その結果、網状電極1bが被加熱体2へ直接接触することは無い。
【0022】
前記平板電極1cは、銅又はステンレス製の薄板から形成されており、本実施形態に於いてはステンレス鋼製の四角形薄板が電極1cとして使用されている。尚、当該平板状電極1cは、網状電極1bの場合と同様に、発熱体1aの成形時に、予かじめ電極1cを発熱体1aの内方へ若干入り込んだ位置にセットしておくことにより、発熱体1aと一体化されている。
【0023】
図2を参照して、両電極1b・1c間へ通電する前は、合成樹脂シートから成る発熱体1aは低温状態にあり、その結果発熱体1aの抵抗値は、図2の抵抗温度特性曲線上のP1 点に位置している。
【0024】
今、ここで電極1a・1b間へ通電されると、発熱体1aの平板状電極1c側は、その外表面が空気に接しているため熱容量が比較的小さく、直ちに温度が上昇する。その結果、平面電極1c側の発熱体1aの温度は、P1 点からP2 点へ移動する。
【0025】
これに対して、発熱体1aの網状電極1b側の発熱量は、網状電極1bそのものの抵抗値が平板状電極1cより大きいために、平板状電極1c側の発熱量よりも大きくなる。しかし、発熱体1aの網状電極1b側の外表面には熱容量の比較的大きな被加熱体2が接触しているため、発熱体1aの網状電極1b側の温度は比較的緩やかに上昇し、P1 点からP3 点へ移行する。
【0026】
一方、発熱体1aの前記平板状電極1c側は、その温度が上昇することにより抵抗値が減少し、温度は緩やかに上昇して、抵抗温度特性曲線上のP4 点に達することになる。
また、発熱体1aの網状電極1b側の温度は、被加熱体2の温度が上昇するにつれて上昇する。これにより、その抵抗が下降し、電流即ち発熱量が増加することにより抵抗温度特性曲線上のP5 点に達する。
【0027】
その後、発熱体1aの網状電極1b側及び平板状電極1c側の温度が上昇すると、発熱体1aの抵抗が上昇することになり(P6 及びP7 )、その結果電流の増加が抑制されて温度上昇も制約されることになる。
【0028】
図2からも明らかなように、本発明の実施形態に係る面状ヒータ1によれば、発熱体1aの網状電極1b側の温度は、従前の面状ヒータのように低温の被加熱体2の接触によって温度上昇が阻害されるようなことは全く無く、所定の温度にまで斑なく連続的に上昇すると共に、所定の温度を越えると自動的に温度上昇が制限されることになる。
【0029】
(実施例1)
図3は、本発明の実施例に係る自己温度制御型面状ヒータ1の断面概要図である。発熱体1aは、PEEK樹脂とカーボンの混合体(カーボン粉体の混合率42.5wt%)から成型されており、その外形寸法は厚さ約1.5mm、横幅25mm、縦幅15mmとされている。
また、平板状電極1cは厚さ1.6mmのステンレス鋼板(25mm×15mm)により形成されており、発熱体1aの一側の外表面へ固設されている。
更に、網状電極1bは、外径0.6mmφのニッケルメッキ銅線から成る25mm×15mmの網状体(格子間隔1.5mm×1.5mm)から形成されており、発熱体1aの一方の外表面から約0.5mm内部へ入り込んだ位置に発熱体1aと一体的に固設されている。
【0030】
表1は、図3に示した面状ヒータ1の両電極1b・1c間へ電圧E(v)を印加した場合の測定値を示すものであり、網状電極1b及び平板状電極1c側の温度は放射温度計((株)堀場製作所製)により測定したものである。
【0031】
【表1】
Figure 0003957580
【0032】
また、図4は、前記表1をグラフ化したものであり、曲線Taは網状電極1b側の発熱体1aの外表面温度(℃)、Tbは平板状電極1c側の発熱体1aの外表面温度(℃)、Rは発熱体抵抗(Ω)を示すものである。
【0033】
(実施例2)
【表2】
Figure 0003957580
表2は、前記図3の自己温度制御型面状ヒータに於いて、網状電極1bの材料をステンレス鋼製(外径0.6mmφ、格子間隔1.5mm×1.5mm)とした場合の発熱体1aの抵抗温度特性の測定値であり、発熱体1aの温度は網状電極1b側の発熱体1aの外表面温度を示すものである。
また、発熱体1aを形成する混合体のカーボン粉体の含有率は42.3wt%に選定されている。
【0034】
図5は前記表2の測定値をグラフ化したものであり、発熱体1aの抵抗温度特性は略U字形を呈している。
【0035】
PEEK樹脂とカーボン粉体の混合体のカーボン粉体の含有率を、42.5wt%(実施例1)及び42.3wt%(実施例2)としているが、カーボン粉体の含有率は35〜50wt%、望ましくは40〜43wt%とするのがよい。含有率が50wt%を超えると導電性が高かくなり過ぎ発熱体としての利用が困難になる。また、逆に含有率が35wt%以下になると、U字形又はV字形の抵抗温度特性曲線を得ることが困難となる。
【0036】
尚、前記実施例1及び実施例2に於ける抵抗温度特性の測定(表1及び表2)では、発熱体1aの網状電極1b側の温度を測定するに際して被加熱体を網状電極1b側の発熱体1aの外表面へ接触させることはしていないが、被加熱体を網状電極1b側の外表面へ直接接触させた場合には、その熱容量に応じて、外表面側温度が平衡状態に達するまでに時間がかかるものの、抵抗温度特性曲線そのものの形状は図4及び図5の場合と同様に、略U字形(又は略V字形)の形状となることが実験により確認されている。
