JPH02127438A - Vertically orientated polyimide film - Google Patents

Vertically orientated polyimide film

Info

Publication number
JPH02127438A
JPH02127438A JP28033288A JP28033288A JPH02127438A JP H02127438 A JPH02127438 A JP H02127438A JP 28033288 A JP28033288 A JP 28033288A JP 28033288 A JP28033288 A JP 28033288A JP H02127438 A JPH02127438 A JP H02127438A
Authority
JP
Japan
Prior art keywords
film
polyimide
polyamic acid
direction perpendicular
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28033288A
Other languages
Japanese (ja)
Inventor
Koichi Nakagawa
幸一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28033288A priority Critical patent/JPH02127438A/en
Publication of JPH02127438A publication Critical patent/JPH02127438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the title film useful as insulating layer, etc., having low linear thermal coefficient of expansion in the direction perpendicular to film face and high coefficient of thermal conductivity, comprising a polyimide having a specific repeating unit wherein molecular chain of the polyimide is orientated in the direction perpendicular to film face. CONSTITUTION:The aimed film comprising a polyimide having a repeating unit shown by formula I (Ar1 is tetrafunctional aromatic group; Ar2 is bifunctional aromatic group) wherein molecular chain of the polyimide is orientated in the direction perpendicular to film face. In production of the film, for example, preferably a solution of a polyamic acid is made into a cast film, which is heat-treated under <=0.1MV/cm field strength at >=150 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性樹脂として知られるポリイミドに係る
もので、極低温や高温などの温度差の著しい環境で使用
され、形状の安定性や信頼性が強く要求される電子部品
関連の産業分野で使用される絶li&喚に関するもので
あり、異種材料間の線膨張率差に基づく熱歪を緩和する
ことができると共に熱伝導性に優れた絶縁膜、更に詳し
くいえば絶縁膜の膜面に対し垂直方向の線膨張率が小さ
くかつ熱伝導率が大きく、模面と平行方向の熱歪を吸収
することが出来る絶縁膜に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to polyimide, which is known as a heat-resistant resin, and is used in environments with significant temperature differences such as extremely low temperatures and high temperatures, and has excellent shape stability and This is a material that is used in industrial fields related to electronic components, where reliability is strongly required. The present invention relates to an insulating film, and more specifically, to an insulating film that has a small coefficient of linear expansion in a direction perpendicular to the film surface of the insulating film, a high thermal conductivity, and can absorb thermal strain in a direction parallel to the surface of the insulating film.

〔従来の技術〕[Conventional technology]

ポリイミドは耐熱性、耐薬品性、電気的特性、機械的特
性、その他優れた緒特性を有していることが知られてお
υ、例えば、ピロメリット酸2 g水物ト4.4’−ジ
アミノジフェニルエーテルから得られるポリイミド膜は
従来から広く使用されている。しかし、一般に線膨張率
が大きく、熱的寸法安定性が悪く、熱伝導性も極めて悪
いことが知られている。
Polyimide is known to have excellent properties such as heat resistance, chemical resistance, electrical properties, mechanical properties, and other properties.For example, 2 g of pyromellitic acid and 4.4'- Polyimide membranes obtained from diaminodiphenyl ether have been widely used. However, it is known that they generally have a large coefficient of linear expansion, poor thermal dimensional stability, and extremely poor thermal conductivity.

近年、電子部品の高集積化、高密度化に伴い、ICチッ
プ内配線のみならず、ICチップ搭載基板内配線や入出
カケ−グル内配線も細線幅化の一途(あシ、工Cチップ
と基板間や、基板と入出カケ−プル間の構成材料の線膨
張率差に基づくわずかな熱歪による接点障害や、ICチ
ップよシ発生した熱による素子の温度上昇などが重要な
問題になっている。また、超伝導関連の分野では超伝導
特有のクエンチ現象(何らかの異常によシ一部で超伝導
状顔が常伝導状態に変わると共に急激に発熱し常伝導領
域が拡大する現象)が問題になっている。
In recent years, with the increasing integration and density of electronic components, not only the wiring inside IC chips, but also the wiring inside IC chip mounting boards and the wiring inside input/output cables are becoming thinner. Important problems include contact failure due to slight thermal strain due to differences in linear expansion coefficients of constituent materials between boards and between boards and input/output cables, and temperature rise of elements due to heat generated by IC chips. In addition, in the field related to superconductivity, the quench phenomenon unique to superconductivity (a phenomenon in which a superconducting face changes to a normal conductive state due to some abnormality and suddenly heats up and the normal conductive region expands) is a problem. It has become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの問題解決のために熱歪が少なく熱伝導性に優れ
た#熱性の絶縁材料の開発が切望されている。
To solve these problems, there is a strong need for the development of #thermal insulating materials with low thermal distortion and excellent thermal conductivity.

