JP2013076627A - Copper pitting corrosion evaluation method - Google Patents

Copper pitting corrosion evaluation method Download PDF

Info

Publication number
JP2013076627A
JP2013076627A JP2011216441A JP2011216441A JP2013076627A JP 2013076627 A JP2013076627 A JP 2013076627A JP 2011216441 A JP2011216441 A JP 2011216441A JP 2011216441 A JP2011216441 A JP 2011216441A JP 2013076627 A JP2013076627 A JP 2013076627A
Authority
JP
Japan
Prior art keywords
anode
corrosion
copper
cathode
pitting corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011216441A
Other languages
Japanese (ja)
Inventor
Hajime Iseri
一 井芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011216441A priority Critical patent/JP2013076627A/en
Publication of JP2013076627A publication Critical patent/JP2013076627A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper pitting corrosion evaluation method allowing accurate evaluation of a progress state of pitting corrosion generated in copper being in contact with an aqueous system.SOLUTION: In a pitting corrosion evaluation method of copper, an evaluation electrode including a plurality of anodes 2 composed of copper pieces covered with a corrosion product and a cathode 3 composed of a copper plate whose contact liquid surface is not covered with the corrosion product is immersed in an aqueous system, and a current flowing through a circuit electrically connecting the anodes 2 with the cathode 3 is measured by a zero-shunt ammeter.

Description

本発明は、水系に接する銅の腐食特に孔食を評価する方法に係り、詳しくは、腐食生成物で覆われたアノード及び腐食生成物で覆われていないカソードを有した評価電極を用いる銅の孔食評価方法に関する。   The present invention relates to a method for evaluating corrosion of copper in contact with an aqueous system, particularly pitting corrosion, and more particularly, to the evaluation of copper using an evaluation electrode having an anode covered with a corrosion product and a cathode not covered with the corrosion product. The present invention relates to a pitting corrosion evaluation method.

水系における銅の腐食評価手法として、JIS K 0100に試験片の腐食減量より腐食速度を測定する方法、分極抵抗法により試験電極の腐食速度を測定する方法が記載されているが、孔食を評価するものではない。特開平5−322831には、試験電極の電位測定により腐食発生の危険性をモニターする方法が記載されている。   As methods for evaluating copper corrosion in water systems, JIS K 0100 describes a method for measuring the corrosion rate from the corrosion weight loss of the test piece, and a method for measuring the corrosion rate of the test electrode by the polarization resistance method. Not what you want. Japanese Patent Laid-Open No. 5-322831 describes a method for monitoring the risk of corrosion by measuring the potential of a test electrode.

特開平2−310452には、水系の金属材料に生じる孔食の進行状況を評価する方法として、水系媒体と小孔を介して連通する液溜部と、該液溜部内の液と接するように設けられた供試金属片とを備え、該金属片の前記液溜部内の液と接する面の面積が前記小孔の開口面積よりも大きいモニター装置を用い、該金属片と金属部材とを電気的に接触させて、両者の間に流れる電流を測定することにより金属部材の局部腐食をモニタリングする方法が記載されている。   In Japanese Patent Laid-Open No. 2-310452, as a method of evaluating the progress of pitting corrosion occurring in an aqueous metal material, a liquid reservoir communicating with an aqueous medium through a small hole and a liquid in the liquid reservoir are contacted. A test piece provided, and using a monitor device in which the area of the surface of the metal piece in contact with the liquid in the liquid reservoir is larger than the opening area of the small hole, the metal piece and the metal member are electrically connected A method of monitoring local corrosion of a metal member by measuring the current flowing between the two in contact with each other.

特開平5−322831JP-A-5-322831 特開平2−310452JP-A-2-310452

上記特開平5−322831の方法は、電位を連続的に測定し、孔食の発生する電位との比較を行うことにより、孔食発生の危険性有無をモニターする方法であり、孔食の進行状況および孔食に対する水処理薬剤の抑制効果を評価する方法ではない。   The method disclosed in JP-A-5-322831 is a method for monitoring the risk of pitting corrosion by measuring the potential continuously and comparing it with the potential at which pitting corrosion occurs. It is not a method of evaluating the inhibitory effect of water treatment agents on the situation and pitting corrosion.

上記特開平2−310452の方法は、軟鋼の孔食を評価する方法に関するものである。この方法を銅に適用してみたところ、銅は腐食にともなう交換電流密度が低く耐食的な材料である銅を用いて行った場合には、アノード部における腐食進行が速やかに抑制されるため、孔食の進行状況を評価することが困難であることが認められた。   The method disclosed in Japanese Patent Laid-Open No. 2-310452 relates to a method for evaluating pitting corrosion of mild steel. When this method was applied to copper, the copper has a low exchange current density due to corrosion and is made of copper, which is a corrosion-resistant material. It was recognized that it was difficult to evaluate the progress of pitting corrosion.

