JPH02128151A - Evaluation of corrosion for metallic material - Google Patents

Evaluation of corrosion for metallic material

Info

Publication number
JPH02128151A
JPH02128151A JP28072988A JP28072988A JPH02128151A JP H02128151 A JPH02128151 A JP H02128151A JP 28072988 A JP28072988 A JP 28072988A JP 28072988 A JP28072988 A JP 28072988A JP H02128151 A JPH02128151 A JP H02128151A
Authority
JP
Japan
Prior art keywords
potential
metal material
corrosion
corrosion resistance
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28072988A
Other languages
Japanese (ja)
Inventor
Takao Handa
隆夫 半田
Yoshimori Miyata
宮田 恵守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28072988A priority Critical patent/JPH02128151A/en
Publication of JPH02128151A publication Critical patent/JPH02128151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To enable evaluation of corrosiveness with a high reliability by generating a dissolution current noise to measure a recovery time at a latter half indicating a process in which a corroded hole of the material is repaired. CONSTITUTION:A metallic material desired to be evaluated is dipped into a desired aqueous solution and the metal material undergoes a constant potential electrolysis at a desired potential in a potential area from a natural dip potential to active dissolution to generate a dissolution current noise. Then, time (recovery time) is measured actually from the generation of a peak current of the dissolution current noise to the recovery of a corroded hole on the surface of the metallic material to evaluate corrosiveness depending on the length of the recovery time. The corrosiveness may be evaluated by a recovery speed in stead of the length of recovery time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は任意の金属材料の耐食性評価法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for evaluating corrosion resistance of any metal material.

[従来の技術] 従来、金属材料の耐食性評価法としては、塩水噴震中に
金属材料を一定時間放置後、孔食の発生度合を観察する
ことにより耐食性を評価する塩水噴震試験法(、zs 
 Z  2371)、あるいは、ステンレス鋼等の不働
態化合金のアノード分極曲線に観測される孔食発生電位
を測定することにより耐食性を評価する孔食発生電位測
定法等が知られている。
[Prior Art] Conventionally, as a method for evaluating the corrosion resistance of metal materials, the salt water jet test method (, zs
Z 2371) or a pitting potential measurement method for evaluating corrosion resistance by measuring the pitting potential observed in the anode polarization curve of a passivated alloy such as stainless steel.

これらの評価法は、金属材料を、実際の腐食環境よりも
過酷な腐食環境に曝すことにより腐食現象を促進させ、
その際の試料の変化から実際の環境での耐食性を予測す
る、いわゆる加速試験法である。
These evaluation methods accelerate corrosion phenomena by exposing metal materials to a harsher corrosive environment than the actual corrosive environment.
This is a so-called accelerated testing method that predicts the corrosion resistance in the actual environment from changes in the sample at that time.

これらの評価法は、ある程度その金属材料の特性値に近
い有力な評価指標とされているが、測定条件によって得
られる評価が異なる場合が多く、また、あくまで加速試
験であり実際の環境での耐食性とはかなり違いが生じる
ことも多い。例えば、ロール急冷法により作製した結晶
質の5US304ステンレス(結晶粒径約1μm)は、
通常の方法により作製した結晶質の5US304ステン
レス(結晶粒径約30〜50μm)より実際の腐食環境
における耐食性ははるかに優れていることが知られてい
るが、孔食発生電位法により評価した場合、前者の腐食
電位は400mVであるのに対し後者のそれは200m
Vであり、実際の耐食性の差異に比べるとその差異はさ
ほど明瞭ではなく、信頼性の高い評価法とは言い難い。
These evaluation methods are considered to be powerful evaluation indicators that are close to the characteristic values of the metal material to some extent, but the evaluations obtained often differ depending on the measurement conditions, and they are only accelerated tests and do not measure corrosion resistance in the actual environment. There is often a significant difference. For example, crystalline 5US304 stainless steel (crystal grain size approximately 1 μm) produced by the roll quenching method is
It is known that the corrosion resistance in an actual corrosive environment is far superior to that of crystalline 5US304 stainless steel (crystal grain size approximately 30 to 50 μm) produced by conventional methods, but when evaluated by the pitting potential method. , the corrosion potential of the former is 400mV, while that of the latter is 200mV.
V, and the difference is not so clear compared to the actual difference in corrosion resistance, and it cannot be said to be a highly reliable evaluation method.

