JPH02126625A - Junction of semiconductor wafer - Google Patents

Junction of semiconductor wafer

Info

Publication number
JPH02126625A
JPH02126625A JP28005588A JP28005588A JPH02126625A JP H02126625 A JPH02126625 A JP H02126625A JP 28005588 A JP28005588 A JP 28005588A JP 28005588 A JP28005588 A JP 28005588A JP H02126625 A JPH02126625 A JP H02126625A
Authority
JP
Japan
Prior art keywords
wafers
mirror
mirror face
semiconductor
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28005588A
Other languages
Japanese (ja)
Other versions
JPH0636407B2 (en
Inventor
Masami Nakano
正己 中野
Takao Abe
孝夫 阿部
Yasuaki Nakazato
中里 泰章
Tokio Takei
武井 時男
Atsuo Uchiyama
敦雄 内山
Katsuo Yoshizawa
吉沢 克夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Nagano Electronics Industrial Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Nagano Electronics Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Nagano Electronics Industrial Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP63280055A priority Critical patent/JPH0636407B2/en
Publication of JPH02126625A publication Critical patent/JPH02126625A/en
Publication of JPH0636407B2 publication Critical patent/JPH0636407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Abstract

PURPOSE:To make voids substantially disappear with high reproducibility and improve the high integration of a semiconductor IC as well as the yield of such integrated circuits by joining semiconductor wafers which are made to have roughness of each mirror face that is less than 0.5nm or below at a center line average height by polishing the mirror face. CONSTITUTION:Two sheets of semiconductor wafers which are made to have roughness of each mirror face that is less than 0.5nm or below at a center line average height are used in a joining system of the semiconductor wafers. When this system is performed through oxide films, one or both sides of the mirror face of a silicon wafer having the roughness of each mirror face that is less than 0.5nm or below at a center line average height is oxidized and then the wafers are joined. If both mirror faces are made to come into contact with each other and slight pressure produced by holding two faces with fingers is applied, its joining is performed completely. However, after a mirror face is put on top of the other mirror face of each wafer, addition of pressure from center to outside prevents easily atmospheric gases from being trapped inside the wafer. Even though a slight amount of its gas remains, it is removed by a subsequent heating process. If heated in a state where no pressure is applied after joining them, its heating renders its junction more firm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鏡面研磨された2枚の半導体ウェーハの該鏡
面を、相互に直接または酸化膜を介して接合させる半導
体ウェーハ接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor wafer bonding method for bonding the mirror surfaces of two mirror-polished semiconductor wafers to each other directly or via an oxide film.

[従来の技術] 半導体電子装置の製造における、基体プロセスとしての
不純物の導入技術としては、現在熱拡散法及びエビタキ
ンヤル成長法などがほぼ技術的に確立されたものとして
多用されている。しかし、これらの方法でパワーデバイ
スを作ろうとすると、熱拡散によるコレクタ拡散あるい
はエビタキンヤル成長による100ΩC−以上の高抵抗
層の形成における技術的な限界があって、高耐圧大容積
化に難点がある。
[Prior Art] As techniques for introducing impurities as a substrate process in the manufacture of semiconductor electronic devices, the thermal diffusion method and the Evita Kinyar growth method are currently widely used as they are almost technologically established. However, when trying to make a power device using these methods, there are technical limitations in forming a high resistance layer of 100 ΩC or more by collector diffusion by thermal diffusion or Evita kinial growth, and there are difficulties in increasing the volume with a high breakdown voltage.

また、特に、半導体集積回路において、個々の素子を誘
電体で分離する誘電体分離技術がその寄生容量及び分離
耐圧の点で優れているにも拘わらず、基板の反りが大き
過ぎるため、製造技術上非常に問題がある。
In addition, in particular, in semiconductor integrated circuits, although dielectric isolation technology that separates individual elements with a dielectric material is superior in terms of parasitic capacitance and isolation breakdown voltage, the warpage of the substrate is too large, making it difficult to manufacture The above is very problematic.

