JP5169357B2 - Pinhole evaluation method - Google Patents

Pinhole evaluation method Download PDF

Info

Publication number
JP5169357B2
JP5169357B2 JP2008072536A JP2008072536A JP5169357B2 JP 5169357 B2 JP5169357 B2 JP 5169357B2 JP 2008072536 A JP2008072536 A JP 2008072536A JP 2008072536 A JP2008072536 A JP 2008072536A JP 5169357 B2 JP5169357 B2 JP 5169357B2
Authority
JP
Japan
Prior art keywords
potential
coating layer
current
pinholes
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008072536A
Other languages
Japanese (ja)
Other versions
JP2009229145A (en
Inventor
崇康 杉原
茂吉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008072536A priority Critical patent/JP5169357B2/en
Publication of JP2009229145A publication Critical patent/JP2009229145A/en
Application granted granted Critical
Publication of JP5169357B2 publication Critical patent/JP5169357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、金属からなる基材上に設けられた被覆層に存在するピンホールを定量的に求められるピンホールの評価方法に関するものである。   The present invention relates to a pinhole evaluation method in which pinholes existing in a coating layer provided on a metal substrate are quantitatively determined.

従来より、金属からなる基材上に、別の金属やセラミックスといった無機材料、樹脂といった有機材料からなる被覆層を具える積層構造体が工業製品に汎用されている。例えば、鉄は、剛性、加工性、経済性などに優れることから、電子機器の筐体材料などに使用されているが、通常の環境下で腐食し易い(錆び易い)ことから、耐食性を向上するために、合金化したり上記被覆層が施されることが多い。耐食性を高めた代表的な鉄合金がステンレス鋼である。被覆層は、金、銀、クロム、ニッケルといった耐食性の高い金属によるめっきからなるものが挙げられる。その他、TiNといったセラミックスをPVD法やCVD法で形成した薄膜が挙げられる(非特許文献1,特許文献1)。   Conventionally, a laminated structure including a coating layer made of an inorganic material such as another metal or ceramics or an organic material such as a resin on a base material made of metal has been widely used for industrial products. For example, iron is used as a housing material for electronic equipment because it is excellent in rigidity, workability, economy, etc., but it is easy to corrode (easy to rust) in a normal environment, thus improving corrosion resistance. For this purpose, alloying or the above-mentioned coating layer is often applied. A typical iron alloy with improved corrosion resistance is stainless steel. Examples of the coating layer include those made of plating with a metal having high corrosion resistance such as gold, silver, chromium, and nickel. In addition, there is a thin film in which a ceramic such as TiN is formed by a PVD method or a CVD method (Non-patent Document 1, Patent Document 1).

例えば、下地金属よりも貴な金属からなる被覆層にピンホールといった欠陥が存在すると、下地金属が加速的に腐食される異種金属接触腐食が起こり得る。セラミックスや有機材料は、一般に、それ自体が金属よりも耐食性に優れるものの、これらからなる被覆層にピンホールが存在すると、下地金属が腐食する。そのため、被覆層のピンホールは、できるだけ少ないことが望まれる。   For example, if a defect such as a pinhole is present in a coating layer made of a metal that is more precious than the base metal, dissimilar metal contact corrosion in which the base metal is corroded at an accelerated rate may occur. Although ceramics and organic materials generally have better corrosion resistance than metals, the presence of pinholes in the coating layer made of these corrodes the underlying metal. Therefore, it is desirable that the number of pinholes in the coating layer be as small as possible.

上記ピンホールの評価には、従来、塩水噴霧試験(例えば、MIL-STD-202-101D)やフェロキシル試験(JIS H 8617)が汎用されている。これらの方法は、測定対象を塩水などの所定の試験液に曝した後、腐食状態を目視確認し、腐食の程度の大小でピンホールの多寡の推定を行う。或いは、SEM(Scanning Electron Microscope)といった顕微鏡を用いて、ピンホールを実際に目視することもある。   Conventionally, salt spray tests (for example, MIL-STD-202-101D) and ferroxyl tests (JIS H 8617) have been widely used for the evaluation of the pinhole. In these methods, after exposing the measurement object to a predetermined test solution such as salt water, the corrosion state is visually confirmed, and the number of pinholes is estimated based on the degree of corrosion. Alternatively, the pinhole may be actually visually observed using a microscope such as SEM (Scanning Electron Microscope).

一方、特許文献1や非特許文献1は、ステンレス鋼上に被覆されたTiN膜のピンホール面積率を臨界不動態化電流密度法(動電位アノード分極法)に基づいて求めることを開示している。この方法は、H2SO4(硫酸)にKSCN(チオシアン酸カリウム)を加えた酸溶液に測定対象を浸漬し、この状態で測定対象に電位を変化させながら印加したときの電流密度を測定し、活性帯域から不動態域に移行する際の不動態化電流(ピーク電流)を用いて、ピンホールの面積を求める。 On the other hand, Patent Document 1 and Non-Patent Document 1 disclose that the pinhole area ratio of a TiN film coated on stainless steel is obtained based on the critical passivation current density method (dynamic potential anodic polarization method). Yes. This method involves immersing the measurement object in an acid solution obtained by adding KSCN (potassium thiocyanate) to H 2 SO 4 (sulfuric acid), and measuring the current density when applied while changing the potential in this state. Then, the area of the pinhole is obtained using the passivating current (peak current) at the transition from the active band to the passive band.

特開平6-027075号公報JP-A-6-027075 「耐食性ドライコーティング膜の欠陥評価の現状」、杉本克久、材料と環境 Vol.44,No.5,pp.308-313(1995)"Current Status of Defect Evaluation of Corrosion Resistant Dry Coating Films", Katsuhisa Sugimoto, Materials and Environment Vol.44, No.5, pp.308-313 (1995)

工業製品の品質管理をより高精度に行うためには、ピンホールを定量的に評価することが望まれる。例えば、ピンホール量の多寡により、品質の改善度合いを定量的に把握することができる。   In order to perform quality control of industrial products with higher accuracy, it is desirable to quantitatively evaluate pinholes. For example, the degree of quality improvement can be quantitatively grasped by the amount of pinholes.

特許文献1や非特許文献1は、ピンホールを定量的に評価する手法を開示している。しかし、本発明者らが調べたところ、この手法を、下地金属(基材)が鉄などの酸性条件下で不動化し難い金属から構成される積層構造体に適用すると、精度よく評価できない、即ち、動電位アノード分極法では、ピンホールの検出が可能なピーク電流が得られない場合がある、との知見を得た。また、これらの文献は、被覆層がセラミックスからなるものを対象としており、下地及び被覆層の双方が金属からなる積層構造体に対して、ピンホールを定量するための具体的な手法を開示していない。   Patent Document 1 and Non-Patent Document 1 disclose methods for quantitatively evaluating pinholes. However, when the present inventors investigated, when this technique is applied to a laminated structure composed of a metal whose base metal (base material) is hardly immobilized under acidic conditions such as iron, it cannot be evaluated with high accuracy, that is, It was found that the peak potential capable of detecting pinholes may not be obtained by the potentiodynamic anodic polarization method. In addition, these documents are directed to those in which the coating layer is made of ceramics, and disclose a specific method for quantifying pinholes in a laminated structure in which both the base and the coating layer are made of metal. Not.