【0037】
【発明の効果】
本発明に於いては、自己温度制御型の面状ヒータを構成する発熱体をPEEK樹脂とカーボン粉体の混合体から成る導電性合成樹脂製とすると共に、カーボン粉体の含有率を35〜50wt%として発熱体が略U字形状又は略V字形状の抵抗温度特性曲線を具備するようにしている。
その結果、低温で且つ熱容量の大きな被加熱体を加熱する場合であっても、発熱体の被加熱体側の表層部温度は、常に迅速且つ斑なく所定の温度にまで上昇することになり、従前のこの種自己温度制御型面状ヒータのように、加熱の途中で昇温したい側の発熱量が減少してその表層部温度が迅速に上昇しなかったり、或いは温度上昇に部分的な斑を生ずるようなことが略皆無となる。
【0038】
また、本発明に於いては、発熱体の抵抗温度特性曲線の形状を略U字形状又は略V字形状となるようにしているため、発熱体そのものは高温に自己制御性を発揮することになり、面状ヒータとしての安全性が損われることは全くない。
本発明は上述の通り優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る自己温度制御型面状ヒータの断面概要図の一部を示すものである。
【図2】本発明に係る面状ヒータで用いる加熱体の抵抗温度特性を示すものである。
【図3】本発明の実施例に係る自己温度制御型面状ヒータの断面概要図である。
【図4】図3に係る面状ヒータの特性曲線図である。
【図5】第2実施例に係る面状ヒータの抵抗温度特性曲線である。
【図6】従前の自己温度制御型面状ヒータの断面概要図である。
【図7】従前の自己温度制御型面状ヒータの抵抗温度特性を示す曲線である。
【符号の説明】
1は自己温度制御型面状ヒータ、1aは発熱体(導電性合成樹脂シート)、1bは網状電極、1cは平板状電極、2は被加熱体、Taは発熱体の網状電極側の温度、Tbは発熱体の平板状電極側の温度、Rは発熱体の抵抗、Rtは発熱体の抵抗温度特性曲線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a planar heater having a self-temperature control characteristic, and can quickly and smoothly increase the temperature on the side in contact with a low-temperature object to be heated. The present invention relates to a self-temperature control type planar heater that can be uniformly heated.
[0002]
[Prior art]
The so-called planar heater is widely used as a heating element such as a snow melter or a heat insulator. Among them, a self-temperature control type planar heater using a heating element having a positive resistance temperature coefficient is safe. Because it is excellent, it is widely used.
[0003]
Thus, as this seed surface heater, a thin plate-like conductive plastic (conductive plastic sheet) having a structure in which a metal sheet-like electrode plate is fixed on both surface layers or a thin plate-like conductive plastic is used. A structure in which an electrode plate made of a plurality of metal wires (or metal nets) is fixed on both surface layer portions of (conductive plastic sheet) has been developed and put into practical use.
Further, as the conductive plastic material, a material obtained by mixing a heat-resistant resin material having flexibility with carbon or the like is often used, and the thickness thereof is selected from 1 mm to 3 mm.