本発明は、水系に接する銅に発生する孔食の進行状況を的確に評価することができる銅の孔食評価方法を提供することを目的とする。また、本発明は、その一態様において孔食に対する水処理薬剤の抑制効果を評価することができる銅の孔食評価方法を提供することを目的とする。   An object of the present invention is to provide a copper pitting corrosion evaluation method capable of accurately evaluating the progress of pitting corrosion occurring in copper in contact with an aqueous system. Moreover, this invention aims at providing the pitting corrosion evaluation method of copper which can evaluate the inhibitory effect of the water treatment chemical | medical agent with respect to pitting corrosion in the one aspect | mode.

本発明の銅の孔食評価方法は、腐食生成物で覆われた銅片よりなる複数個のアノードと、接液面が腐食生成物で覆われていない銅片よりなるカソードとが電気的に絶縁された状態で配置された評価電極を水系に浸漬し、各アノードを該カソードに並列に電気的に接続した回路を構成し、各アノードに流れる電流を測定することを特徴とするものである。   According to the copper pitting corrosion evaluation method of the present invention, a plurality of anodes made of copper pieces covered with corrosion products and a cathode made of copper pieces whose wetted surfaces are not covered with corrosion products are electrically connected. An evaluation electrode arranged in an insulated state is immersed in an aqueous system, a circuit is formed in which each anode is electrically connected in parallel to the cathode, and a current flowing through each anode is measured. .

前記カソードは銅板又は銅管よりなり、該カソードに厚み方向に貫通する複数個の貫通孔が設けられており、各貫通孔にそれぞれアノードが挿入されており、該貫通孔の孔面とアノードの側周面との間に絶縁材が介在されていることが好ましい。また、該カソードの前面と該アノードの前端面とが面一状となっていることが好ましい。   The cathode is made of a copper plate or a copper tube, and a plurality of through holes penetrating in the thickness direction are provided in the cathode, and an anode is inserted into each through hole. It is preferable that an insulating material is interposed between the side peripheral surfaces. Further, the front surface of the cathode and the front end surface of the anode are preferably flush with each other.

本発明では、腐食生成物で覆われたアノードは、腐食生成物で覆われていないアノードを水中に浸漬して通電し、該アノードの接液面に腐食生成物を生成させたものであることが好ましい。   In the present invention, the anode covered with the corrosion product is obtained by immersing the anode not covered with the corrosion product in water and energizing it to generate the corrosion product on the wetted surface of the anode. Is preferred.

本発明では、腐食生成物に覆われた状態にする処理をアノード毎に異なった時期に行ってもよい。   In the present invention, the treatment to be covered with the corrosion product may be performed at different times for each anode.

腐食生成物で覆われた状態のアノードと、腐食生成物で覆われていない健全面を模擬したカソードとが電気的に絶縁された状態で配置された評価電極を用いることにより、従来技術では困難であった孔食の進行状況を評価することが可能となる。本発明では、アノードを複数個並列に設けることにより、信頼性の高い評価結果を得ることができる。   It is difficult with the prior art by using an evaluation electrode in which the anode covered with the corrosion product and the cathode simulating a healthy surface not covered with the corrosion product are electrically insulated. It is possible to evaluate the progress of pitting corrosion. In the present invention, a highly reliable evaluation result can be obtained by providing a plurality of anodes in parallel.

本発明では、腐食生成物下部で進行する孔食を評価することが可能であるため、実機銅配管等で生じる孔食の進行状況を精度よく評価可能である。また、銅の孔食に対する水処理薬剤の効果を評価することが可能である。   In the present invention, it is possible to evaluate the pitting corrosion that proceeds in the lower part of the corrosion product, and therefore it is possible to accurately evaluate the progress of pitting corrosion occurring in the actual copper piping or the like. It is also possible to evaluate the effect of water treatment chemicals on copper pitting corrosion.

各アノードに対し腐食生成物を発生させる処理を異なる時期に施し、各アノードとカソードとの間の短絡電流を測定することにより、水系の環境変化を反映した信頼性の高い評価が可能となる。   By subjecting each anode to a treatment for generating corrosion products at different times and measuring the short-circuit current between each anode and cathode, a highly reliable evaluation reflecting the environmental change of the water system becomes possible.

実施の形態における評価の構成図である。It is a block diagram of the evaluation in embodiment. 実施の形態における評価電極と電流計との接続回路図である。It is a connection circuit diagram of the evaluation electrode and ammeter in an embodiment. 実施の形態における評価電極と電流計との接続回路図である。It is a connection circuit diagram of the evaluation electrode and ammeter in an embodiment. 比較例における評価電極の構成図である。It is a block diagram of the evaluation electrode in a comparative example. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下、図面を参照して本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1に評価電極の一例を示す。図1の(a)図は評価電極の正面図、(b)図は(a)図のB−B線断面図である。この評価電極1は、複数個(この実施の形態では3個の)アノード2と1個のカソード3が樹脂4により電気的に絶縁された状態で配置され、アノード2及びカソード3に被覆導線5,6が接続されている。   FIG. 1 shows an example of the evaluation electrode. 1A is a front view of the evaluation electrode, and FIG. 1B is a cross-sectional view taken along the line BB of FIG. The evaluation electrode 1 is arranged in a state where a plurality (three in this embodiment) of anodes 2 and one cathode 3 are electrically insulated by a resin 4, and the coated conductor 5 is connected to the anode 2 and the cathode 3. , 6 are connected.