一方、塩水噴霧試験などでは、定性的な評価しか行えない。また、塩水噴霧試験は、通常、測定に48時間も要するため、短時間で定量的な測定が行える方法の開発が望まれる。   On the other hand, only qualitative evaluation can be performed in a salt spray test or the like. Further, since the salt spray test usually requires 48 hours for measurement, it is desired to develop a method capable of quantitative measurement in a short time.

顕微鏡を用いた場合は、ピンホールが微小であることから倍率が相当大きくないと観察が難しく、せいぜい局所的な評価しかできない。被覆層の状態をより正確に把握するためには、測定対象をより広い範囲に亘って評価できることが望まれる。   When a microscope is used, observation is difficult unless the magnification is very large because the pinhole is very small, and only local evaluation is possible at best. In order to grasp the state of the coating layer more accurately, it is desired that the measurement object can be evaluated over a wider range.

そこで、本発明の目的は、金属からなる基材の上に被覆層を具える積層構造体において、この被覆層に存在するピンホールを定量的に測定可能なピンホールの評価方法を提供することにある。   Therefore, an object of the present invention is to provide a pinhole evaluation method capable of quantitatively measuring pinholes existing in a coating layer in a laminated structure having a coating layer on a metal substrate. It is in.

本発明者らが種々検討した結果、以下の知見を得た。異種金属の積層構造体において、例えば、これら金属間のイオン化傾向の差が小さい場合、その他、下地金属が不動態を生成し難い場合や下地金属が電解液中で極端に酸化反応を起こし易い場合などでは、動電位アノード分極測定を行うと、下地金属のピーク電流が得られ難く、ピンホールを定量化するための情報を十分に得ることが難しい。また、動電位アノード分極測定によりピーク電流を取得できても、取得までの間に流れる酸化電流が大きく、下地金属が大きく損傷し、引いては被覆層も損傷を受ける恐れがある。これに対し、定電位アノード分極測定を適用すると、ピンホールを定量化するための情報を精度よく測定できる。本発明は、これらの知見に基づくものである。   As a result of various studies by the present inventors, the following findings were obtained. In a laminated structure of dissimilar metals, for example, when the difference in ionization tendency between these metals is small, in addition, when the base metal is difficult to generate passivation, or when the base metal is extremely susceptible to oxidation reaction in the electrolyte For example, when the potentiodynamic anodic polarization measurement is performed, it is difficult to obtain the peak current of the base metal, and it is difficult to obtain sufficient information for quantifying pinholes. Further, even if the peak current can be acquired by the measurement of the dynamic potential anodic polarization, the oxidation current flowing until the acquisition is large, the base metal is greatly damaged, and the covering layer may be damaged. In contrast, when constant potential anodic polarization measurement is applied, information for quantifying pinholes can be accurately measured. The present invention is based on these findings.

本発明ピンホールの評価方法は、金属からなる基材と、この基材表面に形成された被覆層とを具える積層構造体に対して、電気化学的測定により、上記被覆層のピンホールを定量的に評価する。具体的には、この評価方法は、上記積層構造体を電解液に浸漬し、この積層構造体に一定の電位を印加した状態で経時的な電流の変化を計測し、得られた計測結果に基づいて、上記被覆層に存在するピンホールの量を求める。   According to the pinhole evaluation method of the present invention, a pinhole of the coating layer is formed by electrochemical measurement on a laminated structure including a metal substrate and a coating layer formed on the surface of the substrate. Assess quantitatively. Specifically, in this evaluation method, the laminated structure is immersed in an electrolytic solution, a change in current over time is measured with a constant potential applied to the laminated structure, and the obtained measurement result is Based on this, the amount of pinholes present in the coating layer is determined.

上記構成によれば、基材が不動態を生成し難い場合や積層構造体を構成する異種金属間のイオン化傾向の差が小さい場合などであっても、被覆層のピンホールを定量的に、かつ高精度に評価できる。また、本発明評価方法は、電気化学的な手法を利用することで、測定対象である積層構造体の広い範囲に亘ってピンホールを容易に評価できる上に、測定時間が短い。以下、本発明の構成をより詳しく説明する。   According to the above configuration, even when the base material hardly generates a passive state or when the difference in ionization tendency between different metals constituting the laminated structure is small, the pinhole of the coating layer is quantitatively determined. And it can be evaluated with high accuracy. Further, the evaluation method of the present invention can easily evaluate pinholes over a wide range of the laminated structure to be measured by using an electrochemical technique, and has a short measurement time. Hereinafter, the configuration of the present invention will be described in more detail.

本発明評価方法は、積層構造体(測定対象)と、この構造体の被覆層のピンホールから露出した基材が酸化反応を起こし得る電解液とを用いた電気化学測定セルを作製し、電解液中の基材(金属)の酸化反応速度又は反応量を電気化学的に測定し、この測定値をピンホールの量として評価する。特に、本発明評価方法は、測定対象を電解液に浸漬した状態で測定対象に一定の電位を印加したときの経時的な電流の変化を測定する定電位アノード分極(アンペロメトリー)法を利用する。測定対象の被覆層にピンホールが存在する場合、ピンホールから基材(金属)が露出し、この露出部分が電解液中で酸化反応を起こすと、その反応速度が電流の変化として表れる。従って、電流の変化を測定し、この結果を利用する、具体的には、所定時間経過後の電流値(mA)や、所定の時間範囲における電流値の積算値(電気量(C)=反応量)を利用することで、ピンホールを定量可能である。   The evaluation method of the present invention is to produce an electrochemical measurement cell using a laminated structure (measurement object) and an electrolytic solution in which a base material exposed from a pinhole of a coating layer of the structure can cause an oxidation reaction, The oxidation reaction rate or reaction amount of the substrate (metal) in the liquid is measured electrochemically, and this measured value is evaluated as the amount of pinholes. In particular, the evaluation method of the present invention utilizes a constant potential anodic polarization (amperometry) method for measuring a change in current over time when a constant potential is applied to the measurement object while the measurement object is immersed in an electrolyte solution. To do. When pinholes are present in the coating layer to be measured, when the base material (metal) is exposed from the pinholes and this exposed portion undergoes an oxidation reaction in the electrolyte, the reaction rate appears as a change in current. Therefore, the change in current is measured and this result is used.Specifically, the current value (mA) after a predetermined time has elapsed, or the integrated value of the current value in a predetermined time range (electricity (C) = reaction By using (quantity), pinholes can be quantified.