また、加速試験とは言っても、塩水噴霧試験では、数カ
月に及ぶ試験期間を要することも普通であり、孔食発生
電位法でも、厳密に行おうとすれば相応の時間を要する
Furthermore, although it is an accelerated test, a salt spray test usually requires a test period of several months, and even the pitting potential method requires a considerable amount of time if it is to be carried out strictly.

また、これらの評価法は破壊試験であり、このことも適
用に限界を生じさせる一因となっている。
Furthermore, these evaluation methods are destructive tests, which is also one of the causes of limitations in their applicability.

一方、孔食発生電位性以外の電気化学的測定法として、
強制的にアノード側に分極させ、過酷な腐食条件下で金
属の耐食性を評価する方法(分極抵抗法)、皮膜の絶縁
性を測定し、絶縁率により耐食性を評価する方法(皮膜
抵抗法)、金属材料を水に浸漬し、基準電極に対する電
位の変動により耐食性を評価する方法(腐食電位測定法
)が、新たな腐食試験法として注目されている。
On the other hand, as an electrochemical measurement method other than pitting corrosion potential,
A method of forcibly polarizing the metal to the anode side and evaluating the corrosion resistance of the metal under severe corrosive conditions (polarization resistance method), a method of measuring the insulation of the film and evaluating the corrosion resistance by insulation rate (film resistance method), A method of evaluating corrosion resistance by immersing a metal material in water and measuring potential changes relative to a reference electrode (corrosion potential measurement method) is attracting attention as a new corrosion testing method.

これらの方法は、■実時間的な測定であること、■非破
壊検査であること、■連続測定であること等の利点を有
している。
These methods have the following advantages: (1) real-time measurement, (2) non-destructive testing, and (2) continuous measurement.

しかし、これらの電気化学的測定法による評価法は次の
ような課題を有している。
However, these evaluation methods using electrochemical measurement methods have the following problems.

すなわち、分極抵抗法では、活性状態での腐食における
電気化学的腐食にのみ適用可能であり、皮膜及び溶液の
高抵抗による妨害を受は易い。
That is, the polarization resistance method is applicable only to electrochemical corrosion in active state corrosion, and is easily interfered with by the high resistance of the film and solution.

また、皮膜抵抗法では、対象となる金属材料による測定
差が大きい。
Furthermore, in the film resistance method, there are large measurement differences depending on the target metal material.

腐食電位測定法では、腐食速度の定量的把握が不可能で
ある。
It is not possible to quantitatively understand the corrosion rate using the corrosion potential measurement method.

結局、これら電気化学的測定法も高い信頼性を有してい
るとは言い難い。
After all, these electrochemical measurement methods cannot be said to have high reliability either.

[発明が解決しようとする課題] 本発明の目的は、短時間に、試料を破壊することなく、
任意の合金に適用が可能であり、高い信頼性をもって耐
食性を評価することができる金属材料の耐食性評価法を
提供することを目的とする。
[Problem to be solved by the invention] The purpose of the present invention is to solve the problem in a short time and without destroying the sample.
The purpose of the present invention is to provide a method for evaluating corrosion resistance of metal materials that can be applied to any alloy and can evaluate corrosion resistance with high reliability.