本発明の目的は、異種材料間の線膨張率差に基づく熱歪
を緩和することができると共に熱伝導性に優れた耐熱性
の絶縁模を提供することにある。
An object of the present invention is to provide a heat-resistant insulation pattern that can alleviate thermal strain caused by a difference in coefficient of linear expansion between different materials and has excellent thermal conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明は垂直配向ポリイ 夷 ド膜に関する発明であって、 下記−船人I: (式中、Ar1は4価の芳香族基、Arcは2価の芳香
族基を示す) で表される繰返し単位を有するポリイミドで、このポリ
イミドの分子鎖が膜面に対し垂直に配向していることを
特徴とする。
To summarize the present invention, the present invention relates to a vertically aligned polyimide film, and includes the following - Shipman I: (wherein Ar1 is a tetravalent aromatic group, and Arc is a divalent aromatic group. A polyimide having a repeating unit represented by (shown), which is characterized in that the molecular chains of this polyimide are oriented perpendicular to the membrane surface.

上記−船人IにおいてArlで示される4価の芳香族基
の例としては、 などが挙げられ、またAr2で示される2価の芳香族基
の例としては、 などが挙げられる。これらの組合せは1組のものに限定
されるものではなく、2組以上の組合せたものを混合し
て用いることも可能である。
Examples of the tetravalent aromatic group represented by Arl in the above-mentioned - Shipman I include: and examples of the divalent aromatic group represented by Ar2 include. These combinations are not limited to one set, but it is also possible to mix and use two or more combinations.

一般にポリエチレンなどの結晶性高分子に見られるよう
に、延伸により一軸方向に分子鎖が配向した高分子材料
を容易に得ることができる。
As is generally seen in crystalline polymers such as polyethylene, a polymer material in which molecular chains are uniaxially oriented can be easily obtained by stretching.

このような−軸配向高分子の配向方向の引張弾性率は延
伸倍率と共に急速に大きくなる一方、線膨張率は逆に延
伸倍率と共に急速に小さくなり零から負の値へと変化し
く工、M、ウオード(I。
The tensile modulus of elasticity in the orientation direction of such -axially oriented polymers increases rapidly with the stretching ratio, while the linear expansion coefficient decreases rapidly with the stretching ratio, changing from zero to a negative value. , Ward (I.

M、 Ward ) IJ! 、デベロップ、メンツ 
イン オリエンテッド ポリマース−1(Develo
pmentsin 0riented Polymer
s−1)、アプライド サイエンス社(ロンドン)i行
(1taz))、Qa向力方向熱伝動率は延伸倍率と共
に大きくなるcc、L、チョイ(C,L、Choy )
  f’iか、ジャーナμオプ ポリマー サイエンス
 ポリマー フイジク7.zジV x;17 (J、 
Polym、 Sci、 Polym、 Phya。
M, Ward) IJ! , development, ments
In Oriented Polymers-1 (Develo
Polymer
s-1), Applied Sciences (London), Line I (1taz)), Qa The thermal conductivity in the direction of force increases with the stretching ratio CC, L, Choy (C, L, Choy)
f'i or journa μop polymer science polymer physics 7. zdiV x;17 (J,
Polym, Sci, Polym, Phya.

Ha、 )第18巻、第1187頁(1980))。Ha, Volume 18, Page 1187 (1980)).