鏡面研磨された2枚のシリコンウェーハの該鏡面を相互
に直接又は酸化膜を介して接合する方法は、従来あまり
注目されていなかったが、最近に至って上述したパワー
デバイス基板または誘電体針#!基板の製法として非常
に注目されるようになった。何れの応用についても、上
述した従来法の欠点を著しく改善し得る。
The method of bonding the mirror surfaces of two mirror-polished silicon wafers to each other directly or via an oxide film has not received much attention in the past, but recently it has been developed to bond the mirror surfaces of two mirror-polished silicon wafers to each other, either directly or via an oxide film, but recently it has been developed to bond the mirror surfaces of two mirror-polished silicon wafers to each other directly or via an oxide film. It has gained a lot of attention as a manufacturing method for circuit boards. For either application, the drawbacks of the conventional methods mentioned above can be significantly improved.

かかるノリコンウェーハの接合方法は、上述のような目
的のための利用を意図したものではないが例えば特公昭
39−17869号が開示されている。
Such a method for bonding Noricon wafers is disclosed in Japanese Patent Publication No. 39-17869, for example, although it is not intended to be used for the above purpose.

現在、ノリコンウェーへの接合法としては、鏡面ノリコ
ンウェーハを室温空気中で重ね合わせ、これを弔に高温
例えば1100℃、2時間位、酸素/窒素比!15の雰
囲気で加熱する方法、及び、特に間に酸化膜が介在する
場合には張り合わせに際しウェーハ間に直流又は交流電
圧を加えてウェーハ間に働く静電吸引力を利用し、更に
窒素気流中で加熱する方法がとられている。
Currently, the method of bonding to Noricon wafers is to stack mirror-finished Noricon wafers in air at room temperature, and then heat them at a high temperature, for example, 1100°C, for about 2 hours, at a certain oxygen/nitrogen ratio. In particular, when there is an oxide film between the wafers, applying a DC or AC voltage between the wafers to utilize the electrostatic attraction force that acts between the wafers, and in a nitrogen stream. A heating method is used.

ノリコノウェーハの接合において技術的な問題点は、2
枚の鏡面ウェーハが相対応する接合面において、接合が
不充分な未擾合部が部分的に現れ通称ボイドを形成する
ことである。かかるボイドの発生を抑えるためにその原
因の究明が行われており、原因としてウェーハの表面に
付着する塵埃、汚れあるいは傷が考えられ、特に塵埃は
、ボイド発生の最大の原因であるとして注目されている
There are two technical problems in bonding Norikono wafers.
At the bonding surfaces of two mirror-finished wafers that correspond to each other, unattached portions where bonding is insufficient appear partially, forming what is commonly called a void. In order to suppress the occurrence of such voids, investigations are being carried out to find out the causes thereof, and dust, dirt, or scratches adhering to the surface of the wafer are thought to be the cause.In particular, dust is attracting attention as the biggest cause of void occurrence. ing.

しかし、これらの原因の除去によって完全なボイドの除
去はできないことを発明者は実験によって確かめた。
However, the inventors have confirmed through experiments that voids cannot be completely removed by eliminating these causes.

また、シリコンウェーハの改良接合技術としては、例え
ば特開昭61−182216号公報に、半導体基板の接
合の際の雰囲気として半導体を透過し又は半導体に吸収
されやすいガスを使用することにより、ボイドの発生を
防止する方法が開示されている。しかし、−度接合面に
ガスがホールドされると、それらのガスを透過吸収によ
って除去することは、現実には非常に困難がある。
In addition, as an improved bonding technology for silicon wafers, for example, Japanese Patent Application Laid-open No. 182216/1983 discloses that voids can be eliminated by using a gas that can easily pass through or be absorbed by semiconductors as an atmosphere when bonding semiconductor substrates. A method for preventing the occurrence is disclosed. However, when gases are retained at the -degree joint surface, it is actually very difficult to remove them by permeation and absorption.

[発明が解決しようとする諜jli] 本発明の目的は、上記問題点に鑑み、ボイドの発生を実
質的にしかも再現性よく除去することができる半導体ウ
ェーハ接合方法を提供することにある。
[Problems to be Solved by the Invention] In view of the above problems, an object of the present invention is to provide a semiconductor wafer bonding method that can substantially eliminate the occurrence of voids with good reproducibility.

[課題を解決するための手段〕 この目的を達成するために、本発明に係る半導体ウェー
ハ接合方法では、2枚の半導体ウェー/%の鏡面の表面
粗さを、中心線平均粗さでいずれも0.5nm以下にし
たものが用いられる。酸化膜を介する場合は、かかるQ
、5na+以下の表面粗さの鏡面ノ1.じンウエーハの
一方又は両方を酸化したのち接合する。
[Means for Solving the Problem] In order to achieve this object, in the semiconductor wafer bonding method according to the present invention, the surface roughness of the mirror surface of two semiconductor wafers/% is determined by the center line average roughness. A material with a thickness of 0.5 nm or less is used. When using an oxide film, the Q
, mirror surface No. 1 with a surface roughness of 5na+ or less. One or both of the resin wafers are oxidized and then bonded.

本発明は、接合される2枚の半導体ウェーハはシリコン
ウェーハに限られず、シリコンウェーハと化合物半導体
ウェーハの組み合わせ、同種又は異種の化合物半導体ウ
ェーハの組み合わせ、或は混晶比が同一又は異なる化合
物半導体ウェーハの組み合わせにも適用される。
In the present invention, the two semiconductor wafers to be joined are not limited to silicon wafers, but may also be a combination of a silicon wafer and a compound semiconductor wafer, a combination of the same or different types of compound semiconductor wafers, or compound semiconductor wafers with the same or different mixed crystal ratios. It also applies to combinations of

[作用〕 半導体ウェーハの直接接合において、その相対する鏡面
の表面粗さが小さい方が良いということはその接合の理
論的考察から自明のことであるが、従来の半導体ウェー
への接合技術においては、半導体ウェーへの鏡面化に関
して特別な配慮が行われず、鏡面が数人のレベルでどの
程度の粗さになればボイドの発生が妨げられるかどうか
について充分な技術的検討が行われなかった。すなわち
、半導体鏡面ウェーハの而粗さは、100〜500人と
いわれているが、鏡面粗さは、鏡面化の主流技術である
メカノケミカルボリッノングでどこまで小さくすること
ができるかについて検討が行われておらず、盲目的に、
鏡面といえば理想的なある種の平面を漠然と想念するだ
けであった。
[Operation] In direct bonding of semiconductor wafers, it is obvious from theoretical considerations of bonding that the surface roughness of the opposing mirror surfaces is smaller, but in conventional bonding technology to semiconductor wafers, However, no special consideration was given to mirror-finishing the semiconductor wafer, and sufficient technical studies were not conducted to determine how rough the mirror surface should be to prevent voids from forming. In other words, the roughness of semiconductor mirror-finished wafers is said to be between 100 and 500, but studies have been conducted on how much the mirror-finished surface roughness can be reduced using mechanochemical boring, which is the mainstream technology for mirror-finishing. blindly,
When I thought of a mirror surface, I only had a vague idea of some kind of ideal flat surface.

本発明者は、公知の半導体ウェーハ接合技術を種々検討
したが、いずれも満足な結果が得られず、更に研究を進
めたところ、半導体ウェーハの相対する鏡面または酸化
膜形成前の鏡面の粗さが接合面の接合に著しく影響し、
その鏡面の粗さを平均中心粗さ表示で0.5n@(5人
)以下にするとボイドフリーの接合ができることを発見
して本発明に到達した。
The present inventor investigated various known semiconductor wafer bonding techniques, but none of them yielded satisfactory results, and upon further research, it was found that the opposing mirror surfaces of semiconductor wafers or the roughness of the mirror surface before oxide film formation significantly affects the bonding of the joint surfaces,
The present invention was achieved by discovering that void-free bonding can be achieved by reducing the roughness of the mirror surface to 0.5 n@ (5 people) or less in terms of average center roughness.

このような鏡面シリコンウェーハの接合に際しては必ず
しもホットプレスを行う必要はなく、単に両鏡面を軽く
接触し、指で挟む程度の圧力を加えれば完全な接合が行
われる。また、2枚のウェーハの中心部により多くの圧
力がかかるように、あるいは選ね合わせた後、中心から
外方に圧力を加えることにより、内部に雰囲気ガスがト
ラップされることを容易に避けることができる。多少残
っていても後の加熱工程でこれを除(ことができる。
When bonding such mirror-finished silicon wafers, it is not necessarily necessary to perform hot pressing, and complete bonding can be achieved by simply lightly touching both mirror surfaces and applying pressure to the extent of pinching between fingers. In addition, trapping of atmospheric gas inside can be easily avoided by applying more pressure to the center of two wafers, or by applying pressure outward from the center after the two wafers are aligned. Can be done. Even if some remains, it can be removed in the later heating process.

空気中で重ね合わせが行われた場合、内部にトラップさ
れるガス組成は空気であるので、僅かなトラップガスと
ウェーハのバルクの中に吸収拡散される。
When the overlay is performed in air, the gas composition trapped inside is air, so that a small amount of trapped gas is absorbed and diffused into the bulk of the wafer.

このようにして、接合面は一種の真空状態となるので接
合面にはウェーハ接合体の外表面を介して大気圧が加わ
り、従来のようにホットプレスをしなくとも接合が進行
し、理想的なモノリシック状態となる。
In this way, the bonding surface is in a kind of vacuum state, so atmospheric pressure is applied to the bonding surface via the outer surface of the wafer bonded body, and the bonding progresses without hot pressing as in the conventional method. It becomes a monolithic state.

この接合後、無加圧状態で加熱するとより強固な接合と
なる。この接合強さは、引っ張り強さを測定したところ
150に9/c@’を超えることがわかった。これは<
100>方向のバルクのそれにほぼ等しい。かかるウェ
ーハを数mm角に切断したところ剥離はなく、シリコン
デバイスの製作工程における熱サイクルを加えても、接
合ウェーハの接合面の剥離はなく、引っ張り強さの低下
もなかった。これによって、シリコンデバイスのバルク
中のモノリシックな接合と等価であることがわかった。
After this bonding, heating without applying pressure will result in a stronger bond. When the tensile strength was measured, it was found that the bonding strength exceeded 150/9/c@'. This is <
100> approximately equal to that of the bulk in the direction. When such a wafer was cut into pieces several mm square, there was no peeling, and even when heat cycles were applied in the silicon device manufacturing process, there was no peeling of the bonded surface of the bonded wafer, and there was no decrease in tensile strength. This was found to be equivalent to a monolithic junction in the bulk of a silicon device.

ここで、本発明者は、半導体ウェーハのボイド検査方法
として種々検討したが、X線回折法を用いるのが極めて
有効であることを知見した。従来のボイド検査方法とし
ては赤外線透過方法、超音波探傷方法及び破壊検査方法
がある。この赤外線透過方法は非破壊方法である点で好
ましいが、X線回折法との比較では、致命的に劣った方
法であることが判った。すなわち、赤外線透過方法でボ
イドがないと判定されたウェーハをX゛線回折法で検査
すれば、依然としてボイドが残存している場合がしばし
ばあるためである。この理由は、X線回折法の場合には
接合が行われると、そこで必ず一次的に結晶の歪みが生
じ、この歪みをX線法で検知するためであると考えられ
る。
Here, the present inventor has studied various methods for inspecting semiconductor wafers for voids, and has found that the use of X-ray diffraction is extremely effective. Conventional void inspection methods include infrared transmission methods, ultrasonic flaw detection methods, and destructive inspection methods. Although this infrared transmission method is preferable because it is a non-destructive method, it was found to be a fatally inferior method when compared with the X-ray diffraction method. That is, if a wafer determined to have no voids by an infrared transmission method is inspected by an X-ray diffraction method, voids often remain. The reason for this is thought to be that in the case of X-ray diffraction, when bonding is performed, primary distortion of the crystal always occurs, and this distortion is detected by the X-ray method.

そこで、本発明者はさらにX線回折法によってウェーハ
の全接合面を調べ、ボイドが形成されていないことを確
かめた。そしてさらに、シリコンウェーハの鏡面の粗さ
が大きく例えば上記表示で0.7nmを超えるとしばし
ばボイドの発生があり、デバイスの熱サイクル工程に入
れると更にボイドの成長や部分的な剥離が見られること
を確かめた。
Therefore, the present inventor further investigated the entire bonding surface of the wafer by X-ray diffraction and confirmed that no voids were formed. Furthermore, if the mirror surface roughness of the silicon wafer is large, for example exceeding 0.7 nm as shown above, voids often occur, and further void growth and partial peeling can be seen when the device is subjected to a thermal cycle process. I confirmed that.

半導体ウェーハの表面粗さが何故0.5nm以下になる
と接合が良好であり、モノリシックと同じ性質を示し得
るかについては究明が進んでいないが、微粉末成型の際
と同様に、表面近傍の原子の再配列が起こるためと考え
られる。
Although it has not yet been investigated why semiconductor wafers with a surface roughness of 0.5 nm or less have good bonding and exhibit the same properties as monolithic ones, as in the case of fine powder molding, atoms near the surface This is thought to be due to the rearrangement of .

酸化膜を介したシリコンウェーハの接合は、方又は両方
のシリコンウェーハ表面を熱酸化して、1μ嘗以下の熱
酸化膜を形成させ、次いでこれらを重ね合わせ、更に交
流又は直流で静電圧を印加し接合する。
Bonding of silicon wafers via an oxide film involves thermally oxidizing the surface of one or both silicon wafers to form a thermal oxide film with a thickness of 1 μm or less, then stacking them together, and then applying an electrostatic voltage with alternating current or direct current. and join.

この表面粗さも、酸化膜形成前の鏡面ウェーハの面粗さ
が中心線平均粗さ表示で約0.5nmを超えると、接合
がボイドのために不完全になる。この場合の接合理由は
、シリコンウェーハを直接接合する場合と異なって、そ
の大部分がシリカ構造、即ち5i−0−3iの結合が界
面に形成されるためと考えられている。もともと熱酸化
膜の表面は、si又は0の未結合手が残存しているわけ
で、これらが接合の原因となる。
Regarding this surface roughness, if the surface roughness of the mirror-finished wafer before the oxide film is formed exceeds about 0.5 nm in terms of center line average roughness, the bonding will be incomplete due to voids. The reason for bonding in this case is thought to be that, unlike when silicon wafers are directly bonded, most of the bonding is made of silica, that is, 5i-0-3i bonds are formed at the interface. Originally, dangling bonds of Si or 0 remain on the surface of the thermal oxide film, and these are the cause of bonding.