本発明評価方法は、動電位アノード分極測定によりピンホールの評価が行える積層構造体、代表的には、ステンレス鋼にセラミックス被覆層を具えるものに対しても利用することができるが、特に、動電位アノード分極測定によるピーク電流が現れ難い基材を具える積層構造体に利用することができる。このような基材は、例えば、鉄及び鉄合金(ステンレス鋼を除く)といった金属からなるものが挙げられる。特に、鉄は、ステンレス鋼と比較して不動態を生成し難く、酸と反応することからも、本発明方法による評価が好ましい。被覆層は、金属を含む無機材料からなるものでも、樹脂といった有機材料からなるものでもよい。   The evaluation method of the present invention can be used for a laminated structure capable of evaluating pinholes by dynamic potential anodic polarization measurement, typically, a stainless steel having a ceramic coating layer. The present invention can be used for a laminated structure including a base material in which a peak current by dynamic potential anodic polarization measurement hardly appears. Examples of such a substrate include those made of a metal such as iron and an iron alloy (excluding stainless steel). In particular, iron is less likely to generate a passivity than stainless steel and reacts with an acid, so that evaluation by the method of the present invention is preferable. The coating layer may be made of an inorganic material containing a metal or an organic material such as a resin.

本発明評価方法は、特に、基材及び被覆層の双方が金属からなる場合であって、基材と被覆層とを構成する各金属のイオン化傾向の差が小さい積層構造体に好適に利用することができる。このような積層構造体は、例えば、基材が鉄又は鉄合金から構成され、被覆層がニッケル及びニッケル合金の1種以上の金属から構成されるNi/Fe構造体(構造体の表面側から順に記載)が挙げられる。   The evaluation method of the present invention is particularly suitably used for a laminated structure in which both the base material and the coating layer are made of metal and the difference in ionization tendency of each metal constituting the base material and the coating layer is small. be able to. In such a laminated structure, for example, a Ni / Fe structure (from the surface side of the structure) in which the base material is composed of iron or an iron alloy and the coating layer is composed of one or more metals of nickel and a nickel alloy. Listed in order).

被覆層は、基材と異なる組成の金属無機材料(例えば、ニッケル、クロム、銀、金、及び各元素の合金)、樹脂といった有機材料、セラミックスやDLC(ダイヤモンドライクカーボン)といった非金属無機材料のいずれであっても、本発明評価方法を利用できる。通常の環境下においてクロムは、酸化反応により表面に緻密な不動態膜を形成して導電性が無くなることから、基材が鉄からなる場合、鉄よりも低い電位で連続的に酸化されることはなく、本発明評価方法を利用できる。また、被覆層は、単層でも多層でもよい。即ち、積層構造体は、二層でも、三層以上でもよい。被覆層の形成方法は、被覆層が金属からなる場合、電解めっきや無電解めっきといっためっき法の他、CVD法やPVD法といった蒸着法などが挙げられ、セラミックスやDLCなどからなる場合、CVD法やPVD法が挙げられ、樹脂からなる場合、塗布などが挙げられる。被覆層は、一般に、厚さが薄いほどピンホールといった欠陥が多くなり易いため、本発明評価方法によりピンホールを定量することは、品質管理のための情報(例えば、品質改善を行う指標となる情報)の取得などに貢献すると期待される。   The coating layer is made of a metal inorganic material having a composition different from that of the substrate (e.g., nickel, chromium, silver, gold, and an alloy of each element), an organic material such as a resin, or a non-metallic inorganic material such as ceramics or DLC (diamond-like carbon). In any case, the evaluation method of the present invention can be used. Under normal circumstances, chromium forms a dense passive film on the surface by an oxidation reaction and loses its conductivity. Therefore, when the substrate is made of iron, it is continuously oxidized at a lower potential than iron. However, the evaluation method of the present invention can be used. Further, the coating layer may be a single layer or a multilayer. That is, the laminated structure may be two layers or three or more layers. The method for forming the coating layer includes, when the coating layer is made of metal, plating methods such as electrolytic plating and electroless plating, as well as vapor deposition methods such as CVD and PVD methods. And PVD method, and in the case of resin, it may be applied. In general, the thinner the coating layer, the more likely to have defects such as pinholes. Therefore, quantifying pinholes by the evaluation method of the present invention is information for quality control (for example, an index for quality improvement). Information) is expected to contribute.

電解液は、積層構造体に一定の電位を印加した状態で基材が酸化反応を起こすものを利用するとよい。例えば、基材が鉄又は鉄合金からなる場合、硫酸や塩酸といった酸の溶液が好ましい。   It is preferable to use an electrolytic solution that causes the base material to undergo an oxidation reaction in a state where a certain potential is applied to the laminated structure. For example, when the substrate is made of iron or an iron alloy, an acid solution such as sulfuric acid or hydrochloric acid is preferable.

電解液の濃度は、特に問わないが、高濃度になると、電圧を印加することなく、自発的な反応が起こるなどして、酸化反応を制御し難くなるため、ピンホール量の適切な定量が行い難くなる。従って、電解液の濃度は、測定対象に対応した適切な濃度に調整することが好ましい。例えば、測定対象の基材が鉄又は鉄合金からなり、硫酸溶液を用いる場合、0.1〜5M程度が適切であると考えられる。   The concentration of the electrolytic solution is not particularly limited. However, when the concentration is high, it becomes difficult to control the oxidation reaction by causing a spontaneous reaction without applying a voltage. It becomes difficult to do. Therefore, it is preferable to adjust the concentration of the electrolytic solution to an appropriate concentration corresponding to the measurement target. For example, when the base material to be measured is made of iron or an iron alloy and a sulfuric acid solution is used, about 0.1 to 5M is considered appropriate.

本発明評価方法は、上記電解液に測定対象を浸漬したら、測定対象に一定の電位を印加して、経時的な電流の変化を測定する。印加する電位は、ピンホールから露出した基材が酸化し、被覆層の構成材料が酸化しないような電位を適宜設定することができる。印加する電位が高過ぎると、基材の酸化反応が過剰になり、基材が損傷して測定結果に影響を及ぼす恐れがあるため、損傷が無視できると想定される大きさが好ましい。基材の酸化反応に基づく電流が測定可能な範囲で小さい方(例えば、1A/cm2以下)が好ましいと考えられる。 In the evaluation method of the present invention, when a measurement object is immersed in the electrolyte solution, a constant potential is applied to the measurement object, and a change in current with time is measured. The potential to be applied can be appropriately set such that the substrate exposed from the pinhole is oxidized and the constituent material of the coating layer is not oxidized. When the applied potential is too high, the base material is excessively oxidized, and the base material may be damaged to affect the measurement result. Therefore, it is preferable that the damage is assumed to be negligible. The smaller one (for example, 1 A / cm 2 or less) within the measurable range based on the oxidation reaction of the substrate is considered preferable.