[課題を解決するための手段] 本発明の要旨は、評価しようとする金属材料を任意の水
溶液中に浸漬し、自然浸漬電位から活性溶解に至るまで
の電位領域における任意の電位で該金属材料を定電位電
解することによつて溶解電流ノイズを発生させ、修復時
間trを実測し、該修復時間trの大小により耐食性を
評価することを特徴とする金属材料の耐食性評価法に存
在する。
[Means for Solving the Problems] The gist of the present invention is to immerse a metal material to be evaluated in an arbitrary aqueous solution, and immerse the metal material at an arbitrary potential in the potential range from natural immersion potential to active dissolution. A method for evaluating corrosion resistance of metal materials is characterized in that a dissolution current noise is generated by electrolyzing at a constant potential, a repair time tr is actually measured, and the corrosion resistance is evaluated based on the magnitude of the repair time tr.

なお、修復時間trの大小に代え、下記の式(1)で示
される修復速度Vにより耐食性を評価してもよい。この
場合Vが大きいほど耐食性が良好であることを意味する
のでより評価がしやすくなる。
Note that instead of the magnitude of the repair time tr, the corrosion resistance may be evaluated using the repair speed V expressed by the following equation (1). In this case, the larger V means better corrosion resistance, which makes evaluation easier.

記 v−f/1r(1) [作用] 以下に本発明の作用を本発明をなすに際して得た知見と
とも説明する。
v-f/1r(1) [Function] The function of the present invention will be explained below along with the findings obtained in making the present invention.

評価しようとする金属材料を任意の水溶液中に浸漬し、
自然浸漬電位から活性溶解に至るまでの電位領域におけ
る任意の電位で該金属材料を定電位電解すると、第1図
に示されるように、溶解電流ノイズが発生する。
Immerse the metal material to be evaluated in any aqueous solution,
When the metal material is subjected to constant potential electrolysis at an arbitrary potential in the potential range from natural immersion potential to active dissolution, dissolution current noise is generated as shown in FIG. 1.

本発明者は、この溶解電流ノイズを利用すれば耐食性を
評価することができるのではないかとの着想を得、溶解
電流ノイズを詳細に分析した。その結果、溶解電流ノイ
ズは、ピーク電流値を示す時点を境に腐食孔が形成され
る過程を示す前半部と、腐食孔が修復される過程を示す
後半部とに分けられることがわかった。さらに分析を重
ねたところ、溶解電流ノイズの前半部は、試験片である
金属材料の表面処理状態等により腐食孔の発生点等が影
響を受けるので、必ずしも金属材料の特性を示すとは限
らず、それに対して、後半部は、溶出したイオンが沈殿
堆積し腐食孔内の活性溶解部分を修復する過程を示す部
分であり、他の要因に左右されず金属材料本来の特性を
示す部分であることを発見した。
The present inventor got the idea that corrosion resistance could be evaluated by using this melting current noise, and analyzed the melting current noise in detail. As a result, it was found that the dissolution current noise can be divided into the first half, which indicates the process in which corrosion holes are formed, and the second half, which indicates the process in which the corrosion holes are repaired, starting from the time when the peak current value is indicated. Further analysis revealed that the first half of the melting current noise does not necessarily indicate the characteristics of the metal material, as the points where corrosion holes occur are affected by the surface treatment status of the metal material used as the test piece. , On the other hand, the second half shows the process in which eluted ions precipitate and accumulate and repair the active dissolution part within the corrosion hole, and is the part that shows the original characteristics of the metal material without being influenced by other factors. I discovered that.

本発明はかかる発見に基ずきなされたものである。すな
わち、この後半部の再不動態化時間すなわち修復時間t
rを測定し、その大小により耐食性を評価すれば、金属
材料本来の特性を訂偏することができ、しかも、腐食を
加速することもなく短時間かつ非破壊で、高い信頼性を
もって金属材料の耐食性を的確に評価することができる
こととなる。
The present invention has been made based on this discovery. That is, the repassivation time of this latter half, that is, the repair time t
By measuring r and evaluating the corrosion resistance based on its magnitude, it is possible to correct the inherent characteristics of metal materials, and to evaluate the corrosion resistance of metal materials with high reliability in a short period of time, non-destructively, and without accelerating corrosion. This makes it possible to accurately evaluate corrosion resistance.