例えば、高密度ポリエチレンの引張弾性率は未延伸状態
のI GPaから延伸倍率30倍で703Paとなシ、
線膨張率は未延伸状態のt 2 X 10−’x4から
延伸倍率2倍で零、延伸倍率18倍では−1,2X10
  K  となる。熱伝導率は未延伸状態のαOQ 5
5 W / aaK  から、延伸倍率25倍で113
 W/aaKと大幅に大きく4る。しかし、配向方向と
直角の方向の上記各特性は若干逆の傾向を示すことはよ
く知られている。
For example, the tensile modulus of high-density polyethylene changes from I GPa in an unstretched state to 703 Pa at a stretching ratio of 30 times.
The coefficient of linear expansion is zero at a stretching ratio of 2x from the unstretched state t2x10-'x4, and -1.2x10 at a stretching ratio of 18x.
It becomes K. Thermal conductivity is αOQ in unstretched state 5
From 5 W/aaK to 113 at a stretching ratio of 25 times
W/aaK significantly increased to 4. However, it is well known that the above characteristics in the direction perpendicular to the orientation direction exhibit slightly opposite trends.

したがって、本発明になる垂直配向ポリイミド嗅では、
ポリイミドの分子鎖が膜面に対し垂直に配向しているた
め、!!1面に対し垂直方向の引張弾性率は大きく、線
膨張率は小さく、熱伝導率は大きくなる。
Therefore, in the vertically oriented polyimide according to the present invention,
Because the molecular chains of polyimide are oriented perpendicular to the membrane surface! ! The tensile modulus in the direction perpendicular to one plane is large, the coefficient of linear expansion is small, and the thermal conductivity is large.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

本発明の一般式Iで表されるポリイミドは、例えば下記
の方法によって製造することができる。すなわち下記一
般弐H: (式中、Ar1、Arcは式lに定義したものと同義で
ある)で表される繰返し単位を有するポリアミック酸の
溶液のキャストフィルムを、11MV /aw以上の電
界強度下で150°C以上の温度で熱処理することKよ
り得られる。
The polyimide represented by the general formula I of the present invention can be produced, for example, by the following method. That is, a cast film of a solution of a polyamic acid having a repeating unit represented by the following general 2H: (wherein Ar1 and Arc have the same meanings as defined in formula 1) is cast under an electric field strength of 11 MV/aw or more. K by heat treatment at a temperature of 150°C or higher.

ポリイミドの前駆体であるポリアミック酸は、公知の方
法で製造することが出来る。すなわち、酸無水物成分と
ジアミン成分を実質等モル使用し、有機極性溶媒中で重
合して得られる。このポリアミック酸溶液をガラス等の
基板の上に塗布した後、例えば120°Cで1時間M乾
燥すればポリアミック酸のキャストフィルムが得られる
Polyamic acid, which is a precursor of polyimide, can be produced by a known method. That is, it is obtained by using substantially equimolar amounts of the acid anhydride component and the diamine component and polymerizing them in an organic polar solvent. A cast film of polyamic acid can be obtained by applying this polyamic acid solution onto a substrate such as glass and then drying it at 120° C. for 1 hour.

このキャストフィルムを偏光顕微鏡によシ偏光子と検光
子を互いに直交するようにして膜面に対し垂直方向より
観察したところ、光を透過しない消光状態になっておシ
、コノスコープ像が明シように観察された。これはポリ
アミック酸のキャストフィルムではポリアミック酸の分
子鎖が膜面に対し垂直に配向していることを示している
When this cast film was observed under a polarizing microscope from a direction perpendicular to the film surface with the polarizer and analyzer perpendicular to each other, it was found to be in an extinction state where no light was transmitted, and the conoscopic image was clearly visible. It was observed that This indicates that in the cast film of polyamic acid, the molecular chains of polyamic acid are oriented perpendicularly to the film surface.