Further, the conductive plastic material is excellent in heat resistance and heat transfer, and usually has a positive resistance temperature coefficient, so-called self-temperature control characteristics.
[0004]
The conventional self-temperature control type planar heater is not only excellent in the surroundings and adhesion of the outer surface of the object to be heated, but also has an excellent practical utility such as high safety.
However, many problems to be solved still remain in the self-temperature control type planar heater, and among them, if there is a big difference in the heat dissipation conditions on both sides of the heating element, the amount of heat generation on the side where the temperature is to be increased will decrease. As a result, the problem that the temperature does not rise rapidly or a partial spot occurs in the calorific value on the side where the temperature is desired to be raised remains as a problem to be solved immediately.
[0005]
For example, as shown in FIG. 6, the heating element (conductive plastic) H of the self-temperature control type planar heater A is composed of a Ha portion of resistance ra (Ω) and a Hb portion of resistance rb (Ω). It is assumed that a power supply voltage (not shown) is applied to the electrode plates B 1 and B 2 fixed on both surface layers. The heating element H has a resistance temperature characteristic as shown in FIG. 7, and the heating element H has a self-temperature control type characteristic.
[0006]
When the self-temperature control type planar heater is energized (E = 1 (v)) in a state where the heated object is not in contact, the heating element H is heated at a point of ra = rb = 1 (Ω) in FIG. Is in equilibrium.
Under this condition, the heat generation amount Pa of the Ha portion of the heat generating element H is Pa = I 2 × ra = (1/2) 2 × 1 = 0.25 (w), and the heat generation amount Pb of the Hb portion. Is Pb = I 2 × rb = (1/2) 2 × 1 = 0.25 (w).
[0007]
Next, by bringing the low temperature heated body C into contact with one side surface (Hb side) of the planar heater A, the temperature of the Hb portion of the heating element H is lowered, and as a result, the resistance rb of the Hb portion is 1/3. Suppose that
In this state, the heat generation amount Pa ′ of the Ha portion of the heating element H is Pa ′ = (3/4) 2 × 1 = 0.75 (w), and the heat generation amount Pb ′ of the Hb portion is Pb ′ = (3/4) 2 × 1/3 = 0.18 (w). That is, the heat generation amount of the heat generating element Ha increases and the temperature rapidly rises, whereas the heat generation amount of the heat generating element Hb decreases, so that a rapid temperature rise does not occur.
[0008]
On the other hand, when the temperature of the heating element Ha increases, the resistance ra of the Ha portion increases, and its value ra ′ increases to ra ′ = 2 (Ω). Similarly, it is assumed that the resistance rb of the Hb portion is lowered due to a slight decrease in the temperature of the heating element Hb portion, and the value rb ′ is lowered to rb ′ = 1/2 (Ω).
Under this condition, the heating value Pa ″ of the Ha portion of the heating element H is Pa ″ = (2/5) 2 · 2 = 0.32 (w). Also, the heating value Pb ″ of the Hb portion of the heating element H is , Pb ″ = (2/5) 2 · 1/2 = 0.08 (w), and the temperature difference between the Ha portion and the Hb portion of the heating element H becomes larger.
[0009]
Of course, since there is a heat transfer from the Ha part to the Hb part of the heating element H, the temperature difference between the Ha part and the Hb part reaches an equilibrium value with the passage of time. When the temperature of one side surface of the sheet heater A suddenly decreases due to the contact, the temperature of the other side surface that does not contact the heated object C rises rapidly, whereas the side to be heated contacts the heated object C. On the contrary, the above-described event that the heating of the object C to be heated becomes difficult due to a decrease in the temperature of this is a phenomenon that is often seen.
[0010]
[Problems to be solved by the invention]
The present invention has the above-mentioned problem in the conventional self-temperature control type planar heater, that is, when a low-temperature object to be heated is brought into contact, the temperature on the side to be heated does not rise easily. It is intended to solve the problem that the temperature on the side opposite to the side to which the heated body comes into contact is solved, and when the low-temperature heated body is brought into contact, the temperature on the side in which the heated body comes into contact is immediately spotted. It is an object of the present invention to provide a self-temperature control type planar heater that can be raised without any problem.
[0011]
[Means for Solving the Problems]
Thus, in order to prevent the occurrence of the above-mentioned event in the self-temperature control type planar heater, the heat conductivity of the heating element H forming the planar heater A is increased, and the thickness of the heating element H is increased. Measures such as making it as thin as possible and appropriately selecting the rate of change of the resistance temperature characteristic of the heating element H are conceivable, and many planar heaters A that incorporate these measures have been developed.