本発明ピンホールの評価方法は、金属からなる基材の上に被覆層を具える積層構造体に対して、上記被覆層に存在するピンホールを定量的に測定できる。   The pinhole evaluation method of the present invention can quantitatively measure pinholes existing in the coating layer with respect to a laminated structure including a coating layer on a metal substrate.

鉄からなる基材の上に、ニッケルめっき(被覆層)が施されたNi/Fe構造体を測定対象とし、電解液として酸溶液を用いてアノード分極測定により、被覆層のピンホールの定量を行う。まず、アノード分極測定の基本的な手順を説明する。   The Ni / Fe structure with nickel plating (coating layer) on a substrate made of iron is the object of measurement, and quantification of pinholes in the coating layer is performed by anodic polarization measurement using an acid solution as the electrolyte. Do. First, a basic procedure for anodic polarization measurement will be described.

測定は、図1に示すような三電極方式の電気化学測定セル1を構成して行う。セル1は、電解液BLが注入される容器10と、電解液BLに浸漬される基準電極(RE)11及び対極(CE)12並びに測定対象(WE)13とを具え、両極11,12及び測定対象13の一端はそれぞれ、ポテンショスタット/ガルバノスタット装置20に接続される。ここでは、基準電極11にAg/AgCl、対極12にPt、装置20は市販のものを用いた。この装置20をポテンショスタットモードとし、一定の電位を印加する又は所定の掃引速度で電位を掃引して電流の変化を測定する。装置20には、入力手段、記憶手段、演算手段、比較手段、判断手段、表示手段などを具える制御装置(図示せず)を接続させており、一定の電位の印加や電位の掃引、測定結果(分極曲線)の取得などを自動的に行う。   The measurement is performed by configuring a three-electrode electrochemical measurement cell 1 as shown in FIG. The cell 1 includes a container 10 into which an electrolyte solution BL is injected, a reference electrode (RE) 11 and a counter electrode (CE) 12 that are immersed in the electrolyte solution BL, and a measurement target (WE) 13, and both electrodes 11, 12, and One end of the measurement object 13 is connected to the potentiostat / galvanostat device 20. Here, Ag / AgCl is used for the reference electrode 11, Pt is used for the counter electrode 12, and a commercially available device 20 is used. The device 20 is set in a potentiostat mode, and a change in current is measured by applying a constant potential or sweeping the potential at a predetermined sweep rate. The apparatus 20 is connected to a control device (not shown) having input means, storage means, calculation means, comparison means, judgment means, display means, etc., and applies a constant potential, sweeps potential, and measures. Obtain results (polarization curve) automatically.

<試験例1 動電位アノード分極測定>
図1に示すセルを用いて、鉄及びニッケルに対して動電位アノード分極測定を行った。
<Test Example 1 Measurement of potentiodynamic anodic polarization>
Using the cell shown in FIG. 1, potentiodynamic anodic polarization measurement was performed on iron and nickel.

この試験では、鉄板(株式会社ニラコ製、FE-223512、純度99.5%)、ニッケル板(株式会社ニラコ製、NI-313511、純度99%以上)を用意し、各板は、5mm2を露出させ、その他の部分はエポキシ樹脂でマスキングしたものをそれぞれ測定対象とした。 In this test, an iron plate (Co. Nilaco Ltd., FE-223512, 99.5% purity), nickel plate (Co. Nilaco Ltd., NI-three hundred and thirteen thousand five hundred and eleven , purity 99%) was prepared, each plate to expose the 5 mm 2 The other parts were masked with an epoxy resin and measured.

図1の装置20をポテンショスタットモードとし、各測定対象を電解液(1Mの硫酸溶液)に浸漬したら、掃引速度:10mV/sで電位の掃引を開始し、掃引しながら電流の変化を計測する。各測定対象の測定結果(動電位アノード分極曲線)を重ね合わせたグラフを図2に示す。図2において、横軸は印加した電位(V)、縦軸は、測定時に流れた電流(mA)を示す(後述する図3,4も同様)。   When the device 20 in FIG. 1 is in potentiostat mode and each measurement object is immersed in an electrolyte solution (1M sulfuric acid solution), a potential sweep is started at a sweep rate of 10 mV / s, and a change in current is measured while sweeping. . FIG. 2 shows a graph in which the measurement results (kinetic potential anodic polarization curves) of each measurement object are superimposed. In FIG. 2, the horizontal axis represents the applied potential (V), and the vertical axis represents the current (mA) flowing during the measurement (the same applies to FIGS. 3 and 4 described later).

図2に示すように鉄は、ニッケルに比べて低い電位で電流が流れており、酸溶液中で酸化し易く、ニッケルは、ある電位(1.5V程度)まではほとんど電流が流れておらず酸化し難いことが分かる。また、電位が1.5V未満であれば、実質的に鉄の酸化電流のみを測定でき、鉄の酸化電流は、ニッケルの影響を受け難いことが分かる。しかし、鉄の酸化電流は、経時的に増加しており、ピーク(増加から減少に変化する点)が観察され難い。つまり、動電位アノード分極測定では、鉄とニッケルとを分離可能な情報を取得できるものの、この情報(鉄の酸化電流)を用いて、ニッケルめっきのピンホールの定量を精度よく行うことは難しいと考えられる。   As shown in Fig. 2, iron flows at a lower potential than nickel and is easily oxidized in an acid solution. Nickel is oxidized with little current flowing up to a certain potential (about 1.5 V). I find it difficult to do. In addition, when the potential is less than 1.5 V, only the iron oxidation current can be measured, and it can be seen that the iron oxidation current is hardly affected by nickel. However, the iron oxidation current increases with time, and it is difficult to observe a peak (a point at which the increase changes from a decrease). In other words, in the potentiodynamic anodic polarization measurement, information that can separate iron and nickel can be acquired, but it is difficult to accurately determine the pinholes of nickel plating using this information (iron oxidation current). Conceivable.

次に、電解液(硫酸溶液)の濃度を0.1〜5Mに変化させて、上記と同様に鉄の動電位アノード分極測定を行った。その結果を図3に示す。   Next, the concentration of the electrolytic solution (sulfuric acid solution) was changed to 0.1 to 5 M, and iron dynamic potential anodic polarization measurement was performed in the same manner as described above. The results are shown in FIG.