アノード2及びカソード3の接液面は面一状となっている。アノード2及びカソード3は、接液面以外は樹脂4中に埋設されている。樹脂4としてはエポキシ樹脂などを用いることができるが、これに限定されない。   The liquid contact surfaces of the anode 2 and the cathode 3 are flush with each other. The anode 2 and the cathode 3 are embedded in the resin 4 except for the liquid contact surface. An epoxy resin or the like can be used as the resin 4, but is not limited to this.

アノード2としては、例えば銅製ワイヤーなどを用いることができる。1個のアノード2の接液面の面積は、局部腐食の進行を評価できれば制限はないが、10mm以下が望ましく、1mm以下がさらに望ましい。カソード3に設けるアノード2の数は2〜10特に3〜6程度が好ましい。 As the anode 2, for example, a copper wire can be used. The area of one wetted surface of the anode 2 is not limited as long as assessing the progression of localized corrosion, desirably 10 mm 2 or less, more desirably 1 mm 2 or less. The number of anodes 2 provided on the cathode 3 is preferably about 2 to 10, particularly about 3 to 6.

カソード3としては、例えば、銅板、銅管などを用いることができるが、この実施の形態では銅板が用いられている。   For example, a copper plate or a copper tube can be used as the cathode 3, but a copper plate is used in this embodiment.

カソード3に3個の貫通孔が設けられ、各貫通孔にそれぞれアノード2が挿入され、アノード2の先端面がカソード3の前面(カソード3が管の場合は管の内周面が該前面に該当する。)と面一状となっている。アノード2の側周面(外周面)と貫通孔の孔面(内周面)との間に樹脂が介在され、両者間が絶縁されている。   The cathode 3 is provided with three through-holes, and the anode 2 is inserted into each through-hole. The front end surface of the anode 2 is the front surface of the cathode 3 (if the cathode 3 is a tube, the inner peripheral surface of the tube is the front surface). This is true). Resin is interposed between the side peripheral surface (outer peripheral surface) of the anode 2 and the hole surface (inner peripheral surface) of the through hole, and the two are insulated.

カソード3の接液面の面積は、局部腐食の進行を評価できれば制限はないが、アノード2の接液面の面積に比べ大面積であることが必要であり、複数個のアノード2の接液面の合計面積に対し少なくとも10倍以上、望ましくは100倍以上、さらには1000倍以上が好ましい。   The area of the liquid contact surface of the cathode 3 is not limited as long as the progress of local corrosion can be evaluated. However, the area of the liquid contact surface of the anode 2 needs to be larger than the area of the liquid contact surface of the anode 2. It is preferably at least 10 times, preferably 100 times or more, and more preferably 1000 times or more with respect to the total area of the surface.

アノード2に腐食生成物を発生させる方法としては、前記評価電極1を水中に浸漬し、アノード2とカソード3を定電流発生器に接続した回路を形成し、所定の電流を一定時間通電する方法などにより行うことが可能である。また、評価電極1に加え、照合極および対極を水中に浸漬し、評価電極1のアノード2を試料極とし、ポテンショガルバノスタット等を用い所定の電流を一定時間通電する方法により行うことも可能である。   As a method for generating a corrosion product on the anode 2, a method in which the evaluation electrode 1 is immersed in water, a circuit in which the anode 2 and the cathode 3 are connected to a constant current generator is formed, and a predetermined current is applied for a certain period of time. It is possible to do so. Further, in addition to the evaluation electrode 1, it is possible to immerse the reference electrode and the counter electrode in water, use the anode 2 of the evaluation electrode 1 as a sample electrode, and apply a predetermined current for a certain time using a potentiogalvanostat or the like. is there.

アノード2へ通電する電流値、通電時間は、アノード2が腐食生成物で覆われればよく、特に制限はない。腐食生成物の生成は水質条件によっても影響を受けるため、水質等に応じ電流値、通電時間等を適宜調整して行う。   There are no particular limitations on the current value and the energization time for energizing the anode 2 as long as the anode 2 is covered with the corrosion product. Since the production of the corrosion product is affected by the water quality conditions, the current value, the energization time, etc. are appropriately adjusted according to the water quality.

複数のアノード2へ腐食生成物を発生させる処理は、異なる時期に実施してもよい。複数のアノード2のそれぞれに対し、任意の期間をおいて異なる時期に腐食生成物を発生させる処理を行うことにより、当該処理を実施した時点の水系の状態に応じた腐食生成物が形成することから、当該処理を実施した時点の環境下において孔食が発生したと想定し、その孔食の進行状況がその後どのように変化するかを評価可能である。   The treatment for generating the corrosion products on the plurality of anodes 2 may be performed at different times. Each of the plurality of anodes 2 is subjected to a treatment for generating a corrosion product at an arbitrary period and at a different time, thereby forming a corrosion product according to the state of the aqueous system at the time of performing the treatment. Therefore, assuming that pitting corrosion has occurred in the environment at the time when the processing is performed, it is possible to evaluate how the progress of the pitting corrosion changes thereafter.