なお、複数個の腐食孔形成に対応した電流ノイズは複雑
な形態をとるので、第1図のような一個の腐食孔形成に
対応する単純な形態のものが測定対象ノイズとして好ま
しい。また、ピーク電流値としては1μA程度以下を目
安とすることが好ましい。
Note that since the current noise corresponding to the formation of a plurality of corrosion holes takes a complicated form, a simple form corresponding to the formation of one corrosion hole as shown in FIG. 1 is preferable as the noise to be measured. Further, it is preferable that the peak current value is approximately 1 μA or less.

なお、本発明はすべての金属材料に適用が可能であり、
また、ここでいう金属材料とは、純金属材料に限らず、
合金材料をも含む概念である。
Note that the present invention can be applied to all metal materials,
In addition, the metal materials mentioned here are not limited to pure metal materials.
This concept also includes alloy materials.

[実施例] (実施例1) 非晶質合金は均一な不働態皮膜の形成により高耐食性を
有すると報告されており、実際に濃塩酸中等の極端に過
酷な腐食環境下でも自己不働態化する合金極も存在する
。ここではその一つであるFe−Cr−5t−B系の非
晶質ステンレス合金を試料として測定を行った結果を示
す。
[Example] (Example 1) Amorphous alloys are reported to have high corrosion resistance due to the formation of a uniform passive film, and in fact, they self-passivate even in extremely harsh corrosive environments such as concentrated hydrochloric acid. There are also alloy electrodes that do this. Here, we will show the results of measurements made using one of these, an Fe-Cr-5t-B-based amorphous stainless steel alloy, as a sample.

ロール急冷法を用いて、巾5mm、厚さ30μmのF 
e Sac r 20S l +oB +s非非晶スス
テンレス合金以下本明細書では単に非晶質合金という)
を作製し、この非晶質合金をエタノール洗浄後、第2図
に示すように3%NaCJ2水溶液9中に浸漬して、参
照極として飽和甘木基準4を用い修復時間Vを測定した
。なお、対極にはpt板5を使用した。
Using the roll quenching method, F with a width of 5 mm and a thickness of 30 μm
e Sac r 20S l +oB +sAmorphous stainless steel alloy (hereinafter simply referred to as amorphous alloy)
After washing this amorphous alloy with ethanol, it was immersed in a 3% NaCJ2 aqueous solution 9 as shown in FIG. 2, and the repair time V was measured using a saturated Amagi standard 4 as a reference electrode. Note that a PT plate 5 was used as the counter electrode.

第2図の測定系を参照して測定手順をより具体的に述べ
ると、飽和甘木基準でO〜200mVで定電位電解を5
分間行い、その過程で発生した溶解電流ノイズを1ms
の時間ADコンパータフによりAD変換し、測定制御、
記録機能を有するパーソナルコンピューター8を介して
フロッピーディスクに記録し解析を行った。
To describe the measurement procedure in more detail with reference to the measurement system shown in Figure 2, constant potential electrolysis is performed at 0 to 200 mV with a saturated Amagi reference
The dissolution current noise generated during the process was measured for 1 ms.
AD converts the time using AD converter and controls the measurement.
Analysis was performed by recording on a floppy disk via a personal computer 8 having a recording function.

一つの腐食孔に対応する溶解電流ノイズの一例として第
1図に示す結果が得られた。第1図に示すように、ピー
ク電流値ipは約0.6μA、修復時間trは0.02
secであった。前述したように、修復時間trの測定
と式(1)から修復速度Vを求めたところ、修復時間V
は50/secであった。
The results shown in FIG. 1 were obtained as an example of dissolution current noise corresponding to one corrosion hole. As shown in Fig. 1, the peak current value ip is approximately 0.6μA, and the repair time tr is 0.02μA.
It was sec. As mentioned above, when the repair speed V was calculated from the measurement of the repair time tr and equation (1), the repair time V
was 50/sec.