図3に示すように、電解液の濃度を0.1〜5Mとすると、同じような電位領域(-0.5〜0.5V)において酸化反応に基づく電流が測定可能であることが分かる。しかし、電解液の濃度が同じであっても、ピークを観察できる場合と観察できない場合とがあり、観察されるピークもシャープな形状のものが得られ難い。このようなピーク電流値を用いても、ピンホールを適切に定量できないと考えられる。一方、高濃度の電解液(例えば、5M程度の硫酸溶液)を用いた場合、比較的シャープな鉄の酸化電流のピークを観察することができた。しかし、ピーク値を検出するまでに流れる電流が多いことから、測定対象が基材と被覆層とを具える積層構造体である場合、基材においてピンホールからの露出した部分以外の部分も電解液中で反応して基材が大きく損傷すると考えられる。また、この損傷により被覆層が剥離したり脱落する恐れがある。このような損傷だけでなく、測定結果が正確でないため、誤差が大きくなり、ピンホールを適切に定量できなくなる。これらの点からも、鉄とニッケルのようにイオン化傾向の差が小さい金属の積層構造体において、被覆層のピンホールの定量にあたり動電位アノード分極測定は好ましくないと考えられる。   As shown in FIG. 3, when the concentration of the electrolytic solution is 0.1 to 5 M, it can be seen that the current based on the oxidation reaction can be measured in the same potential region (−0.5 to 0.5 V). However, even when the concentration of the electrolytic solution is the same, there are cases where the peak can be observed and cases where the peak cannot be observed, and it is difficult to obtain a peak having a sharp shape. Even if such a peak current value is used, it is considered that pinholes cannot be appropriately quantified. On the other hand, when a high concentration electrolyte (for example, a sulfuric acid solution of about 5M) was used, a relatively sharp peak of iron oxidation current could be observed. However, since a large amount of current flows until the peak value is detected, when the measurement target is a laminated structure including a base material and a coating layer, the part other than the exposed part from the pinhole in the base material is also electrolyzed. It is considered that the base material is greatly damaged by reacting in the liquid. Further, this damage may cause the coating layer to peel off or fall off. Not only such damage, but also the measurement results are not accurate, so the error increases and pinholes cannot be properly quantified. Also from these points, it is considered that the potentiodynamic anodic polarization measurement is not preferable in the determination of pinholes in the coating layer in a laminated structure of a metal having a small difference in ionization tendency such as iron and nickel.

次に、上記試験例1で用意した鉄板と同じ型番の鉄板について、上記と同様にして酸化電流を測定した(電解液:1M硫酸溶液)。その結果を図4に示す。   Next, the oxidation current was measured in the same manner as above for the iron plate having the same model number as the iron plate prepared in Test Example 1 (electrolytic solution: 1M sulfuric acid solution). The results are shown in FIG.

図4に示すように、測定対象の材質が同じであれば、酸化電流が流れ始める電位領域(-0.1V以下)における電流値に再現性があることが分かる。しかし、酸化電流のピーク電流値に再現性が認められない。この結果からも、鉄を基材とする積層構造体において、被覆層のピンホールの定量にあたり、動電位アノード分極測定は、高精度なピンホール評価が難しいと考えられる。   As shown in FIG. 4, if the materials to be measured are the same, it can be seen that the current value in the potential region (−0.1 V or less) where the oxidation current starts flowing is reproducible. However, reproducibility is not recognized in the peak current value of the oxidation current. From this result, it is considered that high-accuracy pinhole evaluation is difficult for the potentiodynamic anodic polarization measurement in determining the pinholes in the coating layer in the laminated structure based on iron.

<試験例2 定電位アノード分極測定>
図1に示すセルを用いて、鉄の定電位アノード分極測定を行った。
<Test Example 2 Constant Potential Anode Polarization Measurement>
Using the cell shown in FIG. 1, iron constant potential anodic polarization measurement was performed.

この試験では、上記試験例1で用意した鉄板と同じ型番のものを複数用意し、各板に対してマスキング領域を異ならせて露出面積が異なるものを複数作製し、これらを測定対象とした。   In this test, a plurality of pieces having the same model number as the iron plate prepared in Test Example 1 were prepared, a plurality of masks with different exposure areas were prepared for each plate, and these were measured.

図1の装置20をポテンショスタットモードとし、各測定対象を電解液に浸漬したら、一定の電位を所定時間印加して、経時的な電流の変化を計測する。ここでは、基材が著しく反応しないように、また、酸化電流値の再現性を考慮して、図2〜4に示すグラフから酸化電流の上限を10mAに設定し、この範囲を満たす濃度の電解液として、1Mの硫酸溶液を用いた。また、被覆層の構成材料であるニッケルの酸化電流による影響を受け難く、鉄の酸化電流が適切に測定できると考えられる電位(ここでは、酸化電流値の再現性が高い電位)として、図2〜4に示すグラフから-0.3Vを選択した。このように上記試験例1で行った動電位アノード分極測定は、一定の電位を設定するための予備試験として用いることができる。更に、電位印加時間が長くなると、測定対象の損傷が大きくなるため、ここでは、電位印加時間を20secとした。計測結果(定電位アノード分極曲線)を図5に示す。図5のグラフにおいて、横軸は、電位印加開始からの経過時間(sec)、縦軸は、測定時に流れた電流(mA)を示す。   When the apparatus 20 of FIG. 1 is set in a potentiostat mode and each measurement object is immersed in an electrolytic solution, a constant potential is applied for a predetermined time, and a change in current over time is measured. Here, the upper limit of the oxidation current is set to 10 mA from the graphs shown in FIGS. 2 to 4 so that the substrate does not react significantly and the reproducibility of the oxidation current value is taken into account. A 1 M sulfuric acid solution was used as the liquid. In addition, as a potential that is not easily affected by the oxidation current of nickel, which is a constituent material of the coating layer, and that the oxidation current of iron can be measured appropriately (here, a potential with high reproducibility of the oxidation current value), FIG. -0.3V was selected from the graph shown in ~ 4. Thus, the dynamic potential anodic polarization measurement performed in Test Example 1 can be used as a preliminary test for setting a constant potential. Further, since the damage to the measurement object increases as the potential application time becomes longer, the potential application time is set to 20 seconds here. The measurement results (constant potential anodic polarization curve) are shown in FIG. In the graph of FIG. 5, the horizontal axis represents the elapsed time (sec) from the start of potential application, and the vertical axis represents the current (mA) flowing during measurement.

なお、印加後(20sec後)に若干電流が現れているが、この電流は、20sec時点で電圧の印加を解除しているため、鉄の酸化反応以外の反応に基づくものであると考えられる。また、この試験では、印加直後から時間の経過に伴い滑らかに電流が上昇しているが、基材表面に汚染物質(酸化物など)が存在するといった表面性状の違いを反映した曲線を描くことがある。例えば、印加直後にピーク電流が現れることがある。しかし、このようなピークの出現は、一時的なものであり、数秒後以降では、図5に示すような滑らかな曲線を安定して描く。更に、このような汚染物質が少量存在しても、上述のように短時間で完全に電解・除去されるため、測定値に影響しないと考えられる。汚染物質が多いと思われる場合は、汚染物質の除去といった表面処理を測定対象に行ってから、測定を行うと、より高精度な定量が行えて好ましい。   Although a slight current appears after application (after 20 seconds), this current is considered to be based on a reaction other than the oxidation reaction of iron because the voltage application is canceled at the time of 20 seconds. Also, in this test, the current increases smoothly as time passes immediately after application, but a curve reflecting the difference in surface properties such as the presence of contaminants (oxides, etc.) on the substrate surface is drawn. There is. For example, a peak current may appear immediately after application. However, the appearance of such a peak is temporary, and after a few seconds, a smooth curve as shown in FIG. 5 is stably drawn. Furthermore, even if such a contaminant is present in a small amount, it is considered that it does not affect the measured value because it is completely electrolyzed and removed in a short time as described above. When it seems that there are many pollutants, it is preferable to perform measurement after performing surface treatment such as removal of pollutants on the measurement object, so that more accurate quantification can be performed.