The inventor of the present application completely abandons the thinking method relating to the range of use of the resistance temperature characteristics of the heating element H constituting the conventional planar heater, and the heating element H has a negative resistance temperature characteristic in a low heating temperature range. On the other hand, in the range where the heating temperature is high, the heating element H is newly conceived to have positive resistance temperature characteristics, and various resistance temperature characteristics satisfying these conditions are provided. The heating element H was developed and manufactured, and a number of heating characteristics tests were conducted on the planar heater A using the same.
[0012]
The present invention was created based on the results of tests on a number of planar heaters as described above, and the invention according to claim 1 is a combination of a synthetic resin and carbon powder having high thermal conductivity and heat resistance. A plate-like heating element made of a conductive synthetic resin formed from a mixture, a metal flat electrode fixed on one side of the heating element, and a metal mesh electrode fixed on the other side of the heating element The synthetic resin forming the heating element is PEEK resin and the carbon powder content is 35 to 50 wt%, and the heating element is substantially U-shaped or substantially The basic configuration of the present invention is to have a V-shaped resistance-temperature characteristic curve.
[0013]
The invention of claim 2 is the invention of claim 1, wherein the flat electrode is made of stainless steel plate and the mesh electrode is made of a copper mesh.
[0014]
The invention of claim 3 is the invention of claim 1 or claim 2, wherein the carbon powder content is set to 40 to 43 wt%, and the mesh electrode is embedded and fixed in the surface layer portion on one side of the heating element, Further, the heated body is brought into contact with the outer surface of the heating element on the mesh electrode side.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a part of a schematic cross-sectional view of a self-temperature control type planar heater according to an embodiment of the present invention, in which 1 is a planar heater, 1a is a heating element of the planar heater, 1b is a mesh electrode positioned on the heated body 2 side, and 1c is a flat electrode.
[0016]
For example, as shown in FIG. 1, the planar heater 1 is in a state in which the outer surface on the mesh electrode 1 b side is in contact with the heated body (can body or the like) 2 or surrounds the outer surface of the heated body 2. And a predetermined voltage is applied between the electrodes 1b and 1c.
[0017]
The heating element 1a is formed in a square sheet having a thickness of about 1.0 to 2 mm, and the dimension of one side is selected to be about 100 mm to 200 mm.
In addition, the heating element 1a is formed by using a mixture obtained by kneading carbon powder in a heat-resistant and highly heat-conductive synthetic resin as a raw material and compressing it into a sheet shape.
Further, the mixing ratio of the synthetic resin and the carbon powder of the mixture forming the heating element 1a is selected so that the resistance temperature characteristic of the heating element 1a is substantially U-shaped (or substantially V-shaped) as shown in FIG. Has been.
[0018]
The synthetic resin material that is a constituent material of the heating element 1a has thermal conductivity and heat resistance, is further imparted with conductivity by mixing with carbon powder, and has a resistance temperature characteristic of a substantially U shape or a substantially V shape. Any synthetic resin may be used, and so-called PEEK resin is used in the present embodiment.
The PEEK resin is an abbreviation for polyetheretherketone resin and has a molecular structure represented by the following structural formula. The PEEK resin is a thermoplastic super heat-resistant resin that was successfully synthesized in 1977 by UK IC Corporation and is currently manufactured and sold by Victrex UK.
[0019]
[Chemical 1]
Figure 0003957580
[0020]
Furthermore, various physical properties of the PEEEK resin are as follows: specific gravity is 1.3, water absorption is 0.14% (23 ° C., 24 hours), tensile strength is 990 kg / cm 2 (23 ° C.), 420 kg / cm 2 (200 ° C. ), Compressive strength 1300 kg / cm 2 (23 ° C.), heat distortion temperature 152 ° C. (18.6 kg / cm 2 ), melting point 334 ° C., thermal conductivity 6 × 10 −6 cal / sec · cm · ° C., specific heat 0. 32 cal / ° C. · g, dielectric constant 3.2 to 3.3 (0 ° C. to 150 ° C., 50 Hz to 10 10 Hz), volume resistivity 10 15 (Ω · cm), and the like.