一方、比較のために通常の作製法で作製した結晶質の5
US304ステンレス(結晶粒径30〜50μm)(以
下この合金を本明細書では通常合金という)につき前述
した非晶質合金と同様の方法で、修復時間の測定を行な
った。その結果、通常合金の修復速度として7 / s
 e cが得られた。
On the other hand, for comparison, crystalline 5
The repair time was measured for US304 stainless steel (crystal grain size 30 to 50 μm) (hereinafter this alloy will be referred to as normal alloy in this specification) in the same manner as for the amorphous alloy described above. As a result, the repair speed for normal alloys is 7/s
e c was obtained.

非晶質合金と通常合金とについて得られた結果を第1表
に示す。両方の結果を比較すると、修復速度Vは、非晶
質合金が通常合金より一桁速いことがわかる。すなわち
、非晶質合金の修復速度が通常合金の修復速度よりも非
常に速いということは、実際の腐食環境下においては、
通常合金の耐食性に対して圧倒的に優れる非晶質合金の
耐食性がその通りに評価されたことを意味する。結局、
本実施例では短時間でかつ試料を破壊せず的確に非晶質
合金の高耐食性を評価することができた。
Table 1 shows the results obtained for the amorphous alloy and the normal alloy. Comparing both results, it can be seen that the repair speed V of the amorphous alloy is one order of magnitude faster than that of the normal alloy. In other words, the fact that the repair speed of amorphous alloys is much faster than that of normal alloys means that in an actual corrosive environment,
This means that the corrosion resistance of amorphous alloys, which is overwhelmingly superior to that of ordinary alloys, has been evaluated as expected. in the end,
In this example, it was possible to accurately evaluate the high corrosion resistance of an amorphous alloy in a short time and without destroying the sample.

第1表 (実施例2) ロール急冷法により5US304ステンレスの溶融金属
を急冷凝固し、巾5mm、厚さ70μmのリボン状の金
属材料(本明細書では以下この金属材料を急冷合金とい
う)を作製した。X線回折結果からこの金属材料は結晶
質であることを確認し、また、その結晶粒径は約1μm
であった。
Table 1 (Example 2) Molten metal of 5US304 stainless steel was rapidly solidified by the roll quenching method to produce a ribbon-shaped metal material with a width of 5 mm and a thickness of 70 μm (hereinafter, this metal material is referred to as a quenched alloy). did. The X-ray diffraction results confirmed that this metal material was crystalline, and the crystal grain size was approximately 1 μm.
Met.

この急冷合金につき、第1実施例と同様の方法を用いて
、修復時間を実測した。
Regarding this rapidly solidified alloy, the repair time was actually measured using the same method as in the first example.

また、修復時間を測定するとともに、孔食発生電位をも
測定した。その結果を、第1実施例の結果と合せて第2
表に示す。
In addition to measuring the repair time, the potential for pitting corrosion was also measured. The results are combined with the results of the first example and the second
Shown in the table.

第2表 Ep:3XNaC1水溶液中飽和甘大基準の孔食発生電
位V;修復速度 第2表かられかるように急冷合金は孔食発生電位におい
ては通常合金より飽和甘木電極で200mV程度しか責
にならず、顕著な有為差は認められない、しかるに、急
冷合金の修復速度は、第1実施例で得られた非晶質合金
の修復速度に近い値を示しており、実際の腐食環境下に
おける耐食性に合致している。このことから急冷合金の
不働態領域における高耐食性を高い信顆性をもって評価
することができた。
Table 2 Ep: Pitting corrosion generation potential V based on saturated sweetness in 3XNaCl aqueous solution; Repair speed As seen from Table 2, rapidly solidified alloys have a pitting corrosion generation potential of only about 200 mV at a saturated sweetwood electrode than normal alloys. However, the repair speed of the rapidly solidified alloy is close to the repair speed of the amorphous alloy obtained in the first example, which is similar to that in the actual corrosive environment. It meets the corrosion resistance of From this, the high corrosion resistance of the rapidly solidified alloy in the passive region could be evaluated with high reliability.