銅の孔食進行状況は、前記評価電極1を評価対象水に浸漬し、腐食生成物で覆われたアノード2と健全面を模擬したカソード3間を図2又は図3のように電気的に接続した回路を形成し、孔食の進行にともない回路を流れる電流(短絡電流)を測定することにより評価可能である。その際、図2,3の通り、各アノード2がカソード3に対し並列となるように接続し、共通のカソード3と複数設置した各アノード2間との短絡電流を各アノード毎に測定する。   The progress of copper pitting corrosion is performed by electrically immersing the evaluation electrode 1 in the water to be evaluated and electrically connecting the anode 2 covered with the corrosion product and the cathode 3 simulating a healthy surface as shown in FIG. It can be evaluated by forming a connected circuit and measuring the current (short-circuit current) flowing through the circuit as pitting corrosion progresses. At that time, as shown in FIGS. 2 and 3, the anodes 2 are connected in parallel to the cathode 3, and the short-circuit current between the common cathode 3 and the plurality of installed anodes 2 is measured for each anode.

水系に浸漬された銅系部材の表面状態は、孔食の発生有無によらず、水系の環境変化に応じ変化する。本発明の評価電極1においても、カソード3の表面状態が水系の環境変化に応じて変化するため、カソード3と各アノード2との間に流れる短絡電流値を比較することにより、信頼性の高い評価を実施することが可能となる。   The surface state of the copper-based member immersed in the aqueous system changes according to the environmental change of the aqueous system regardless of the occurrence of pitting corrosion. Also in the evaluation electrode 1 of the present invention, since the surface state of the cathode 3 changes according to the change in the aqueous environment, it is highly reliable by comparing the short-circuit current value flowing between the cathode 3 and each anode 2. Evaluation can be performed.

腐食生成物を発生させる処理を異なる時期に実施した複数のアノード2に流れる電流を測定することにより、水系の環境変化を反映したさらに信頼性の高い評価が可能となる。   By measuring the currents flowing through the plurality of anodes 2 that have been subjected to the treatment for generating the corrosion products at different times, it is possible to perform a more reliable evaluation reflecting the environmental change of the water system.

短絡電流は、図2,3の通り無抵抗電流計10を用いて測定することができる。アノード2とカソード3間の電流値が孔食の進行速度に対応することから、短絡電流の挙動から孔食の進行状況を評価することが可能である。図2では、複数のアノード2とカソード3間にそれぞれ無抵抗電流計10を配置し短絡電流を測定する。図3では、1台の無抵抗電流計10を用いアノード2−カソード3間の回路を切替回路11で切り替えながら一定時間ごとに各アノード2に流れる短絡電流を測定する。   The short-circuit current can be measured using a non-resistance ammeter 10 as shown in FIGS. Since the current value between the anode 2 and the cathode 3 corresponds to the progress rate of pitting corrosion, it is possible to evaluate the progress of pitting corrosion from the behavior of the short circuit current. In FIG. 2, a non-resistance ammeter 10 is arranged between each of the plurality of anodes 2 and cathodes 3 to measure a short circuit current. In FIG. 3, the short-circuit current flowing through each anode 2 is measured at regular intervals while the circuit between the anode 2 and the cathode 3 is switched by the switching circuit 11 using one non-resistance ammeter 10.

評価電極1のアノード2とカソード3間を電気的に接続した回路について、回路の電気的接続を解除した状態でアノード2の分極抵抗を測定することによりアノード2の腐食の状況を評価することも可能である。分極抵抗は、例えばJIS K0100「工業用水腐食性試験方法」に記載のある測定法により、アノード2を試料極として測定することができる。   For the circuit in which the anode 2 and the cathode 3 of the evaluation electrode 1 are electrically connected, the state of corrosion of the anode 2 can be evaluated by measuring the polarization resistance of the anode 2 with the circuit being disconnected. Is possible. The polarization resistance can be measured using the anode 2 as a sample electrode by a measuring method described in, for example, JIS K0100 “Industrial Water Corrosion Test Method”.

評価水系に照合極を浸漬し、評価電極1のアノード2とカソード3を短絡させた状態における評価電極1の自然電位測定を行うことが可能であり、アノード2とカソード3間の短絡電流測定の結果などと合わせて考察することにより、孔食進行の要因考察を行うことも可能となる。孔食進行の評価を阻害しない範囲で、各アノードそれぞれの自然電位を測定することや、アノード2とカソード3間の電位差を測定することも可能である。   It is possible to measure the natural potential of the evaluation electrode 1 in a state where the reference electrode is immersed in the evaluation water system and the anode 2 and the cathode 3 of the evaluation electrode 1 are short-circuited, and the short-circuit current measurement between the anode 2 and the cathode 3 is possible. By considering it together with the results, it becomes possible to consider the cause of the progress of pitting corrosion. It is also possible to measure the natural potential of each anode and to measure the potential difference between the anode 2 and the cathode 3 as long as the evaluation of the progress of pitting corrosion is not hindered.