ポリイミドは、ポリアミック酸のキャストフィルムを化
学量論以上の脱水剤と必要に応じ触媒量の第5級アミン
類等を加えた溶剤中に浸漬して脱水するなどの化学的方
法、又は脱水剤などを加えずに熱的に脱水閉環する方法
によシ得られるが、このポリアミック酸の脱水閉環過程
で垂直配向状類のポリアミック酸から分子鎖が膜面と平
行になった面配向状態のポリイミドに変わることが分か
った。
Polyimide can be produced by a chemical method such as dehydrating a cast film of polyamic acid by immersing it in a solvent containing a dehydrating agent at a stoichiometric or higher level and, if necessary, a catalytic amount of tertiary amines, or by using a dehydrating agent. It can be obtained by thermally dehydrating and ring-closing the polyamic acid without the addition of polyamic acid, but during the dehydration and ring-closing process of this polyamic acid, the vertically oriented polyamic acid transforms into a plane-oriented polyimide in which the molecular chains are parallel to the membrane surface. I knew it would change.

第1図は酸無水物成分としてピロメリット酸2無水物を
、ジアミン成分として4.4′−ジアミノジフエニμエ
ーテμを、溶媒としてN、N−ジメチルアセトアミドを
用いて重合させて得た厚′さ7−(L/Jmのポリアミ
ック酸キャストフイμムの温度(℃、横軸)上昇に伴う
偏光の透過光量変化(任意スケール1縦軸)とポリイミ
ド化率(%、縦軸)を示した図である。なお、ポリイミ
ド化率は赤外吸収スペクトNにおける1 780 cm
−”のポリイミド環内の力μボニル基の伸縮振動に基づ
く吸収の吸光度よシ定量した。室温から140°C付近
まではほぼ消光状態となっているが、150℃付近で急
激に透光状態となシ垂直配向から面配向へと急激な配向
変化が起こることが分かった。ポリイミド化率は120
℃では3%、150℃で42%、180℃では92%と
なってお、9.150℃付近の配向変化はポリイミド化
に伴うものである。
Figure 1 shows the thickness obtained by polymerizing pyromellitic dianhydride as the acid anhydride component, 4,4'-diaminodipheniμ ether μ as the diamine component, and N,N-dimethylacetamide as the solvent. 7- A diagram showing the change in the amount of transmitted light of polarized light (arbitrary scale 1 vertical axis) and polyimidation rate (%, vertical axis) as the temperature (°C, horizontal axis) increases in a polyamic acid cast film μ of (L/Jm) The polyimidation rate is 1 780 cm in the infrared absorption spectrum N.
-'' was determined from the absorbance of the absorption based on the stretching vibration of the force μ-bonyl group in the polyimide ring.It is almost in a quenching state from room temperature to around 140°C, but suddenly becomes transparent at around 150°C. It was found that a sudden change in orientation occurred from vertical orientation to planar orientation.The polyimidation rate was 120
3% at 150°C, 42% at 180°C, and 92% at 180°C, and the orientation change around 9.150°C is due to polyimidization.

この垂直配向状態のポリアミック酸のキャストフィルム
から面配向状態のポリイミド膜への配向変化は電場によ
シ制御できることが分かった。すなわち、静電場を印加
した状態で熱処理を行えば垂直配向状態が保持されたま
までポリイミド化が起こることが分かった。電界強度と
しては、  l 10 Mv/esでは部分的に垂直配
向状態が保たれているが、α20 M′v/exではほ
ぼ垂直配向状態が保持され、蚤ましくはα25Mv/−
以上の電界強度下で熱処理すれば良いことが分かった。
It was found that the change in orientation from a vertically oriented polyamic acid cast film to a planarly oriented polyimide film can be controlled by an electric field. That is, it was found that polyimidization occurs while the vertical alignment state is maintained when heat treatment is performed while an electrostatic field is applied. As for the electric field strength, the vertical alignment state is partially maintained at l 10 Mv/es, but the almost vertical alignment state is maintained at α20 M'v/ex, and it is likely that α25 Mv/-
It was found that heat treatment can be carried out under the above electric field strength.

このような垂直配向状態の程度はコノスコープ像の観察
によシ定性的ではあるが判定できる。
The degree of such vertical alignment can be qualitatively determined by observing a conoscopic image.