なお、腐食電位法では、通常合金と急冷合金との耐食性
につき有為的差異は認められないにもかかわらず、本発
明法によれば顕著な差異が認められるのは、X線回折か
らは検出できない合金の極表面層の微細構造成いは非晶
質構造に起因するものと考察されるが、従来の不働態皮
膜を破壊し評価する孔食発生電位法等では評価し得なか
フた耐食性の評価を本発明法により評価し得るようにな
った。
Although the corrosion potential method does not show any significant difference in corrosion resistance between normal alloys and rapidly solidified alloys, the method of the present invention shows that there is a significant difference in corrosion resistance detected by X-ray diffraction. The microstructural structure of the extreme surface layer of the alloy is considered to be due to the amorphous structure, but the corrosion resistance cannot be evaluated using the conventional pitting potential method, which evaluates by destroying the passive film. can now be evaluated using the method of the present invention.

[発明の効果] 以上説明したように、本発明によれば、従来の技術に比
べて迅速にかつ正確な評価を被測定物を非破壊で行うこ
とが可能であるから、屋外の構造物や金属物品、高価な
ものの寿命予測等、広範囲に渡って使用用途があり全能
的耐食性評価法としての利点がある。
[Effects of the Invention] As explained above, according to the present invention, it is possible to perform a faster and more accurate evaluation of the object to be measured than with conventional techniques, and therefore it is possible to evaluate the object to be measured non-destructively. It has a wide range of uses, such as predicting the lifespan of metal articles and expensive items, and has the advantage of being an omnipotent corrosion resistance evaluation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための電解電流と電解
時間との関係を示すグラフである。第2図は本発明の実
施例における測定系を説明する模式図である。 1・・・溶解電流ノイズのピーク電流値(Ip)、2・
・・金属表面の発生した腐食孔の修復時間(tr)、3
・・・金属材料(非晶質ステンレス合金試料)、4・・
・飽和甘木電極、5・・・対極(Pt板)、6・・・定
電位電解装置、7・・・ADコンバータ、8・・・パー
ソナルコンピュータ(測定制御、記録用)、9・3%N
a(、ft水溶液。 第 図
FIG. 1 is a graph showing the relationship between electrolysis current and electrolysis time for explaining the present invention in detail. FIG. 2 is a schematic diagram illustrating a measurement system in an embodiment of the present invention. 1...Peak current value (Ip) of dissolution current noise, 2.
・Repair time (tr) of corrosion holes generated on the metal surface, 3
...Metal material (amorphous stainless steel alloy sample), 4...
・Saturated Amagi electrode, 5... Counter electrode (Pt plate), 6... Constant potential electrolyzer, 7... AD converter, 8... Personal computer (for measurement control and recording), 9.3%N
a(, ft aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] 評価しようとする金属材料を任意の水溶液中に浸漬し、
自然浸漬電位から活性溶解に至るまでの電位領域におけ
る任意の電位で該金属材料を定電位電解することによっ
て溶解電流ノイズを発生させ、該溶解電流ノイズのピー
ク電流Ipが発生する時点から該金属材料の表面の腐食
孔が修復する時点までの時間(以下この時間を修復時間
trという)を実測し、該修復時間trの大小により耐
食性を評価することを特徴とする金属材料の耐食性評価
法。
Immerse the metal material to be evaluated in any aqueous solution,
Dissolution current noise is generated by subjecting the metal material to constant potential electrolysis at an arbitrary potential in the potential range from natural immersion potential to active dissolution, and from the point when the peak current Ip of the dissolution current noise is generated, the metal material 1. A method for evaluating corrosion resistance of a metal material, comprising actually measuring the time until a corrosion hole on the surface of the metal material is repaired (hereinafter referred to as repair time tr), and evaluating corrosion resistance based on the magnitude of the repair time tr.
JP28072988A 1988-11-07 1988-11-07 Evaluation of corrosion for metallic material Pending JPH02128151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28072988A JPH02128151A (en) 1988-11-07 1988-11-07 Evaluation of corrosion for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28072988A JPH02128151A (en) 1988-11-07 1988-11-07 Evaluation of corrosion for metallic material