定期的にアノード2に通電し、腐食生成物で覆われたアノード2で銅を溶出させるような操作を行い、アノード2を腐食の活性な状態に回復させるようにしてもよい。このようにすれば、長期間にわたり感度よく評価することが可能となる。通電方法は、アノード2に腐食生成物を発生させる方法と同様の方法で行うことが可能であり、通電量や通電時間を適宜調整して行うのが好ましい。   Periodically, the anode 2 may be energized, and the anode 2 covered with the corrosion product may be operated to elute copper to restore the anode 2 to an active state of corrosion. In this way, it becomes possible to evaluate with high sensitivity over a long period of time. The energization method can be performed by a method similar to the method of generating the corrosion product on the anode 2, and is preferably performed by appropriately adjusting the energization amount and the energization time.

複数のアノード2に通電し、アノード2を腐食の活性な状態に回復させる処理は、全てのアノード2に対し同時に行ってもよく、複数のアノード2に対しそれぞれ異なる時期に行ってもよい。複数のアノード2のそれぞれに対し、一定期間をおいて異なる時期にアノード2を腐食の活性な状態に回復させる処理を行うことにより、常に活性の高いアノード2を用いた評価を長期間にわたり行うことが可能となる。   The process of energizing the plurality of anodes 2 to restore the anodes 2 to the active state of corrosion may be performed on all the anodes 2 at the same time or may be performed on the plurality of anodes 2 at different times. Each of the plurality of anodes 2 is subjected to a process of restoring the anode 2 to a corrosive active state at a different time after a certain period of time, so that evaluation using the anode 2 that is always highly active is performed over a long period of time. Is possible.

評価電極1の短絡電流変化から孔食に対する現状の水処理効果を評価し、水処理薬剤の薬剤注入制御を行うことも可能である。   It is also possible to evaluate the current water treatment effect against pitting corrosion from the short-circuit current change of the evaluation electrode 1 and to perform chemical injection control of the water treatment chemical.

評価電極1の水系への浸漬形態は、アノード2およびカソード3が該水系の水に接していれば特に制限はない。評価電極1を配管に装着してもよく、冷凍機などの機器内に装着してもよく、タンクや冷却塔ピットに浸漬させるように装着してもよい。   The immersion mode of the evaluation electrode 1 in the aqueous system is not particularly limited as long as the anode 2 and the cathode 3 are in contact with the aqueous water. The evaluation electrode 1 may be mounted on a pipe, may be mounted in a device such as a refrigerator, or may be mounted so as to be immersed in a tank or a cooling tower pit.

孔食が進行している状態、すなわち腐食生成物で覆われたアノード2とカソード3間に電流が流れている状態の試験水中に水処理薬剤を添加し、その後の短絡電流変化や、アノード2の分極抵抗変化により、水処理薬剤の孔食に対する抑制効果を評価することが可能である。   A water treatment agent is added to the test water in a state where pitting corrosion is progressing, that is, in a state where current is flowing between the anode 2 and the cathode 3 covered with the corrosion products, and then the short-circuit current change or the anode 2 It is possible to evaluate the inhibitory effect on the pitting corrosion of the water treatment agent by changing the polarization resistance.

なお、本発明において、銅とは、純銅又は銅含有率が60重量%以上の銅合金をいう。   In the present invention, copper means pure copper or a copper alloy having a copper content of 60% by weight or more.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

[実施例1]
3個のアノードを有した図1に示す構造の評価電極1を用い、孔食の進行状況を評価した。ここでは、アノード2としてφ0.45mmの銅ワイヤー、カソード3としてφ1mmの孔を3個設けたφ30mmの銅製試片を用いた。各孔は、円板形のカソード3の中心から半径7.5mmの円周上に角度120度の間隔をおいて設けた。アノード2表面およびカソード3表面は#400番の研磨紙にて湿式研磨を行った。樹脂4としてはエポキシ樹脂を用いた。
[Example 1]
Using the evaluation electrode 1 having the structure shown in FIG. 1 having three anodes, the progress of pitting corrosion was evaluated. Here, a copper specimen having a diameter of 30 mm was used as the anode 2 and a copper wire having a diameter of 0.45 mm and the cathode 3 having three holes having a diameter of 1 mm. Each hole was provided on the circumference having a radius of 7.5 mm from the center of the disk-shaped cathode 3 at an interval of 120 degrees. The surface of the anode 2 and the surface of the cathode 3 were wet-polished with # 400 abrasive paper. As the resin 4, an epoxy resin was used.

この評価電極1を冷却塔ピットに設置し、冷却水に浸漬した。冷却水の平均的な水質を表1に示す。   This evaluation electrode 1 was installed in the cooling tower pit and immersed in cooling water. Table 1 shows the average water quality of the cooling water.