[0021]
Further, as the mesh electrode 1b positioned on the heated body 2 side, a wire made of stainless steel or copper or the like is knitted into a mesh shape, or a wire made of stainless steel or copper is arranged in parallel at regular intervals in a lattice shape. In this embodiment, a planar network made of copper wire is used as the electrode 1b.
The mesh electrode 1b is integrated with the heating element 1a by being disposed at a position where the heating element 1a is slightly inserted into the heating element 1a in advance when the heating element 1a is molded from the mixture. As a result, the mesh electrode 1b does not contact the heated body 2 directly.
[0022]
The flat plate electrode 1c is formed of a thin plate made of copper or stainless steel. In the present embodiment, a rectangular thin plate made of stainless steel is used as the electrode 1c. As in the case of the mesh electrode 1b, the flat electrode 1c is set at a position where the electrode 1c is slightly inserted inward of the heating element 1a when the heating element 1a is formed. It is integrated with the heating element 1a.
[0023]
Referring to FIG. 2, before energization between both electrodes 1b and 1c, heating element 1a made of a synthetic resin sheet is in a low temperature state, and as a result, the resistance value of heating element 1a is the resistance-temperature characteristic curve of FIG. It is located in the P 1 point above.
[0024]
Now, when current is applied between the electrodes 1a and 1b, the heat capacity 1a side of the heating element 1a has a relatively small heat capacity because its outer surface is in contact with air, and the temperature immediately rises. As a result, the temperature of the heating element 1a on the flat electrode 1c side moves from the P 1 point to the P 2 point.
[0025]
On the other hand, the heating value on the mesh electrode 1b side of the heating element 1a is larger than the heating value on the plate electrode 1c side because the resistance value of the mesh electrode 1b itself is larger than the plate electrode 1c. However, since the heated body 2 having a relatively large heat capacity is in contact with the outer surface of the heating element 1a on the mesh electrode 1b side, the temperature on the mesh electrode 1b side of the heating element 1a rises relatively slowly. Move from 1 point to P 3 point.
[0026]
Meanwhile, the flat electrode 1c side of the heat generating element 1a is to resistance reduced by the temperature rises, the temperature was gradually increased, it will reach the P 4 points on the resistance-temperature characteristic curve.
Further, the temperature of the heating element 1a on the mesh electrode 1b side increases as the temperature of the heated body 2 increases. As a result, the resistance decreases and the current, that is, the amount of heat generation increases, and reaches the point P 5 on the resistance temperature characteristic curve.
[0027]
Thereafter, when the temperature of the mesh electrode 1b side and the plate-shaped electrode 1c side of the heat generating element 1a is increased, will be the resistance of the heating element 1a is increased (P 6 and P 7), resulting increase in current is suppressed Temperature rise is also restricted.
[0028]
As is apparent from FIG. 2, according to the planar heater 1 according to the embodiment of the present invention, the temperature of the heating element 1a on the mesh electrode 1b side is the low temperature to be heated 2 like the conventional planar heater. The temperature rise is not obstructed by the contact of, and the temperature rises up to a predetermined temperature without any spots, and when the temperature exceeds the predetermined temperature, the temperature rise is automatically limited.
[0029]
Example 1
FIG. 3 is a schematic cross-sectional view of the self-temperature control type planar heater 1 according to the embodiment of the present invention. The heating element 1a is molded from a mixture of PEEK resin and carbon (carbon powder mixing ratio 42.5 wt%), and the outer dimensions are about 1.5 mm in thickness, 25 mm in width, and 15 mm in width. Yes.
The flat electrode 1c is formed of a 1.6 mm thick stainless steel plate (25 mm × 15 mm), and is fixed to the outer surface on one side of the heating element 1a.
Further, the mesh electrode 1b is formed of a 25 mm × 15 mm mesh (lattice spacing 1.5 mm × 1.5 mm) made of nickel-plated copper wire having an outer diameter of 0.6 mmφ, and one outer surface of the heating element 1a. Is fixed integrally with the heating element 1a at a position of about 0.5 mm inside.
[0030]
Table 1 shows measured values when the voltage E (v) is applied between the electrodes 1b and 1c of the planar heater 1 shown in FIG. 3, and the temperature on the mesh electrode 1b and the plate electrode 1c side is shown. Is measured with a radiation thermometer (manufactured by Horiba, Ltd.).