Publications (1)

Publication Number Publication Date
JPH02128151A true JPH02128151A (en) 1990-05-16

Family

ID=17629132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28072988A Pending JPH02128151A (en) 1988-11-07 1988-11-07 Evaluation of corrosion for metallic material

Country Status (1)

Country Link
JP (1) JPH02128151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151163A (en) * 1991-05-26 1992-09-29 The United States Of America As Represented By The Secretary Of The Navy Electrochemical noise measurement technique for the determination of aluminum alloy pit initiation rates
JP2011102790A (en) * 2009-10-16 2011-05-26 Jfe Steel Corp Method for speedily evaluating corrosion resistance to contents of can molding
JP2012058267A (en) * 2010-09-03 2012-03-22 Asahi Kasei E-Materials Corp Large pellicle frame body, large pellicle, and method for manufacturing large pellicle frame body
JP2021015039A (en) * 2019-07-12 2021-02-12 株式会社日立プラントサービス Processing device, processing system, and production system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151163A (en) * 1991-05-26 1992-09-29 The United States Of America As Represented By The Secretary Of The Navy Electrochemical noise measurement technique for the determination of aluminum alloy pit initiation rates
JP2011102790A (en) * 2009-10-16 2011-05-26 Jfe Steel Corp Method for speedily evaluating corrosion resistance to contents of can molding
JP2012058267A (en) * 2010-09-03 2012-03-22 Asahi Kasei E-Materials Corp Large pellicle frame body, large pellicle, and method for manufacturing large pellicle frame body
JP2021015039A (en) * 2019-07-12 2021-02-12 株式会社日立プラントサービス Processing device, processing system, and production system

Similar Documents

Publication Publication Date Title
EP0151926B1 (en) Methods for monitoring metal ion concentrations in plating baths
JP2004528552A (en) Sensor array and method for electrochemical corrosion monitoring
Izquierdo et al. In situ investigation of copper corrosion in acidic chloride solution using atomic force—scanning electrochemical microscopy
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Greene Corrosion of surgical implant alloys: a few basic ideas
Yang Multielectrode systems
Donatus et al. Qualitative use of potentiodynamic polarization and anodic hydrogen evolution in the assessment of corrosion susceptibility in AA2198‐T851 Al–Cu–Li alloy
Acuña-González et al. Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data
Tan Sensing electrode inhomogeneity and electrochemical heterogeneity using an electrochemically integrated multielectrode array
JPH02128151A (en) Evaluation of corrosion for metallic material
JP6048445B2 (en) Metal corrosivity evaluation method
JP2006234421A (en) Accelerated test method of stress corrosion cracking
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
JP2023053790A (en) Corrosion resistance testing method for coated metal material, corrosion resistance testing device, corrosion resistance testing program and recording medium
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
Hussain Corrosion Studies Using the Scanning Vibrating Electrode Technique (SVET)-A Brief Review
JP6963745B2 (en) Laves phase detection method for high Cr steel
Waldram Investigating Corrosion Behaviour of Nickel-Plated Steel for Circulation Coinage
Premendra et al. A comparative electrochemical study of commercial and model aluminium alloy (AA5050)
Egli et al. Corrosion of conductor rolls in an electrogalvanizing line
Grishina et al. Influence of anodic electrothermochemical oxidation on the corrosion stability of steel 45
JP2013076627A (en) Copper pitting corrosion evaluation method
Tribollet et al. 7—Physical and Local Electrochemical Techniques for Measuring Corrosion Rates of Metals
Souto et al. In situ investigation of copper corrosion in acidic chloride solution using atomic force-scanning electrochemical microscopy
JP5169357B2 (en) Pinhole evaluation method