Figure 2013076627
Figure 2013076627

アノード2が腐食生成物で覆われた状態とする処理は、各アノード2に対し同時に実施した。この処理は、ポテンショガルバノスタット(北斗電工製ポテンショスタット/ガルバノスタットHA−151A型)を用い、アノード2に対し10μAの電流を2時間通電することにより行った。対極として炭素棒、照合極として飽和KCl銀塩化銀電極を用い、評価電極1のアノード2を試料極とし、アノード2に腐食生成物を発生させた。   The treatment for making the anode 2 covered with the corrosion product was performed on each anode 2 simultaneously. This treatment was performed by applying a current of 10 μA to the anode 2 for 2 hours using a potentiogalvanostat (potentiostat / galvanostat HA-151A type manufactured by Hokuto Denko). A carbon rod was used as a counter electrode, a saturated KCl silver-silver chloride electrode was used as a reference electrode, the anode 2 of the evaluation electrode 1 was used as a sample electrode, and corrosion products were generated at the anode 2.

アノード2が腐食生成物で覆われた状態とする処理を行ったアノード2は、直ちに図2の通りカソード3と無抵抗電流計(東方技研製ポータブル無抵抗電流計MODELAM−03)10を介して接続し、孔食進行にともなう電流を測定した。   The anode 2 that has been treated so that the anode 2 is covered with the corrosion product immediately passes through the cathode 3 and a non-resistance ammeter (a portable non-resistance ammeter MODELAM-03 manufactured by Toho Giken) 10 as shown in FIG. Connection was made, and the current accompanying the progress of pitting corrosion was measured.

孔食進行に伴うアノード2とカソード3間の電流の経時変化を図5に示す。図5のグラフの横軸は、各アノード2が腐食生成物で覆われた状態とする処理を完了し、カソード3との間の短絡電流計測を開始した時点を0とした経過時間を示している。   FIG. 5 shows the change over time in the current between the anode 2 and the cathode 3 as the pitting corrosion progresses. The horizontal axis of the graph of FIG. 5 indicates the elapsed time when the process of completing the process in which each anode 2 is covered with the corrosion product is completed and the short-circuit current measurement with the cathode 3 is started is set to zero. Yes.

[比較例1]
実施例1において、カソード3の中央部に1個の孔(直径1mm)を設け、1個のアノード2のみを設置したこと以外は実施例1と同様にして評価電極を製作した。図4はこの評価電極の構成図である。この評価電極を3個製作した。各評価電極1’に対しそれぞれ実施例1と同じ腐食生成物生成処理を施した。これらの3個の評価電極1a,1b,1cを実施例1と同一の冷却塔に設置し、実施例1と同時期に、孔食に伴う電流の経時変化を測定した。結果を図6に示す。
[Comparative Example 1]
In Example 1, an evaluation electrode was manufactured in the same manner as in Example 1 except that one hole (diameter 1 mm) was provided in the center of the cathode 3 and only one anode 2 was installed. FIG. 4 is a configuration diagram of this evaluation electrode. Three evaluation electrodes were produced. Each evaluation electrode 1 ′ was subjected to the same corrosion product generation treatment as in Example 1. These three evaluation electrodes 1a, 1b, and 1c were installed in the same cooling tower as in Example 1, and the change with time of pitting corrosion was measured at the same time as in Example 1. The results are shown in FIG.

[実施例1及び比較例1の考察]
評価開始35日から40日にかけて水系内の酸化性物質濃度が異常となる障害が発生した。実施例1の評価電極1の3個のアノード2(アノードI,アノードII,アノードIII)を流れる短絡電流は、同様の変化を示したのに対し、比較例の3個の評価電極1(評価電極11a,評価電極1b,評価電極1c)それぞれのアノードを流れる短絡電流は、バラツキが大きい結果となった。この結果より、実施例1によれば、比較例1に比べバラツキの少ない精度良い孔食の評価が可能なことが認められた。
[Consideration of Example 1 and Comparative Example 1]
From the 35th to the 40th day from the start of evaluation, there was a failure in which the concentration of oxidizing substances in the water system became abnormal. The short-circuit currents flowing through the three anodes 2 (anode I, anode II, and anode III) of the evaluation electrode 1 of Example 1 showed the same change, whereas the three evaluation electrodes 1 (evaluation of the comparative example) The short-circuit currents flowing through the anodes of the electrode 11a, the evaluation electrode 1b, and the evaluation electrode 1c) resulted in large variations. From this result, it was recognized that according to Example 1, it is possible to evaluate pitting corrosion with high accuracy and less variation compared to Comparative Example 1.

[実施例2]
3個のアノードを有する実施例1と同一の評価電極1を作製し、冷却塔ピットに設置し、冷却水に浸漬した。冷却水の平均的な水質を表2に示す。
[Example 2]
The same evaluation electrode 1 as in Example 1 having three anodes was prepared, installed in the cooling tower pit, and immersed in cooling water. Table 2 shows the average water quality of the cooling water.