定電位アノード分極測定では、設定した電位に対応した酸化電流が観察される。時間ごとの電流値を表1に示す。また、時間ごとの電流値を用いて、露出面積(x)と酸化電流(y)との関係線(検量線)を求めた。その結果も表1に示す。更に、10secの時点における検量線を図6に示す。   In the constant potential anodic polarization measurement, an oxidation current corresponding to the set potential is observed. Table 1 shows the current values for each hour. Further, a relationship line (calibration curve) between the exposed area (x) and the oxidation current (y) was obtained using the current value for each time. The results are also shown in Table 1. Further, a calibration curve at the time of 10 sec is shown in FIG.

Figure 0005169357
Figure 0005169357

図5に示すように、同じ時間において、露出面積が大きいほど、酸化電流が大きく、露出面積と酸化電流とは相関があることが分かる。また、表1及び図6に示すように、露出面積に対して、良好な検量線が得られており、図6に示すように露出面積と酸化電流とは、概ね比例の関係にあることが分かる。   As shown in FIG. 5, it can be seen that, at the same time, the larger the exposed area, the larger the oxidation current, and there is a correlation between the exposed area and the oxidation current. In addition, as shown in Table 1 and FIG. 6, a good calibration curve is obtained with respect to the exposed area, and as shown in FIG. 6, the exposed area and the oxidation current are generally in a proportional relationship. I understand.

この試験から、Ni/Fe構造体といったイオン化傾向の差が小さい異種金属の積層構造体について、定電位アノード分極測定は、被覆層のピンホールの定量に利用できると言える。特に、電流値が比較的小さい電位領域で定電位アノード分極測定を行う本例の評価方法は、ピーク電流値を利用する従来の動電位アノード分極測定に比べて再現性に優れると言える。また、電解液の濃度を0.1〜5Mの範囲で変化させても、電流値が比較的小さい電位領域で定電位アノード分極測定を行うことで、ピンホールを適切に定量できると言える。   From this test, it can be said that the constant potential anodic polarization measurement can be used for pinhole quantification of the coating layer for a laminated structure of dissimilar metals having a small difference in ionization tendency such as Ni / Fe structure. In particular, it can be said that the evaluation method of this example in which the constant potential anodic polarization measurement is performed in a potential region where the current value is relatively small is superior in reproducibility compared to the conventional dynamic potential anodic polarization measurement using the peak current value. Moreover, even if the concentration of the electrolytic solution is changed in the range of 0.1 to 5M, it can be said that pinholes can be appropriately quantified by performing constant potential anodic polarization measurement in a potential region where the current value is relatively small.

例えば、基材の構成金属と同様の金属で構成した試料であって、上記試験例2で説明したように露出面積が異なる複数の試料を照合用測定対象とし、各対象に応じた電解液を用いて、図1に示すセルを構築し、所定の電位を印加した状態で経時的に電流を測定し、露出面積と電流値との検量線を作成する。そして、実際に積層構造体を測定対象として、上記検量線の取得時と同様の条件で定電位アノード分極測定を行い、所望の時点の電流値を検量線に照合し、その電流値に対応した露出面積をピンホールの面積として評価することで、ピンホールを定量化することができる。なお、検量線の作成に当たり、照合用測定対象のn数が多いほど、ピンホールをより高精度に定量できる。   For example, a sample made of the same metal as the constituent metal of the base material, and a plurality of samples with different exposed areas as described in Test Example 2 are used as measurement targets for verification, and an electrolyte solution corresponding to each target is used. The cell shown in FIG. 1 is constructed, current is measured over time with a predetermined potential applied, and a calibration curve between the exposed area and the current value is created. Then, using the laminated structure as a measurement object, constant potential anodic polarization measurement was performed under the same conditions as when the calibration curve was obtained, and the current value at a desired time was collated with the calibration curve, corresponding to the current value. The pinhole can be quantified by evaluating the exposed area as the area of the pinhole. In preparing a calibration curve, pinholes can be quantified with higher accuracy as the number of verification measurement objects increases.

<試験例3 実試料の測定>
図1に示すセルを用いて、鉄からなる基材の上に、ニッケルめっき(被覆層)が施されたNi/Fe構造体について、被覆層に存在するピンホール率を調べた。
<Test Example 3 Measurement of actual sample>
Using the cell shown in FIG. 1, the pinhole ratio existing in the coating layer was examined for a Ni / Fe structure in which nickel plating (coating layer) was applied on a base material made of iron.

この試験では、上記試験例1で用意した鉄板と同じものを用意して基材とし、この基材表面にニッケルめっきを施し、めっき厚さが異なる複数の試料No.11〜No.16を作製した。表2に各試料の基材の面積(mm2)、及びめっき時間(min)を示す。ニッケルめっきは、一般的なワット浴(無光沢)を用いた電解めっきを行った。めっき厚さは、めっき時間を異ならせることで変化させた。めっき時間が長いほど、めっき厚さが厚い。 In this test, the same iron plate prepared in Test Example 1 above is prepared and used as a base material, and the surface of the base material is subjected to nickel plating to produce a plurality of samples No. 11 to No. 16 having different plating thicknesses. did. Table 2 shows the substrate area (mm 2 ) and plating time (min) of each sample. Nickel plating was performed by electrolytic plating using a general Watt bath (matte). The plating thickness was changed by changing the plating time. The longer the plating time, the thicker the plating thickness.