[0031]
[Table 1]
Figure 0003957580
[0032]
FIG. 4 is a graph of Table 1 above, where curve Ta is the outer surface temperature (° C.) of the heating element 1a on the mesh electrode 1b side, and Tb is the outer surface of the heating element 1a on the plate electrode 1c side. Temperature (° C.) and R indicate heating element resistance (Ω).
[0033]
(Example 2)
[Table 2]
Figure 0003957580
Table 2 shows the heat generation when the material of the mesh electrode 1b is made of stainless steel (outer diameter 0.6 mmφ, lattice spacing 1.5 mm × 1.5 mm) in the self-temperature control type planar heater of FIG. It is a measured value of resistance temperature characteristics of the body 1a, and the temperature of the heating element 1a indicates the outer surface temperature of the heating element 1a on the mesh electrode 1b side.
The carbon powder content of the mixture forming the heating element 1a is selected to be 42.3 wt%.
[0034]
FIG. 5 is a graph of the measured values in Table 2, and the resistance-temperature characteristic of the heating element 1a is substantially U-shaped.
[0035]
The carbon powder content of the mixture of PEEK resin and carbon powder is 42.5 wt% (Example 1) and 42.3 wt% (Example 2). 50 wt%, desirably 40 to 43 wt%. When the content exceeds 50 wt%, the conductivity becomes so high that it is difficult to use as a heating element. On the other hand, when the content is 35 wt% or less, it becomes difficult to obtain a U-shaped or V-shaped resistance temperature characteristic curve.
[0036]
In the measurement of resistance temperature characteristics in Tables 1 and 2 (Tables 1 and 2), when measuring the temperature of the heating element 1a on the mesh electrode 1b side, the object to be heated was measured on the mesh electrode 1b side. Although it is not in contact with the outer surface of the heating element 1a, when the heated body is brought into direct contact with the outer surface on the mesh electrode 1b side, the outer surface temperature is in an equilibrium state according to the heat capacity. Although it takes time to reach, it has been experimentally confirmed that the shape of the resistance temperature characteristic curve itself is substantially U-shaped (or substantially V-shaped) as in the case of FIGS.
[0037]
【The invention's effect】
In the present invention, the heating element constituting the self-temperature control type planar heater is made of conductive synthetic resin made of a mixture of PEEK resin and carbon powder, and the carbon powder content is 35 to 35%. The heating element has a resistance temperature characteristic curve having a substantially U shape or a substantially V shape with 50 wt%.
As a result, even when the object to be heated is heated at a low temperature and has a large heat capacity, the surface layer temperature on the object to be heated side of the heating element always rises to a predetermined temperature quickly and without unevenness. As in this kind of self-temperature control type planar heater, the amount of heat generated on the side to be heated is reduced during heating, and the surface layer temperature does not rise rapidly, or there is a partial spot in the temperature rise. There is almost nothing that happens.
[0038]
In the present invention, since the resistance temperature characteristic curve of the heating element is substantially U-shaped or substantially V-shaped, the heating element itself exhibits self-controllability at high temperatures. Therefore, the safety as a planar heater is not impaired at all.
The present invention has excellent practical utility as described above.
[Brief description of the drawings]
FIG. 1 shows a part of a schematic cross-sectional view of a self-temperature control type planar heater according to the present invention.
FIG. 2 shows resistance temperature characteristics of a heating element used in a planar heater according to the present invention.
FIG. 3 is a schematic cross-sectional view of a self-temperature control type planar heater according to an embodiment of the present invention.
4 is a characteristic curve diagram of the planar heater according to FIG. 3;
FIG. 5 is a resistance-temperature characteristic curve of the planar heater according to the second embodiment.
FIG. 6 is a schematic cross-sectional view of a conventional self-temperature control type planar heater.
FIG. 7 is a curve showing resistance temperature characteristics of a conventional self-temperature control type planar heater.
[Explanation of symbols]
1 is a self-temperature control type planar heater, 1a is a heating element (conductive synthetic resin sheet), 1b is a mesh electrode, 1c is a flat plate electrode, 2 is a body to be heated, Ta is a temperature on the mesh electrode side of the heating element, Tb is the temperature on the flat electrode side of the heating element, R is the resistance of the heating element, and Rt is the resistance-temperature characteristic curve of the heating element.