Figure 2013076627
Figure 2013076627

本実施例では、3個のアノード2が腐食生成物で覆われた状態とする処理を、異なる時期に3回に分けて実施した。すなわち最初に第1のアノードAに対し腐食生成物形成処理を行い、その5日後にアノードBに対し腐食生成物形成処理を行い、さらにその5日後にアノードCに対し腐食生成物形成処理を行った。アノード2が腐食生成物で覆われた状態とする処理は、実施例1と同じく、ポテンショガルバノスタット(北斗電工製ポテンショスタット/ガルバノスタットHA−151A型)を用い、アノードA,B又はCに対し10μAの電流を2時間通電する方法により行った。対極として炭素棒、照合極として飽和KCl銀塩化銀電極を用い、評価電極1のアノード2を試料極とし、アノード2に腐食生成物を発生させた。   In the present example, the process of making the three anodes 2 covered with the corrosion products was performed in three different times. That is, first, a corrosion product formation process is performed on the first anode A, five days later, a corrosion product formation process is performed on the anode B, and five days later, a corrosion product formation process is performed on the anode C. It was. The treatment for making the anode 2 covered with the corrosion product is the same as in Example 1, using a potentiogalvanostat (potentiostat / galvanostat HA-151A type manufactured by Hokuto Denko). This was performed by applying a current of 10 μA for 2 hours. A carbon rod was used as a counter electrode, a saturated KCl silver-silver chloride electrode was used as a reference electrode, the anode 2 of the evaluation electrode 1 was used as a sample electrode, and corrosion products were generated at the anode 2.

アノード2が腐食生成物で覆われた状態とする処理を行った後、アノード2を直ちにカソード3と無抵抗電流計(東方技研製ポータブル無抵抗電流計MODELAM−03)を介して接続し、孔食進行にともなう電流を測定した。   After the anode 2 was covered with the corrosion product, the anode 2 was immediately connected to the cathode 3 via a non-resistance ammeter (Toho Giken portable non-resistance ammeter MODELAM-03) The electric current with the progress of eating was measured.

各アノードA,B,Cとカソード間の電流の経時変化を図7に示す。図7の横軸は、アノードAに対し腐食生成物で覆われた状態とする処理を完了し、カソードとの間の短絡電流計測を開始した時点を0とした経過時間を示している。アノードBおよびアノードCに対応した電流値は、それぞれ腐食生成物で覆われた状態とする処理が完了し、カソードとの間の電流計測を開始した時点から記録されている。なお、アノードBに対し腐食生成物で覆われた状態とする処理を行った時期は、水系に添加されている水処理薬剤の濃度が通常に比べ最大4分の1まで低下していた時期と重なっている。   FIG. 7 shows changes with time in the current between the anodes A, B, C and the cathode. The horizontal axis of FIG. 7 shows the elapsed time when the process of completing the anode A covered with the corrosion product is completed and the measurement of the short-circuit current with the cathode is started is zero. The current values corresponding to the anode B and the anode C are recorded from the time point when the measurement of the current between the cathode and the cathode is completed after the treatment to be covered with the corrosion product is completed. The time when the anode B was treated to be in a state of being covered with the corrosion product was the time when the concentration of the water treatment chemical added to the water system was reduced to a maximum of a quarter of the normal level. overlapping.

アノードAの電流計測を開始してから22日以降に水系内の酸化性物質濃度が異常となる障害が発生した。この時期に、すべてのアノードA,B,Cの電流値は上昇傾向を示したが、電流の上昇の程度には差があり、アノードBが他に比べ高いレベルを推移する結果となった。これは、アノードBに形成された腐食生成物の性状が、腐食生成物で覆われた状態とする処理を行った時期の水処理薬剤濃度低下の影響を受けたためと推定される。   A failure occurred in which the concentration of the oxidizing substance in the aqueous system became abnormal after 22 days from the start of the current measurement of the anode A. At this time, the current values of all the anodes A, B, and C showed an upward trend, but there was a difference in the degree of current increase, and the result was that the anode B was at a higher level than the others. This is presumably because the property of the corrosion product formed on the anode B was affected by the decrease in the concentration of the water treatment chemical at the time when the treatment was carried out so as to be covered with the corrosion product.

以上の結果より、複数のアノード2(A,B,C)それぞれに対し異なる時期に腐食生成物を発生させる処理を行うことにより、処理実施時点の水系の状態に応じた腐食生成物が形成することから、水系の環境変化を反映した評価が可能となることが認められた。   From the above results, the corrosion products corresponding to the state of the water system at the time of the treatment are formed by performing the treatment for generating the corrosion products at different times for each of the plurality of anodes 2 (A, B, C). Therefore, it was confirmed that the evaluation reflecting the environmental change of the water system would be possible.