Figure 0005169357
Figure 0005169357

図1の装置20をポテンショスタットモードとし、各測定対象を電解液に浸漬したら、一定の電位(-0.3V)を印加して(電位印加時間:20sec)、経時的な電流の変化を計測する。計測結果(定電位アノード分極曲線)を図7に示す。図7のグラフにおいて、横軸は、電位印加開始からの経過時間(sec)、縦軸は、測定時に流れた面積当たりの電流(mA/cm2)を示す。図7では、試料No.15,16のグラフが横軸に重なっている(0mA/cm2)。なお、電位を-0.3Vとしたことで、上記試験例2-1で説明したようにニッケルの酸化電流がほとんど測定されない。 1 is set in potentiostat mode, and each measurement object is immersed in the electrolyte, then a constant potential (-0.3V) is applied (potential application time: 20 sec) to measure the change in current over time. . The measurement results (constant potential anodic polarization curve) are shown in FIG. In the graph of FIG. 7, the horizontal axis represents the elapsed time (sec) from the start of potential application, and the vertical axis represents the current per area (mA / cm 2 ) that flowed during the measurement. In FIG. 7, the graphs of sample Nos. 15 and 16 overlap the horizontal axis (0 mA / cm 2 ). Since the potential was set to -0.3 V, the nickel oxidation current was hardly measured as described in Test Example 2-1.

得られた計測結果と、図6に示す10secの時点の検量線とを用いて、ピンホール率を求めた。具体的には、図7に示すグラフにおいて、電位印加開始から10secの時点の電流値を読み取り、この電流値を図6に示す検量線に照合し、図6の検量線において、この電流値に対応した露出面積を読み取り(関係式から求め)、この露出面積をピンホールの面積として評価し、(ピンホールの面積/試料面積)×100をピンホール率(%)とした。その結果を図8に示す。また、10secの時点での各試料の電流値、ピンホールの面積を表3に示す。なお、電流値が負の値である試料No.15,16は、ピンホールなし(ピンホール率0%)と評価した。   The pinhole ratio was obtained using the obtained measurement result and the calibration curve at the time of 10 sec shown in FIG. Specifically, in the graph shown in FIG. 7, the current value at the time of 10 seconds from the start of potential application is read, and this current value is collated with the calibration curve shown in FIG. The corresponding exposed area was read (determined from the relational expression), this exposed area was evaluated as the pinhole area, and (pinhole area / sample area) × 100 was defined as the pinhole ratio (%). The results are shown in FIG. Table 3 shows the current value and pinhole area of each sample at 10 sec. Sample Nos. 15 and 16 having negative current values were evaluated as having no pinholes (pinhole ratio 0%).

Figure 0005169357
Figure 0005169357

表3及び図8に示すように、めっき時間が長くなる、つまりめっき厚さが厚くなるに従って、ピンホール率が低減されていることが分かる。即ち、定電位アノード分極測定を行うことで、めっき品質の改善状態を定量的に評価できると言える。   As shown in Table 3 and FIG. 8, it can be seen that the pinhole ratio is reduced as the plating time increases, that is, as the plating thickness increases. That is, it can be said that the improvement of the plating quality can be quantitatively evaluated by performing the constant potential anodic polarization measurement.

このように定電位アノード分極測定を行うことで、イオン化傾向の差が小さい異種金属が積層されてなる構造体といった工業製品に対して、その表面側に配された金属からなる層(被覆層)に存在するピンホールを定量的に測定できる。そして、この結果情報を品質管理などに利用することで、商品価値の向上に寄与することができると期待される。   By performing constant potential anodic polarization measurement in this way, for industrial products such as structures in which different types of metals with a small difference in ionization tendency are laminated, a layer (coating layer) made of metal disposed on the surface side thereof Pinholes present in the can be measured quantitatively. And by using this result information for quality control etc., it is expected that it can contribute to the improvement of commercial value.

なお、上記方法では、ピンホール率が0.01%程度までの定量化が可能である。また、上記方法は、ピンホールの測定に要する時間は、数十秒程度である上に、広範囲に亘る測定を容易に行える。更に、ポテンショスタット/ガルバノスタット装置に接続させる制御装置として、上記検量線を記憶する記憶手段と、この記憶手段から呼び出した検量線と得られた測定結果(所定の時点における電流値)とを照合して、ピンホールの面積を求める照合手段と、得られたピンホールの面積と、予め入力された測定対象の全体面積とからピンホール率を演算する演算手段とを具えるものを利用すると、ピンホール率を自動的に求められる。上記記憶手段には、別途取得した検量線を入力しておく。   In the above method, the pinhole ratio can be quantified up to about 0.01%. In addition, the above method requires about several tens of seconds for pinhole measurement, and can easily perform measurement over a wide range. Furthermore, as a control device to be connected to the potentiostat / galvanostat device, the storage means for storing the calibration curve, the calibration curve called from the storage means and the obtained measurement result (current value at a predetermined time) are collated. Then, using collation means for obtaining the area of the pinhole, the area of the obtained pinhole, and an arithmetic means for calculating the pinhole ratio from the entire area of the measurement object inputted in advance, The pinhole rate is automatically calculated. A separately obtained calibration curve is input to the storage means.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施形態では、測定値として電流を利用したが、電流値に変えて電気量(電流×経過時間)を利用することができる。また、上記実施形態では、被覆層が一層から構成される例を説明したが、多層構造であってもよい。更に、上記実施形態では、異種金属の積層構造体を例に説明したが、被覆層は、樹脂といった有機材料、TiNといったセラミックスやDLCといった非金属無機材料からなるものでも、本発明評価方法を利用することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, in the above embodiment, the current is used as the measurement value, but the amount of electricity (current × elapsed time) can be used instead of the current value. Moreover, although the said embodiment demonstrated the example from which a coating layer was comprised from one layer, a multilayered structure may be sufficient. Furthermore, in the above embodiment, the laminated structure of different metals has been described as an example. However, the evaluation method of the present invention can be used even when the coating layer is made of an organic material such as a resin, a ceramic such as TiN, or a non-metallic inorganic material such as DLC. can do.

本発明ピンホールの評価方法は、金属基材と、その表面に形成された被覆層とを具える積層構造体において、被覆層に存在するピンホールの定量に好適に利用することができる。積層構造体は、例えば、種々の電子機器筐体に利用されているNi/Fe構造体、工業用のボルト・ナットなどに使用するCr/Fe構造体、装飾用のAu/Fe構造体やAg/Fe構造体、TiNといったセラミックス膜/鉄又は鉄合金構造体などが挙げられる。   The pinhole evaluation method of the present invention can be suitably used for quantitative determination of pinholes present in a coating layer in a laminated structure including a metal substrate and a coating layer formed on the surface thereof. Laminated structures include, for example, Ni / Fe structures used in various electronic equipment casings, Cr / Fe structures used for industrial bolts and nuts, decorative Au / Fe structures and Ag / Fe structure, ceramic film such as TiN / iron or iron alloy structure.