なお、ポリアミック酸の脱水閉環過程では脱水に伴い収
縮が起こる。静電場下での熱処理では分子鎖の垂直配向
状態が保持されているため、膜面に対し垂直方向の引張
弾性率は大きいが面方向の引張弾性率は小さくなってい
る。したがって、専ら面方向に収縮し、垂直配向したポ
リイミド結晶塊の集合体となる。この結晶塊の境界には
収縮に伴い空隙ができる。この空隙が面方向の熱歪を吸
収する役割をする。一方、膜面に対し垂直方向の線膨張
率はポリイミドの分子鎖が垂直に配向しているため小さ
な値になっておシ、熱伝導率は大きくなっている。
In addition, in the dehydration ring closure process of polyamic acid, shrinkage occurs due to dehydration. Since the vertical orientation of the molecular chains is maintained during heat treatment under an electrostatic field, the tensile modulus in the direction perpendicular to the film surface is large, but the tensile modulus in the in-plane direction is small. Therefore, it contracts exclusively in the plane direction and becomes an aggregate of vertically oriented polyimide crystal blocks. Voids are formed at the boundaries of this crystal mass due to contraction. This void serves to absorb thermal strain in the plane direction. On the other hand, the coefficient of linear expansion in the direction perpendicular to the film surface is small because the molecular chains of polyimide are oriented perpendicularly, and the thermal conductivity is large.

〔実施例〕〔Example〕

以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれらの実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 市販の4.4′−ジアミノゾフエニyエーテIvt15
f1昇華精製したピロメリット酸2無水物L 30 f
及ヒ市販のN、N−ジメチμアセトアミド15−を窒素
ガス導入管を備えたガラス容器に仕込み、室温で4時間
マグネチックスターラーでかくはん下に重縮合させた。
Example 1 Commercially available 4,4'-diaminosopheneyete Ivt15
f1 Sublimated purified pyromellitic dianhydride L 30 f
Commercially available N,N-dimethymoacetamide 15- was charged into a glass container equipped with a nitrogen gas introduction tube, and polycondensation was carried out at room temperature for 4 hours while stirring with a magnetic stirrer.

次いで上記のポリアミック酸溶液をスピンコーターでス
フイドガラス上に塗布し、120°Cで1時間鼻奉乾燥
して厚さ40μmのポリアミック酸のキャストフィルム
を得た。このキャストフィルムt<i光a微鏡により観
察したところ明りょうなコノスコープ像が認められた。
Next, the above polyamic acid solution was applied onto sulfide glass using a spin coater and dried at 120° C. for 1 hour to obtain a polyamic acid cast film with a thickness of 40 μm. When this cast film was observed using a t<i optical a microscope, a clear conoscopic image was observed.

すなわち、ポリアミック酸の分子鎖が膜面に対し垂直に
配向していることを確認した。次いでこのキャストフィ
ルムを透明電極付きのスライドガラス板に挟み、0、4
 kVの静電圧下、すなわちQ、 10 MV/amの
電界強度下で真空下300℃で30分熱処理した。この
ようにして得たポリイミド膜を偏光顕微鏡によシ観察し
たところ部分的にコノスコープ像が認められた。すなわ
ち、ポリイミドの分子鎖が1僕面に対し垂直に配向して
いる部分があることを確認した。電界強度0.10 ’
hlV/rxでは部分的に垂直配向状態が保たれる程度
であった。
That is, it was confirmed that the molecular chains of polyamic acid were oriented perpendicularly to the film surface. Next, this cast film was sandwiched between slide glass plates with transparent electrodes, and
Heat treatment was performed at 300° C. for 30 minutes under vacuum under an electrostatic voltage of kV, ie, an electric field strength of Q, 10 MV/am. When the polyimide film thus obtained was observed using a polarizing microscope, conoscopic images were partially observed. That is, it was confirmed that there were portions in which the molecular chains of polyimide were oriented perpendicularly to the single plane. Electric field strength 0.10'
In hlV/rx, the vertical alignment state was only partially maintained.

実施例2 実施例1のポリアミック酸溶液をスピンコーターでスフ
イドガラス上に塗布し、120’Cで1時間島鑵乾燥し
て厚さ20 pmのポリアミック酸のキャストフィルム
を得た。
Example 2 The polyamic acid solution of Example 1 was applied onto sulfide glass using a spin coater, and dried on an iron plate at 120'C for 1 hour to obtain a cast film of polyamic acid with a thickness of 20 pm.

次いでこのキャストフィルムを透明電極付きのスライド
ガラス板に挟み、(L4kVの静電圧下、すなわち(1
20MV /c1mの電界強度下で真空下300°Cで
30分熱処理した。このようにして得たポリイミド膜を
偏光顕微鏡にょシ観察したところコノスコープ像が認め
られた。すなゎち、ポリイミドの分子鎖が膜面に対し垂
直に配向していることを確認した。電界強度(L20M
V151ではほぼ全体的に垂直配向状態が保たれていた
Next, this cast film was sandwiched between slide glass plates with transparent electrodes, and the film was placed under an electrostatic voltage of (L4 kV, that is, (1
Heat treatment was performed at 300° C. for 30 minutes under vacuum with an electric field strength of 20 MV/c1 m. When the polyimide film thus obtained was observed under a polarizing microscope, a conoscopic image was observed. In other words, it was confirmed that the polyimide molecular chains were oriented perpendicular to the membrane surface. Electric field strength (L20M
In V151, the vertical alignment state was maintained almost entirely.

実施例3 実施例1のポリアミック酸溶液をスピンコーターでスフ
イドガラス上に塗布し、120℃で1時間1n乾燥して
厚さ20μmのポリアミック酸のキャストフィルムを得
た。次いでこのキャストフィルムを透明電極付きのスラ
イドガラス板に挟み、0.5 kvの静電圧下、すなわ
ち125 MV /exの電界強度下で真空下300°
Cで30分熱処理した。このようにして得たポリイミド
膜を偏光顕微鏡により観察したところ全体的に明りよう
かコノスコープ像が認められた。すなわち、ポリイミド
の分子鎖が膜面に対し垂直に配向していることを確認し
た。電界強度CL25M′v/esでは全体的に垂直配
向状態が保たれていた。
Example 3 The polyamic acid solution of Example 1 was applied onto sulfide glass using a spin coater, and dried at 120° C. for 1 hour to obtain a polyamic acid cast film with a thickness of 20 μm. This cast film was then sandwiched between slide glass plates with transparent electrodes and heated at 300° under vacuum under an electrostatic voltage of 0.5 kV, that is, under an electric field strength of 125 MV/ex.
It was heat-treated at C for 30 minutes. When the polyimide film thus obtained was observed using a polarizing microscope, a clear conoscopic image was observed throughout. That is, it was confirmed that the polyimide molecular chains were oriented perpendicularly to the membrane surface. At an electric field strength CL of 25 M'v/es, the vertical alignment state was maintained as a whole.

実施例4 市販の片面を粗にしたプリント板用の厚さ55μ惰の電
解鋼箔の粗面上に、実施例1のポリアミック酸溶液を厚
く塗布し、120”Cで1時間M乾燥して厚さ80μm
のポリアミック酸のキャストフィルムを得た。続いて、
この銅張シキャストフイルムの上に上記の電界鋼箔を粗
面が接するようにして張合せた状愚で、2kVのD電圧
下、すなわち0.25λCV 7cmの電界強度下で真
空下500°Cで50分熱処理した。このようにして得
た垂直配向ポリイミド膜を絶縁1とする平行平板導体に
ついて線膨張率と熱伝導率の測定を行った。導体面に対
し垂直方向の線膨張率は零、導体面に平行な方向の線膨
張率は金属銅の線膨張率と同じt 4 X 10=K”
”であり、導体面に対し垂直方向の熱伝導率はα01W
/譚にであった。また、液体窒素温度(−196゛C)
と室温間及び室温と250°Cの間でヒートサイク〜を
繰返しても銅箔がはがれることもなく、変形などの歪は
認められなかった。
Example 4 The polyamic acid solution of Example 1 was thickly applied onto the rough surface of a commercially available electrolytic steel foil with a thickness of 55 μm for use in printed circuit boards with one side roughened, and dried at 120"C for 1 hour. Thickness 80μm
A cast film of polyamic acid was obtained. continue,
The above-mentioned electric field steel foil was laminated on top of this copper-clad Sicast film so that its rough surface was in contact with the copper-clad Sicast film, and was heated at 500°C under vacuum under a D voltage of 2kV, that is, under an electric field strength of 0.25λCV 7cm. It was heat-treated for 50 minutes. The linear expansion coefficient and thermal conductivity of the parallel plate conductor using the vertically oriented polyimide film thus obtained as insulation 1 were measured. The coefficient of linear expansion in the direction perpendicular to the conductor plane is zero, and the coefficient of linear expansion in the direction parallel to the conductor plane is the same as that of metallic copper t 4 × 10 = K”
”, and the thermal conductivity in the direction perpendicular to the conductor surface is α01W
/ It was in Tan. Also, liquid nitrogen temperature (-196゛C)
Even when heat cycling was repeated between 250° C. and 250° C., the copper foil did not peel off, and no distortion such as deformation was observed.

比較例1 実施例1のポリアミック酸溶液をスビンコーヤストフイ
〜ムをスフイドガラス板に挟み真空下300°Cで30
分熱処理した。このようにして得たポリイミド膜を偏光
顕微琥によシ観察したところコノスコープ像は全く認め
られず、偏光子と検光子が直交した状態でこのポリイミ
ド膜を観察したところ透光状態罠なっていた。すなわち
、ポリイミドの分子鎖が膜面に対し平行に配向している
ことを確認した。
Comparative Example 1 The polyamic acid solution of Example 1 was sandwiched between Svinco Yast films and Sulfide glass plates and heated at 300°C under vacuum for 30 minutes.
Heat treated. When the polyimide film thus obtained was observed under a polarizing microscope, no conoscopic image was observed, and when the polyimide film was observed with the polarizer and analyzer perpendicular to each other, it was found to be a light-transmitting state trap. Ta. That is, it was confirmed that the polyimide molecular chains were oriented parallel to the membrane surface.

比較例2 静電圧を零(電界強度OMV / t:ni )とした
以外は実施例4と全く同様にして面配向状態のポリイミ
ド膜を絶縁層とする平行平板導体を作製した。この平行
平板導体の導体面に対し垂直方向の線膨張率は2 X 
10−sK””と大きく、熱伝導率はcLO02W /
 51にと小さく、いずれも無配向状態の値に近い値を
示した。なお、相対する銅箔間の接着強度は弱く、液体
窒素で冷却したところ容易にはく離した。
Comparative Example 2 A parallel plate conductor having a plane-oriented polyimide film as an insulating layer was produced in exactly the same manner as in Example 4 except that the electrostatic voltage was set to zero (electric field strength OMV/t:ni). The coefficient of linear expansion in the direction perpendicular to the conductor surface of this parallel plate conductor is 2
It is as large as 10-sK'', and its thermal conductivity is cLO02W/
51, and both values were close to the values in the non-oriented state. Note that the adhesive strength between opposing copper foils was weak, and they were easily peeled off when cooled with liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の垂直配向ポリイミド膜は
、膜面に対し垂直方向の線膨張率が小さくかつ熱伝導率
が大きく、膜面と平行方向の熱歪を吸収することが出来
る耐熱性の絶縁層であるという利点がある。このような
絶縁層は工Cチップ搭載基板内配線部や入出カケ−プル
′用の絶縁、1や超伝導応用関連の絶縁層として使用す
れば効果的でおる。
As explained above, the vertically oriented polyimide film of the present invention has a small linear expansion coefficient in the direction perpendicular to the film surface, a high thermal conductivity, and a heat resistance that can absorb thermal strain in the direction parallel to the film surface. It has the advantage of being an insulating layer. Such an insulating layer can be effectively used as an insulating layer for the internal wiring section of a circuit board on which a chip is mounted, an insulating layer for an input/output cable, or an insulating layer related to superconducting applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は厚さ20 pmのポリアミック酸キャストフイ
yムの温度上昇に伴う偏光の透過光量変化とポリイミド
化率を示す図である。 特許出願人  日本電信電話株式会社
FIG. 1 is a diagram showing the change in the amount of transmitted polarized light and the polyimidation rate as the temperature rises in a polyamic acid cast film having a thickness of 20 pm. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1.下記一般式1: ▲数式、化学式、表等があります▼…(1) (式中、Ar_1は4価の芳香族基、Ar_2は2価の
芳香族基を示す) で表される繰返し単位を有するポリイミドで、このポリ
イミドの分子鎖が膜面に対し垂直に配向していることを
特徴とする垂直配向ポリイミド膜。
1. The following general formula 1: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (In the formula, Ar_1 is a tetravalent aromatic group, Ar_2 is a divalent aromatic group) The repeating unit represented by 1. A vertically oriented polyimide film characterized in that the molecular chains of this polyimide are oriented perpendicularly to the film surface.
JP28033288A 1988-11-08 1988-11-08 Vertically orientated polyimide film Pending JPH02127438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28033288A JPH02127438A (en) 1988-11-08 1988-11-08 Vertically orientated polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28033288A JPH02127438A (en) 1988-11-08 1988-11-08 Vertically orientated polyimide film

Publications (1)

Publication Number Publication Date
JPH02127438A true JPH02127438A (en) 1990-05-16

Family

ID=17623528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28033288A Pending JPH02127438A (en) 1988-11-08 1988-11-08 Vertically orientated polyimide film

Country Status (1)

Country Link
JP (1) JPH02127438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229039A (en) * 1988-11-11 1993-07-20 International Business Machines Corporation Color liquid crystal display and method of manufacture
US6261481B1 (en) * 1998-03-19 2001-07-17 Hitachi, Ltd Insulating composition
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
JP2007264363A (en) * 2006-03-29 2007-10-11 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229039A (en) * 1988-11-11 1993-07-20 International Business Machines Corporation Color liquid crystal display and method of manufacture
US6261481B1 (en) * 1998-03-19 2001-07-17 Hitachi, Ltd Insulating composition
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
JP2007264363A (en) * 2006-03-29 2007-10-11 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity

Similar Documents

Publication Publication Date Title
US5081229A (en) Polyimide having excellent thermal dimensional stability
KR101702128B1 (en) Metalized Polyimide Film and Flexible Printed Circuit Board Using the Same
JP2004115799A (en) Polyimide composition having high modulus of elasticity useful for dielectric substrate for electronic application, and method relating thereto
TWI613149B (en) Manufacturing method of polyimide film and manufacturing method of graphite film using the same
KR20110004764A (en) Metalized polyimide film and flexible printed circuit board using the same
JPH03157428A (en) Copolyimide
JP2010163595A (en) Polyimide film
KR20200143295A (en) Polymer films and electronic devices
Lee et al. Dielectric properties of oxydianiline‐based polyimide thin films according to the water uptake
JPH02127438A (en) Vertically orientated polyimide film
JP4324399B2 (en) Graphite film and polyimide film
KR102077766B1 (en) GRAPHITE FILM, preparing method thereof, and heat emission structure including the same
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
KR20170007227A (en) A process for producing a polyimide resin and a polyimide film
KR20110035620A (en) Polyimide film
JP2004124091A (en) Polyimide film, its manufacturing method and its use
KR20190130464A (en) Polyimide film for flexible display device substrate having improved thermal dissipation
JPH0245998A (en) Thin film multilayer wiring substrate
JPH025307A (en) Vertical orientation high polymer insulator
US5192619A (en) Flexible copper-applied substrates
Han et al. Synthesis and properties of modified thermoplastic polyimide films with good dielectric properties at high frequency and enhanced thermal stability via incorporation of rigid ester and biphenyl structural units
Mo et al. Siloxane‐containing polyimide films with high heat resistance and low dielectric constant
JP4731107B2 (en) Flexible metal foil laminate
KR102230494B1 (en) Preparation method for polyimide film using microwave
KR102336859B1 (en) Polyimide film with improved chemical resistnace properties and manufacturing method thereof