1,1’ 評価電極
2 アノード
3 カソード
4 樹脂
10 無抵抗電流計
1, 1 'Evaluation electrode 2 Anode 3 Cathode 4 Resin 10 Non-resistance ammeter

Claims (5)

腐食生成物で覆われた銅片よりなる複数個のアノードと、接液面が腐食生成物で覆われていない銅片よりなるカソードとが電気的に絶縁された状態で配置された評価電極を水系に浸漬し、各アノードを該カソードに並列に電気的に接続した回路を構成し、各アノードに流れる電流を測定することを特徴とする銅の孔食評価方法。   An evaluation electrode in which a plurality of anodes made of copper pieces covered with corrosion products and a cathode made of copper pieces whose wetted surfaces are not covered with corrosion products are electrically insulated. A copper pitting corrosion evaluation method comprising: dipping in an aqueous system; forming a circuit in which each anode is electrically connected in parallel to the cathode; and measuring a current flowing through each anode. 請求項1において、前記カソードは銅板又は銅管よりなり、
該カソードに厚み方向に貫通する複数個の貫通孔が設けられており、
各貫通孔にそれぞれアノードが挿入されており、
該貫通孔の孔面とアノードの側周面との間に絶縁材が介在されていることを特徴とする孔食評価方法。
In claim 1, the cathode comprises a copper plate or a copper tube,
The cathode is provided with a plurality of through holes penetrating in the thickness direction,
Anode is inserted in each through hole,
A pitting corrosion evaluation method, wherein an insulating material is interposed between a hole surface of the through hole and a side peripheral surface of the anode.
請求項2において、該カソードの前面と該アノードの前端面とが面一状となっていることを特徴とする銅の孔食評価方法。   3. The copper pitting corrosion evaluation method according to claim 2, wherein the front surface of the cathode and the front end surface of the anode are flush with each other. 請求項1ないし3のいずれか1項において、腐食生成物で覆われたアノードは、腐食生成物で覆われていないアノードを水中に浸漬して通電し、該アノードの接液面に腐食生成物を生成させたものであることを特徴とする銅の孔食評価方法。   The anode covered with a corrosion product according to any one of claims 1 to 3, wherein the anode not covered with the corrosion product is energized by immersing the anode in water, and the corrosion product is formed on the wetted surface of the anode. A method for evaluating pitting corrosion of copper, characterized in that 請求項4において、腐食生成物に覆われた状態にする処理をアノード毎に異なる時期に行うことを特徴とする銅の孔食評価方法。   5. The copper pitting corrosion evaluation method according to claim 4, wherein the process of covering the substrate with the corrosion product is performed at different times for each anode.
JP2011216441A 2011-09-30 2011-09-30 Copper pitting corrosion evaluation method Withdrawn JP2013076627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216441A JP2013076627A (en) 2011-09-30 2011-09-30 Copper pitting corrosion evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216441A JP2013076627A (en) 2011-09-30 2011-09-30 Copper pitting corrosion evaluation method

Publications (1)

Publication Number Publication Date
JP2013076627A true JP2013076627A (en) 2013-04-25

Family

ID=48480203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216441A Withdrawn JP2013076627A (en) 2011-09-30 2011-09-30 Copper pitting corrosion evaluation method

Country Status (1)

Country Link
JP (1) JP2013076627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680494A (en) * 2018-06-28 2018-10-19 天津市澳玛科技开发有限公司 Food-grade tinplate inner coating corrosion resistance detection method and its detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680494A (en) * 2018-06-28 2018-10-19 天津市澳玛科技开发有限公司 Food-grade tinplate inner coating corrosion resistance detection method and its detection device
CN108680494B (en) * 2018-06-28 2024-03-26 天津市澳玛科技开发有限公司 Method and device for detecting corrosion resistance of food-grade tinplate inner coating

Similar Documents

Publication Publication Date Title
JP4141841B2 (en) Sensor array and method for electrochemical corrosion monitoring
JP6144205B2 (en) Cathodic protection monitoring probe
JP6565980B2 (en) Corrosion resistance test apparatus for coated metal material and corrosion resistance test method for coated metal material
JP5626380B2 (en) Pitting corrosion monitoring test piece, pitting corrosion monitoring device, and pitting corrosion monitoring method
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
Hafezi et al. Verification and analysis of transference number measurements by the galvanostatic polarization method
US20080179198A1 (en) System and method of use for electrochemical measurement of corrosion
CN108072602B (en) Electrochemical method for accelerating corrosion of stainless steel weld joint area
CN108362637A (en) Corrosion electrochemical test system and corrosion electrochemistry test method
US7422678B2 (en) Evaluation of the corrosion inhibiting activity of a coating
US3826724A (en) Method of removing a metal contaminant
JP2013076627A (en) Copper pitting corrosion evaluation method
JP6762536B2 (en) Water corrosiveness judgment method and water corrosiveness judgment device
JP2004323971A (en) Improved bath analysis method
Shaik et al. Studies on galvanic corrosion of tri-metallic joint of steels in sodium chloride solution
JP5114271B2 (en) Around plating evaluation apparatus and evaluation method
JP6048445B2 (en) Metal corrosivity evaluation method
JP5348051B2 (en) Copper pitting corrosion evaluation method
JP3006041B2 (en) Corrosion monitoring method
JP2020094948A (en) Inspection device and method for inspection
JP6751924B2 (en) Evaluation method of corrosion resistance and repair method of plated products
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
JP2019184364A (en) Device for determining corrosion of water and method for determining corrosion of water
CN104321636B (en) For the analysis method for the cleannes level for quantifying parts surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202