三電極方式の電気化学測定セルの概略構成図である。It is a schematic block diagram of a three-electrode type electrochemical measurement cell. 鉄(Fe)及びニッケル(Ni)の動電位アノード分極曲線である。It is a potentiodynamic anodic polarization curve of iron (Fe) and nickel (Ni). 濃度が異なる複数の電解液を用いた場合についての鉄(Fe)の動電位アノード分極曲線である。6 is a potentiodynamic anodic polarization curve of iron (Fe) when a plurality of electrolytic solutions having different concentrations are used. 材質が同じ測定対象(鉄)の動電位アノード分極曲線である。It is a potentiodynamic anodic polarization curve of the same measurement object (iron). 露出面積が異なる測定対象(鉄)の定電位アノード分極曲線である。It is a constant potential anodic polarization curve of a measurement object (iron) with different exposed areas. 10sec時点において、露出面積と電流との関係を示す検量線である。It is a calibration curve showing the relationship between the exposed area and the current at 10 seconds. Ni/Fe構造体の定電位アノード分極曲線である。It is a constant potential anodic polarization curve of a Ni / Fe structure. めっき時間とピンホール率との関係を示すグラフである。It is a graph which shows the relationship between plating time and a pinhole rate.

符号の説明Explanation of symbols

1 セル 10 容器 11 基準電極 12 対極 13 測定対象
20 ポテンショスタット/ガルバノスタット装置 BL 電解液
1 cell 10 container 11 reference electrode 12 counter electrode 13 object to be measured
20 Potentiostat / galvanostat BL electrolyte

Claims (4)

鉄又は鉄合金(但し、ステンレス鋼を除く)から構成される基材と、この基材表面に形成された被覆層とを具える積層構造体を電解液に浸漬し、
この積層構造体に特定の電位領域内の一定の電位を印加した状態で前記基材の反応に伴う経時的な電流の変化を計測し、
電位印加開始から4sec以上経過後の所定時間に計測された電流値に基づいて、前記被覆層に存在するピンホールの量を求め
前記特定の電位領域は、前記基材と同材質の金属材を前記電解液と同様の電解液に浸漬し、金属材に印加する電位を掃引して電流の変化を測定し、電流が流れ始める電位から電流値に再現性のある電位の範囲とすることを特徴とするピンホールの評価方法。
Iron or iron alloy (excluding stainless steel) and substrate that consists of, immersed in the electrolyte solution a laminated structure comprising a coating layer formed on the substrate surface,
Measure the change in current over time associated with the reaction of the base material in a state where a constant potential within a specific potential region is applied to the laminated structure,
Based on the current value measured for a predetermined time after the elapse of 4 seconds from the start of potential application , to determine the amount of pinholes present in the coating layer ,
The specific potential region is obtained by immersing a metal material of the same material as the base material in an electrolyte solution similar to the electrolyte solution, sweeping a potential applied to the metal material, measuring a change in current, and starting a current flow evaluation of pinholes and said range and to Rukoto potential a reproducible current value from the potential.
前記特定の電位領域が、−0.1V以下であることを特徴とする請求項1に記載のピンホールの評価方法。  The pinhole evaluation method according to claim 1, wherein the specific potential region is −0.1 V or less. 記被覆層は、ニッケル、クロム、銀、及び金の1種以上の金属から構成され、
前記電解液として、酸溶液を用いることを特徴とする請求項1または2に記載のピンホールの評価方法。
Before Symbol coating layer is composed of nickel, chromium, silver, and of one or more metals of gold,
Wherein as the electrolyte, the evaluation method of the pinholes according to claim 1 or 2, characterized in that an acid solution.
記被覆層は、有機材料、又は非金属無機材料から構成され、
前記電解液として、酸溶液を用いることを特徴とする請求項1または2に記載のピンホールの評価方法。
Before Symbol coating layer is composed of an organic material, or non-metallic inorganic material,
Wherein as the electrolyte, the evaluation method of the pinholes according to claim 1 or 2, characterized in that an acid solution.
JP2008072536A 2008-03-19 2008-03-19 Pinhole evaluation method Active JP5169357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072536A JP5169357B2 (en) 2008-03-19 2008-03-19 Pinhole evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072536A JP5169357B2 (en) 2008-03-19 2008-03-19 Pinhole evaluation method

Publications (2)

Publication Number Publication Date
JP2009229145A JP2009229145A (en) 2009-10-08
JP5169357B2 true JP5169357B2 (en) 2013-03-27

Family

ID=41244729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072536A Active JP5169357B2 (en) 2008-03-19 2008-03-19 Pinhole evaluation method

Country Status (1)

Country Link
JP (1) JP5169357B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211084A (en) * 1975-07-17 1977-01-27 Nisshin Steel Co Ltd Detector of pinholes in aluminum coating film
JPS5629153A (en) * 1979-08-20 1981-03-23 Toyo Seikan Kaisha Ltd Measuring method of exposed iron part for coated steel plate or its processed product
JPS61241636A (en) * 1985-04-19 1986-10-27 Nippon Stainless Steel Co Ltd Method for quick evaluation and test of rust resistance of stainless steel
JP2513964B2 (en) * 1992-04-07 1996-07-10 東洋エンジニアリング株式会社 Pinhole evaluation method for inorganic material coatings based on iron-based materials
JPH0843343A (en) * 1994-08-03 1996-02-16 Nippon Steel Corp Speedy evaluation method for uniform covering property of sn laid on pb-sn alloy plating layer
JP2007178238A (en) * 2005-12-27 2007-07-12 Univ Of Fukui Corrosion resistance evaluation method of coating

Also Published As

Publication number Publication date
JP2009229145A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
Jadhav et al. The use of localized electrochemical techniques for corrosion studies
Cáceres et al. Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions
Flitt et al. Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions
Caldona et al. Surface electroanalytical approaches to organic polymeric coatings
Notter et al. Porosity of electrodeposited coatings: its cause, nature, effect and management
Fu et al. Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe
Chen et al. Potential distribution in the Evans drop experiment
Thomas et al. Oxygen consumption upon electrochemically polarised zinc
WO2008059907A1 (en) Method for forming corrosion resistant plating layer and rotating machine
Fushimi et al. Cross-section corrosion-potential profiles of aluminum-alloy brazing sheets observed by the flowing electrolyte scanning-droplet-cell technique
Gonzalez-Garcia et al. Electrochemical techniques for the study of self healing coatings
JP5169357B2 (en) Pinhole evaluation method
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Kerr et al. Porosity and corrosion rate measurements for electroless nickel deposits on steel using electrochemical techniques
JP3849338B2 (en) Method for evaluating weather resistance of steel and weather resistance measuring apparatus
JP2008026284A (en) Sample for evaluating corrosion resistance in end face of plated steel sheet, and end face corrosion resistance evaluation device and method
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
Rohwerder et al. Application of scanning Kelvin probe in corrosion science
Zhang et al. Electrochemical study of corrosion behavior of wrought stellite alloys in sodium chloride and green death solutions
JP5013104B2 (en) Pinhole evaluation method
Łosiewicz et al. Use of scanning vibrating electrode technique to localized corrosion evaluation
Das et al. Electrochemical porosity measurement of electroless nickel coatings on ferrous substrates
McCafferty et al. Kinetics of corrosion
CN102269729B (en) Method for detecting quality of phosphate coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250