Claims (3)

高熱伝導性と耐熱性を有する合成樹脂とカーボン粉末の混合体から形成した導電性合成樹脂から成る板状発熱体と、当該発熱体の一側に固設した金属製の平板状電極と、前記発熱体の他側に固設した金属製の網状電極とから構成した自己温度制御型面状ヒータに於いて、前記発熱体を形成する合成樹脂をPEEK樹脂とすると共にカーボン粉体の含有率を35〜50wt%とし、発熱体が略U字形又は略V字形の抵抗温度特性曲線を具備するものとしたことを特徴とする自己温度制御型面状ヒータ。A plate-like heating element made of a conductive synthetic resin formed from a mixture of a synthetic resin having high thermal conductivity and heat resistance and carbon powder, a metal plate-like electrode fixed on one side of the heating element, and In a self-temperature control type planar heater composed of a metal mesh electrode fixed on the other side of the heating element, the synthetic resin forming the heating element is made of PEEK resin and the content of carbon powder is controlled. A self-temperature control type planar heater, characterized in that the heating element has a resistance temperature characteristic curve of substantially U-shape or substantially V-shape, and is 35-50 wt%. 平板状電極をステンレス鋼板製とすると共に網状電極を銅製網体とするようにした請求項1に記載の自己温度制御型面状ヒータ。2. The self-temperature control type planar heater according to claim 1, wherein the flat electrode is made of a stainless steel plate and the mesh electrode is a copper mesh. カーボン粉体の含有率を40〜43wt%とすると共に網状電極を発熱体の一側の表層部へ埋設固定し、更に発熱体の網状電極側の外表面へ被加熱体を接触させる構成とした請求項1又は請求項2に記載の自己温度制御型面状ヒータ。The carbon powder content is set to 40 to 43 wt%, and the mesh electrode is embedded and fixed in the surface layer portion on one side of the heating element, and the heated object is brought into contact with the outer surface of the heating element on the mesh electrode side. The self-temperature control type planar heater according to claim 1 or 2.
JP2002206475A 2002-07-16 2002-07-16 Self-temperature control type surface heater Expired - Fee Related JP3957580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206475A JP3957580B2 (en) 2002-07-16 2002-07-16 Self-temperature control type surface heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206475A JP3957580B2 (en) 2002-07-16 2002-07-16 Self-temperature control type surface heater

Publications (2)

Publication Number Publication Date
JP2004047393A JP2004047393A (en) 2004-02-12
JP3957580B2 true JP3957580B2 (en) 2007-08-15

Family

ID=31711450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206475A Expired - Fee Related JP3957580B2 (en) 2002-07-16 2002-07-16 Self-temperature control type surface heater

Country Status (1)

Country Link
JP (1) JP3957580B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657469B1 (en) 2004-07-21 2006-12-13 엘지전자 주식회사 Twist type Carbon filament structure of carbon heater
KR100657470B1 (en) * 2004-07-27 2006-12-13 엘지전자 주식회사 Structure for connecting carbon filament of carbon heater

Also Published As

Publication number Publication date
JP2004047393A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US4317027A (en) Circuit protection devices
EP2080414B1 (en) Heating element
US4017715A (en) Temperature overshoot heater
US4238812A (en) Circuit protection devices comprising PTC elements
US4845343A (en) Electrical devices comprising fabrics
US8558655B1 (en) Positive temperature coefficient polymer composition and positive temperature coefficient circuit protection device
EP0123540A2 (en) Conductive polymers and devices containing them
JP3957580B2 (en) Self-temperature control type surface heater
CN105794312B (en) Compound, self-regulation heating element and the method for forming such compound
KR100772068B1 (en) Ribbon heater for sub heater
JP3317895B2 (en) Temperature self-control function heater
CA2291370A1 (en) An electric continuous flow heater and a method for its manufacture
JPH03187201A (en) Thermosensible electric resistance composition body
US1778884A (en) Electric heating unit
TWM578920U (en) A flexible conductive heating element with self-limiting and regulating characteristics
US3295090A (en) Electrical resistor having a core element with high heat dissipating properties
JP2019009071A (en) Conductive composition and planar heating element
JPS5817355Y2 (en) Ceramic hatsnet tie
KR100792155B1 (en) Electrode of ribbon heater for sub heater and manufacturing method thereof
JPH04174990A (en) High efficiency infrared-ray radiating ceramic heating element
JP3977143B2 (en) Floor heating system
JP2006202757A (en) Radiation electric heating element
CA1173884A (en) Ptc heater assembly
JPH0927383A (en) Surface heater element and its manufacture
JPS6239594Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees