JPH025307A - Vertical orientation high polymer insulator - Google Patents

Vertical orientation high polymer insulator

Info

Publication number
JPH025307A
JPH025307A JP63154670A JP15467088A JPH025307A JP H025307 A JPH025307 A JP H025307A JP 63154670 A JP63154670 A JP 63154670A JP 15467088 A JP15467088 A JP 15467088A JP H025307 A JPH025307 A JP H025307A
Authority
JP
Japan
Prior art keywords
conductor
linear expansion
conductors
insulator layer
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154670A
Other languages
Japanese (ja)
Inventor
Koichi Nakagawa
幸一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63154670A priority Critical patent/JPH025307A/en
Publication of JPH025307A publication Critical patent/JPH025307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To relax a thermal deformation and to improve the thermal conductibility by composing an insulator layer with a group of high polymer crystalline blocks whose molecular axes are oriented vertical to conductor surfaces, and forming clearances at the borders between crystalline blocks on the plane of the conductor surface. CONSTITUTION:The molecular axes of high polymers in high polymer crystalline blocks 2 to be an insulator layer, are oriented vertical to the surface of conductors 1, and at the same time, the crystalline blocks 2 stride between the conductors 1 opposing each other. As a result, the linear expansion rate of the insulator layer in the vertical direction to the conductor surface is reduced, and the thermal conductivity is increased. Moreover, clearances are formed at the borders of crystalline blocks 2 on the plane parallel to the conductor 1 surface. Consequently, the deformation of the linear expansion of the insulator layer parallel to the conductor surface is absorbed by the clearances regardless of a large linear expansion rate of individual crystalline block, and the value of the linear expansion rate of the insulator layer is made almost same as that of the conductors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極低温や高温などの温度差の著しい環境で使
用され、形状の安定性や信頼性が強く要求される電子部
品関連の産業分野で使用される絶縁導体に関するもので
、導体と絶縁層間の線膨張率差に基づく熱歪を緩和する
ことができると共に導体間の熱伝導性に優れた絶縁導体
、更に詳しくいえば絶縁層の線膨張率が導体面に対し垂
直方向では小さく、導体面と平行方向では導体の線膨張
率とほぼ等しく、しかも導体面に対し垂直方向の絶縁層
の熱伝導率が大きい絶縁導体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to industries related to electronic components, which are used in environments with significant temperature differences such as extremely low temperatures and high temperatures, and where shape stability and reliability are strongly required. It relates to insulated conductors used in the field, which can alleviate thermal strain caused by the difference in coefficient of linear expansion between the conductor and the insulating layer, and which have excellent thermal conductivity between the conductors. The present invention relates to an insulated conductor whose coefficient of linear expansion is small in the direction perpendicular to the conductor surface, approximately equal to the linear expansion coefficient of the conductor in the direction parallel to the conductor surface, and whose thermal conductivity of the insulating layer is high in the direction perpendicular to the conductor surface.

〔従来の技術〕[Conventional technology]

近年、電子部品の高集積化、高密度化に伴い、ICCチ
ップ内線線みならず、ICチップ搭載基板内配線や入出
カケ−プル内配線も細llAm化の一途にあ)、ICチ
ップと基板間や、基板と入出カケ−プル間の構成材料の
線膨張率差に基づくわずかな熱歪による接点障害や、I
Cチップより発生した熱を効率よく放熱し、素子の温度
上昇を少なくすることなどが重要な問題になっている。
In recent years, with the increasing integration and density of electronic components, not only the internal lines of ICC chips, but also the internal wiring of IC chip mounting boards and the internal wiring of input/output cables are becoming thinner and thinner. contact failure due to slight thermal strain caused by the difference in coefficient of linear expansion of the constituent materials between the board and the input/output cable, and
An important issue is how to efficiently dissipate the heat generated by the C-chip and reduce the temperature rise of the device.

また、超伝導関連の分野では超伝導特有のクエンチ現象
を抑制するために熱歪が少なく熱伝導性に優れた絶縁材
料の開発が重要になっている。
Furthermore, in the field of superconductivity, it is important to develop insulating materials with low thermal distortion and excellent thermal conductivity in order to suppress the quench phenomenon unique to superconductivity.

一般に高分子材料の線膨張率は大きいため、線膨張率の
小さなガラスなどの無機光てん剤を配合するなどして工
aチップの線膨張率との整合性を良くした絶縁材料(基
板)や、高分子の中では比較的低線膨張率のポリイミド
を絶縁体にした入出カケ−プルなどがある。
In general, polymer materials have a large coefficient of linear expansion, so insulating materials (substrates) are made that have a better consistency with the coefficient of linear expansion of the engineering a-chip, such as by incorporating inorganic photonic agents such as glass with a small coefficient of linear expansion. Among polymers, there are input and output cables made of polyimide, which has a relatively low coefficient of linear expansion, as an insulator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、hずれも十分満足のいくものではなく、
導体や絶縁体などの異種材料間の線膨張率差に基づく熱
歪を緩和する材料や熱伝導性に優れた絶縁材料の実現が
切望されている。
However, the h deviation is not completely satisfactory,
There is a strong desire to create materials that can alleviate thermal strain caused by differences in linear expansion coefficients between different materials such as conductors and insulators, and insulating materials that have excellent thermal conductivity.

本発明の目的は、異種材料間の線膨張率差に基づく熱歪
を緩和することができると共に熱伝導性に優れた絶縁導
体を提供することにある。
An object of the present invention is to provide an insulated conductor that can alleviate thermal strain caused by a difference in coefficient of linear expansion between different materials and has excellent thermal conductivity.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明を概説すれば、本発明は垂直配向高分子絶縁導体
に関する発明であって、相対する導体間釦絶縁層を有し
、該絶縁層は、導体面に対し垂直に分子軸が配向した高
分子結晶塊の集合体から成シ、該結晶塊はそれぞれ相対
する導体間にまたがっており、導体面と平行な面内の該
結晶塊の境界には空隙を有し、しかも導体間の所々に設
置した製造過程で必要な導体間隔を所定の値に保つため
のスペーサーをそのまま有するか又は有しないことを特
徴とする。
To summarize the present invention, the present invention relates to a vertically oriented polymer insulated conductor, which has a button insulating layer between opposing conductors, and the insulating layer is a vertically oriented polymer insulated conductor having a molecular axis oriented perpendicularly to the conductor surface. It is composed of an aggregate of molecular crystal clusters, each crystal cluster spans between opposing conductors, and there are voids at the boundaries of the crystal clusters in a plane parallel to the conductor plane, and there are gaps between the conductors. It is characterized by having or not having a spacer for keeping the conductor spacing at a predetermined value as required during the installed manufacturing process.

ポリエチレンやポリオキクメチレンなどの結晶性高分子
を延伸することによシ、−軸方向に分子鎖が配向した高
分子材料を容易に得ることができる。このよりな−軸配
向高分子の延伸方向の線膨張率は延伸倍率と共に急速に
小さくなり、零から負の値へと変化しく1.M、ワード
(工。
By stretching a crystalline polymer such as polyethylene or polyoxycmethylene, a polymer material in which molecular chains are oriented in the -axis direction can be easily obtained. The coefficient of linear expansion in the stretching direction of this more -axially oriented polymer rapidly decreases with the stretching ratio, and changes from zero to a negative value.1. M. Ward (Eng.

M、Ward)m、デイベロツデメンツ イン オリエ
ンテッド ボリマーズ−1(DθVθ10 pme n
 t stn orientea Polymers 
−1)、アプライド サイエンス(Appl、Sci、
 )社、ロンドン(London)(1982))、延
伸方向の熱伝導率は延伸倍率と共に大きくなる(0.L
、チョイ(0,L、 ahoy)ほか、〔ジャーナル 
オプ ポリマー サイエンス ポリマー フイジクス 
エデイVヨン(J、 Polym、 Elci、Pol
ym、 Phys、 Flid、 )  第18巻、第
1187頁(1980))。例えば、高密度ポリエチレ
ンの線膨張率(室温)は未延伸状態の1.2 X 10
−’ K−1から延伸倍率2倍で零、延伸倍率18倍で
は−1,2XlO’″′sK″″1となる。熱伝導率(
室温)は未延伸状態のαOO55”I/cnt Kから
延伸倍率25倍で0.13 W/mKと大幅に大きくな
る。ポリオキシメチレンでは、線膨張率(室温)は未延
伸状態のaOXlo”K″″1 から延伸倍率8倍で零
、延伸倍率20倍では−4,0×10−・に−1となる
。熱伝導率(室温)は未延伸状態の(LOO37W/c
y+sKから延伸倍率8倍で103W / cm K 
と大きくなる。しかし、延伸方向と直角の方向の線膨張
率は逆に延伸倍率と共に若干大きくなシ、延伸方向と直
角の方向の熱伝導率は小さくなる。
M, Ward)
t stn orientea Polymers
-1), Applied Science (Appl, Sci,
) Ltd., London (1982)), the thermal conductivity in the stretching direction increases with the stretching ratio (0.L
, Choi (0, L, ahoy) et al. [Journal
Oppolymer Science Polymer Physics
Eddie V Yong (J, Polym, Elci, Pol
ym, Phys, Frid, Volume 18, Page 1187 (1980)). For example, the coefficient of linear expansion (room temperature) of high-density polyethylene is 1.2 x 10 in the unstretched state.
-' From K-1, it becomes zero at a stretching ratio of 2 times, and becomes -1,2XlO''''sK''''1 at a stretching ratio of 18 times.Thermal conductivity (
The coefficient of linear expansion (room temperature) of αOO55"I/cnt K in the unstretched state increases significantly to 0.13 W/mK at a stretching ratio of 25 times. In polyoxymethylene, the coefficient of linear expansion (room temperature) increases from αOO55"I/cnt K in the unstretched state to 0.13 W/mK in the unstretched state. From ``''1, it becomes zero at a stretching ratio of 8 times, and becomes -1 at a stretching ratio of 20 times to -4,0×10-·. Thermal conductivity (room temperature) of unstretched state (LOO37W/c
103W/cm K at a stretching ratio of 8x from y+sK
It gets bigger. However, the coefficient of linear expansion in the direction perpendicular to the stretching direction slightly increases with the stretching ratio, and the thermal conductivity in the direction perpendicular to the stretching direction decreases.

以下、本発明を図面に基づいて具体的に説明する。Hereinafter, the present invention will be specifically explained based on the drawings.

第1図は本発明になる絶縁導体の断面斜視図であシ、符
号1は導体、2は垂直配向高分子結晶塊、5は空隙を意
味する。第1図に示すように、本発明の垂直配向高分子
絶縁導体では、絶R層となる高分子結晶塊中の高分子の
分子軸が導体面に対し垂直に配向していると共に該結晶
塊がそれぞれ相対する導体間にまたがってbるため、導
体面に対し垂直方向の絶縁層の線膨張率は小さく、熱伝
導率は大きくなる。また、導体面と平行な面内の該結晶
塊の境界には空隙を有するため導体面と平行方向の絶縁
層の!II膨張率は、個々の結晶塊の線膨張率は太きb
にもかかわらず、空隙によシ歪が吸収されるため、導体
の線膨張率とほぼ等しくなる。なお、絶縁層の導体面と
平行方向の熱伝導率は小さくなるが、通常導体は金属な
どの熱伝導性に6]れた材料であるため、絶縁導体の導
体面と平行方向の熱伝導性も優れている。
FIG. 1 is a cross-sectional perspective view of an insulated conductor according to the present invention, where 1 is a conductor, 2 is a vertically oriented polymer crystal mass, and 5 is a void. As shown in FIG. 1, in the vertically oriented polymer insulated conductor of the present invention, the molecular axes of the polymer in the polymer crystal mass forming the absolute R layer are oriented perpendicularly to the conductor surface, and the crystal mass straddles between opposing conductors, so the coefficient of linear expansion of the insulating layer in the direction perpendicular to the conductor plane is small and the thermal conductivity is large. Also, since there are voids at the boundaries of the crystal clusters in the plane parallel to the conductor plane, the insulating layer in the direction parallel to the conductor plane! II expansion coefficient is the linear expansion coefficient of each crystal block, which is thick b
Nevertheless, since the strain is absorbed by the voids, the coefficient of linear expansion becomes almost equal to the coefficient of linear expansion of the conductor. Note that the thermal conductivity in the direction parallel to the conductor surface of the insulating layer is small, but since the conductor is usually made of a material with high thermal conductivity such as metal, the thermal conductivity in the direction parallel to the conductor surface of the insulated conductor is small. is also excellent.

絶縁層となる結晶性高分子を相対する導体面に対し垂直
に配向させる方法としては、本発明者の先の出願になる
特願昭62−305820号明細書に示したような電場
を印加する方法などがある。このような電場による配向
方法では、絶縁層となる結晶性高分子がその分子軸方向
に双(r子モーメントを有するか、若しくは双極子モー
メントを有しない場合はその重合前の化ツマ−が双極子
モーメントを有することが不可欠となる。
As a method for orienting the crystalline polymer that forms the insulating layer perpendicularly to the opposing conductor plane, an electric field is applied as shown in Japanese Patent Application No. 62-305820, filed earlier by the present inventor. There are methods. In such an orientation method using an electric field, the crystalline polymer that becomes the insulating layer has a dipole moment in the direction of its molecular axis, or if it does not have a dipole moment, the crystalline polymer before polymerization has a dipole moment. Having a child moment becomes essential.

分子軸方向に大きな双極子モーメントを有する結晶性高
分子の例としては、合成ポリペプチドの一つである結晶
内で分子鎖がαら旋構造をとるポリγ−ベンジルーL−
グルタメート(n)がある。このPBLGはジメチルホ
ルムアミド(DMF)などの極性溶媒中室温でαら旋構
造をとり分子軸方向に大きな双極子モーメントを有する
。例えば、このPBLGのDMF溶液を相対する導体間
に充てんし導体間に電場を印加すればPBLGは導体面
に対し垂直に配向する。
An example of a crystalline polymer having a large dipole moment in the direction of the molecular axis is polyγ-benzyl-L-, which is one of the synthetic polypeptides in which the molecular chain has an α-helical structure within the crystal.
There is glutamate (n). This PBLG has an α-helical structure at room temperature in a polar solvent such as dimethylformamide (DMF) and has a large dipole moment in the direction of the molecular axis. For example, if a DMF solution of this PBLG is filled between opposing conductors and an electric field is applied between the conductors, the PBLG will be oriented perpendicularly to the conductor surface.

この状態でDMIFを徐々に蒸発させれば、いわゆるソ
ルベントキャストフィルムが得られ、導体面に対し垂直
に配向したPBLGを絶縁層とする絶縁導体が得られる
If DMIF is gradually evaporated in this state, a so-called solvent cast film can be obtained, and an insulated conductor having an insulating layer of PBLG oriented perpendicularly to the conductor surface can be obtained.

汎用のエンジニアリングプラスチックとして知られるポ
リオキシメチレン(POM)は、結晶内で分子鎖が91
5ら旋構造をと如、双極子が互いに打消しあうため電場
により配向することはない。しかし、POMの化ツマ−
の1つであるホルムアルデヒドは2.27D(デバイ)
の双極子モーメントを有するため電場により配向する。
Polyoxymethylene (POM), known as a general-purpose engineering plastic, has a molecular chain of 91 in the crystal.
As with the five-helical structure, the dipoles cancel each other out and are not oriented by an electric field. However, the changes in POM
Formaldehyde, one of the
Because it has a dipole moment of , it is oriented by an electric field.

木発明者は液状のホルムアルデヒドを電場下で重合すれ
ば導体面に対し垂直方向に分子軸が配向し九POMの結
晶塊の集合体が得られることを見出した。これは、導体
面に対し垂直方向に配向したホルムアルデヒド七ツマ−
の影響を受けて無極性のPOMも化ツマ−の方向に配向
することによるものである。走差電子顕微鏡観察によシ
、第1図に示すように、POMの結晶塊はそれぞれ相対
する導体間にまたがっておシ、導体面と平行な面内の結
晶塊の境界には空隙があることが分かった。この空隙は
、結晶塊の境界に未反応上ツマ−や低分子量のPOMが
集まυ、これらが重合後に蒸発してできたものである。
The inventors discovered that if liquid formaldehyde is polymerized under an electric field, the molecular axes are oriented perpendicular to the conductor plane, and an aggregate of nine POM crystals can be obtained. This is a formaldehyde 7-layer structure oriented perpendicularly to the conductor plane.
This is because non-polar POM is also oriented in the direction of polarization due to the influence of . As shown in Figure 1, scanning electron microscopy reveals that each POM crystal cluster straddles opposing conductors, and that there are voids at the boundaries of the crystal clusters in a plane parallel to the conductor plane. That's what I found out. These voids are caused by unreacted upper particles and low molecular weight POM gathering at the boundaries of crystal clusters, which evaporate after polymerization.

このような相対する導体間にあらかじめモノマーを充て
んした後に重合し高分子絶縁層を作製する方法では、製
造過程で導体間を所定の値に保つためのスペーサーが必
要となるが、このスペーサーにはガラス繊維や粒状の無
機材料あるいはポリイミドなどのプラスチックフィルム
や延伸配向繊維やフィルムなど種々の材料が使用できる
。また、この方法では導体表面を粗にすれば化ツマ−が
微細な空孔にも侵入するため、接着性に乏しいPOMで
もいわゆるアンカー効果によす強固に接着することがで
きる。また、導体面に対し垂直方向、すなわち分子軸方
向の強庸は極めて強−ため、相対する導体が容易にはく
離することもないし、圧壊することもなく、形状安定性
に優れている。また、延伸配向試料の場合と同様に一方
向に配向しているため極低温下でもぜい性破壊をするこ
ともない。
In this method, in which a monomer is filled in advance between opposing conductors and then polymerized to create a polymer insulation layer, a spacer is required to maintain the distance between the conductors at a predetermined value during the manufacturing process. Various materials can be used, such as glass fibers, granular inorganic materials, plastic films such as polyimide, and stretched oriented fibers and films. In addition, in this method, if the conductor surface is made rough, the oxides can penetrate into fine pores, so that even POM, which has poor adhesiveness, can be firmly bonded due to the so-called anchor effect. In addition, the strength in the direction perpendicular to the conductor surface, that is, in the direction of the molecular axis, is extremely strong, so opposing conductors do not easily peel off or crush, and have excellent shape stability. Further, as in the case of the stretched and oriented sample, since it is oriented in one direction, brittle failure does not occur even at extremely low temperatures.

なお、重合法としては特願昭62−305820号明細
書に示した放射線型合法以外にも、重合触媒をあらかじ
め化ツマ−に添加した後に電場下で重合する方法や、導
体表面にあらかじめ重合触媒を塗布した後に電場下でモ
ノマーを充てんし重合する方法など種々な方法があるが
いずれでもよい。
In addition to the radiation method shown in Japanese Patent Application No. 62-305820, other polymerization methods include a method in which a polymerization catalyst is added to a polymer in advance and then polymerized under an electric field, and a method in which a polymerization catalyst is added to a conductor surface in advance. There are various methods, such as a method in which a monomer is filled and polymerized under an electric field after coating, and any of these methods may be used.

〔実施例〕〔Example〕

以下1本発明を実施例により更に具体的に説明するが、
本発明はこれらの実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 市販の片面を粗にしたプリント板用の厚さ35μmの電
解銅箔を粗面が相対するようにし、との銅箔間にスペー
サーとして厚さ125μmのポリイミドフィルム(カプ
トン)を設置した。
Example 1 Commercially available electrolytic copper foil with a thickness of 35 μm for use in printed circuit boards with one side roughened was placed so that the rough sides faced each other, and a polyimide film (Kapton) with a thickness of 125 μm was placed as a spacer between the copper foils. .

この相対する電解鋼箔の間隙に、市販の粉末状パラホル
ムアルデヒドの熱分解により生成した気相のホルムアル
デヒド七ツマ−を、食塩と氷で約−20℃に冷却したト
ラップ中を通すことによシ脱水精製した後、−78℃の
液体状態で充てんした。相対する銅箔間に5 KVの静
電圧(電界強度α4 MY/cm )を印加したまま、
Co”によるr線重合を一78℃の液相で行った。照射
線量率は5x1o5R/h、照射時間は3時間としだ。
Gaseous formaldehyde, produced by thermal decomposition of commercially available powdered paraformaldehyde, is passed through a trap cooled to approximately -20°C with salt and ice through the gap between the opposing electrolytic steel foils. After dehydration and purification, it was filled in a liquid state at -78°C. While applying an electrostatic voltage of 5 KV (electric field strength α4 MY/cm ) between opposing copper foils,
The r-ray polymerization using Co'' was carried out in a liquid phase at -78°C.The irradiation dose rate was 5x105R/h and the irradiation time was 3 hours.

重合後スペーサ一部を切除した絶縁導体について線膨張
率と熱伝導率の測定を行った。
After polymerization, the linear expansion coefficient and thermal conductivity of the insulated conductor with a portion of the spacer removed were measured.

導体面に対し垂直方向の線膨張率は零、導体面に平行な
方向の線膨張率は金属銅の#!膨張率と同じ1.4 X
 10−に−1でちシ、導体面に対し垂直方向の熱伝導
率はCL O5W/anKであった。また、相対する銅
箔は強固に接着しており、液体窒素温度(−196℃)
と室温間のと一トサイクルを繰返しても銅箔がはがれる
こともなく、変形などの歪は認められなかった。
The coefficient of linear expansion in the direction perpendicular to the conductor surface is zero, and the coefficient of linear expansion in the direction parallel to the conductor surface is #! Same as expansion rate 1.4
The thermal conductivity in the direction perpendicular to the conductor surface was CLO5W/anK. In addition, the opposing copper foils are strongly bonded, and the liquid nitrogen temperature (-196℃)
Even after repeated cycles between temperature and room temperature, the copper foil did not peel off, and no distortion such as deformation was observed.

比較例1 静電圧を零(電界強度口My/−)とした以外は実施例
1と全く同様にして絶縁導体を作製した。この絶縁導体
の導体面忙対し垂直方向の線膨張率はlX10−4に″
lと大きく、熱伝導率はα0ロ5W/6IIKと小さく
、いずれも未延伸状態の値に近い値を示した。なお、相
対する銅箔間の接着強度は弱く、液体窒素で冷却したと
ころ容易にはく離した。
Comparative Example 1 An insulated conductor was produced in exactly the same manner as in Example 1 except that the electrostatic voltage was set to zero (field strength My/-). The coefficient of linear expansion of this insulated conductor in the direction perpendicular to the conductor surface is lX10-4.
The thermal conductivity was as low as 5W/6IIK, both of which were close to the values in the unstretched state. Note that the adhesive strength between opposing copper foils was weak, and they were easily peeled off when cooled with liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の垂直配向高分子絶縁導体
は絶縁層の線膨張率が導体面に対し垂直方向では小さく
、導体面と平行方向では導体の線膨張率とほぼ等しく、
しか本導体面に対し垂直方向の絶R層の熱伝導率が大き
い絶縁導体であるという利点がある。このような絶縁導
体はreチップ搭載基板内配線部や入出カケ−・プル用
の絶縁導体や超伝導応用関連の絶縁導体として使用すれ
ば効果的である。
As explained above, in the vertically oriented polymer insulated conductor of the present invention, the coefficient of linear expansion of the insulating layer is small in the direction perpendicular to the conductor surface, and approximately equal to the coefficient of linear expansion of the conductor in the direction parallel to the conductor surface.
However, it has the advantage that it is an insulated conductor with a high thermal conductivity of the absolute R layer in the direction perpendicular to the conductor surface. Such an insulated conductor is effective if used as an insulated conductor for wiring in a RE chip mounting board, an insulated conductor for an input/output cable/pull, or an insulated conductor related to superconducting applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる絶縁導体の断面斜視図である。 1:導体、2:垂直配向高分子結晶塊、3:空隙 FIG. 1 is a cross-sectional perspective view of an insulated conductor according to the present invention. 1: conductor, 2: vertically oriented polymer crystal mass, 3: void

Claims (1)

【特許請求の範囲】[Claims] 1.相対する導体間に絶縁層を有し、該絶縁層は、導体
面に対し垂直に分子軸が配向した高分子結晶塊の集合体
から成り、該結晶塊はそれぞれ相対する導体間にまたが
つており、導体面と平行な面内の該結晶塊の境界には空
隙を有し、しかも導体間の所々に設置した製造過程で必
要な導体間隔を所定の値に保つためのスペーサーをその
まま有するか又は有しないことを特徴とする垂直配向高
分子絶縁導体。
1. An insulating layer is provided between the opposing conductors, and the insulating layer is composed of an aggregate of polymer crystal blocks whose molecular axes are oriented perpendicular to the conductor plane, and each of the crystal blocks straddles between the opposing conductors. In addition, there are voids at the boundaries of the crystal clusters in a plane parallel to the conductor plane, and spacers are installed here and there between the conductors to maintain the required distance between the conductors at a predetermined value during the manufacturing process. A vertically oriented polymer insulated conductor characterized by having or not having any.
JP63154670A 1988-06-24 1988-06-24 Vertical orientation high polymer insulator Pending JPH025307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154670A JPH025307A (en) 1988-06-24 1988-06-24 Vertical orientation high polymer insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154670A JPH025307A (en) 1988-06-24 1988-06-24 Vertical orientation high polymer insulator

Publications (1)

Publication Number Publication Date
JPH025307A true JPH025307A (en) 1990-01-10

Family

ID=15589334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154670A Pending JPH025307A (en) 1988-06-24 1988-06-24 Vertical orientation high polymer insulator

Country Status (1)

Country Link
JP (1) JPH025307A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261481B1 (en) * 1998-03-19 2001-07-17 Hitachi, Ltd Insulating composition
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261481B1 (en) * 1998-03-19 2001-07-17 Hitachi, Ltd Insulating composition
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity

Similar Documents

Publication Publication Date Title
Zhou et al. Advanced polymer dielectrics for high temperature capacitive energy storage
US9807878B2 (en) Graphite sheet, method for producing same, laminated board for wiring, graphite wiring material, and process for producing wiring board
US6261481B1 (en) Insulating composition
US4302408A (en) Method of producing pyro-electric and piezo-electric elements
JP2587510B2 (en) Multiaxially oriented thermally modified polymer support for printed wiring boards
He et al. Phase transition and properties of a ferroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer
JP4138995B2 (en) Circuit board and manufacturing method thereof
EP0891312B1 (en) Materials having high electrical conductivity at room temperatures and methods for making same
US6552883B1 (en) Devices comprising thin films having temperature-independent high electrical conductivity and methods of making same
JPH025307A (en) Vertical orientation high polymer insulator
JPH01150382A (en) Circuit board having improved thermal conductivity
Kawasugi et al. Pressure-induced phase switching of Shubnikov–de Haas oscillations in the molecular Dirac fermion system α-(BETS) 2 I 3
JP2712256B2 (en) Resin electric insulating base material for wiring circuit board and method of manufacturing the same
JPH02127438A (en) Vertically orientated polyimide film
JPH0228352A (en) Wiring board for mounting ic chip
JPH01149303A (en) Method for fabricating vertically oriented molecule insulating layer
JPS61296068A (en) Plastic compound
JP7407732B2 (en) High voltage circuit board and high voltage device using the same
JPH0227615A (en) Input and output cable for extremely low temperature integrated circuit
Wang et al. Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films
JPH01157845A (en) Flexible laminated plate of metal and plastic
US20190276722A1 (en) Composite material and method of forming same, and electrical component including composite material
Huang et al. Superheating and melting mechanisms of YBa2Cu3O7− x surfaces
US10405465B2 (en) Topological insulator thermal management systems
US20190144729A1 (en) Topological insulator tubes applied to signal transmission systems