シリコンウェーハと化合物半導体との間の接合、または
化合物半導体同志のそれについてもほぼシリコンウェー
ハ同志のそれと同様であって、いずれもその表面粗さを
0.51以下にすることが接合における必要条件となる
。化合物半導体の化学組成が元素或はその混晶比で異な
る場合でも上記同様である。結晶構造やその格子間隔が
異なる場合には、その接合物に結晶的な乱れがあるのは
当然であるが、本発明によればボイドフリーでしかも結
晶釣部れを最小にすることあてきる。結晶構造及び格子
間隔が異なる接合面では、数nルベルのアモルファス層
が部分的に形成されるが、実用的には電気抵抗値の異常
な変化がなく、またオーミック性が保持される。
The bonding between a silicon wafer and a compound semiconductor, or the bonding between compound semiconductors, is almost the same as that between silicon wafers, and in both cases, a necessary condition for bonding is to have a surface roughness of 0.51 or less. Become. The same applies even if the chemical composition of the compound semiconductor differs depending on the elements or their mixed crystal ratios. If the crystal structure or lattice spacing is different, it is natural that the bonded product will have crystal disorder, but according to the present invention, it is possible to achieve a void-free structure and to minimize crystal distortion. Although an amorphous layer of several n levels is partially formed on the bonding surfaces having different crystal structures and lattice spacings, in practical use there is no abnormal change in electrical resistance value, and ohmic properties are maintained.

[実施例] 以下、本発明の実施例をシリコンウェーハの接合につい
て説明する。
[Example] Hereinafter, an example of the present invention will be described regarding bonding of silicon wafers.

(1)直接接合 最初に酸化膜を介しない接合について説明する。(1) Direct joining First, a description will be given of a bond that does not involve an oxide film.

試料として、P型< 100>結晶、直径125mm、
厚す約500μ園、抵抗率8ΩCIBのシリコンウェー
ハを16枚用意し、研磨圧力、研磨速度を下表1に示す
ように調節し、メカニカルボリンングを行って下表2の
如く表面粗さの異なるシリコンウェー71Δ〜Dを各々
4枚作成した。
As a sample, P type <100> crystal, diameter 125 mm,
Sixteen silicon wafers with a thickness of approximately 500μ and a resistivity of 8Ω were prepared, and the polishing pressure and polishing speed were adjusted as shown in Table 1 below, and mechanical boring was performed to obtain different surface roughness as shown in Table 2 below. Four silicon wafers 71Δ to 71D were each produced.

表1 表2 研磨機は市販のそれと原理構造は同一で、研磨パッドは
研磨布として市販されている商品名シーガル7455、
第ル−ス株式会社製、研磨液は商品名GC3250,不
士見研磨材株式会社製を用いた。
Table 1 Table 2 The basic structure of the polishing machine is the same as that of a commercially available polishing machine, and the polishing pad is a commercially available polishing cloth under the trade name Seagull 7455.
The polishing liquid was manufactured by Dai-Russ Co., Ltd. and the product name was GC3250, which was manufactured by Fujimi Abrasives Co., Ltd.

表面粗さの測定は、氷室においてはその精度及びその表
現方法が極めて重要になる。そこで、表面高さ方向分解
能3人、水平方向分解能1.0μmで中心線平均粗さを
測定可能な、光学的位相シフト干渉法ヲ用いたワイコー
コーオポレーション(YYKOCORPORATION
)製、型式TOPO−3D、対物レンズの倍率40を選
定して用いた。この測定装置を用い、上記ウェーハA−
Dの表面粗さを各ウェーハについて、中心で直交する2
直線上の該中心から(半径)/2離れた位置及び該中心
の5領域(1領域は0.25ssXO,25mm)につ
いて測定しその平均値を求めた。
When measuring surface roughness, the accuracy and method of expressing it are extremely important in icehouses. Therefore, YYKO CORPORATION (YYKO CORPORATION) using optical phase shift interferometry, which can measure the center line average roughness with a surface height resolution of 3 people and a horizontal resolution of 1.0 μm, was developed.
), model TOPO-3D, and an objective lens with a magnification of 40 were selected and used. Using this measuring device, the above wafer A-
For each wafer, calculate the surface roughness of D by 2 orthogonal at the center.
Measurements were made at positions spaced apart (radius)/2 from the center on the straight line and in 5 areas around the center (one area is 0.25ssXO, 25 mm), and the average value was determined.

表面粗さとボイド発生との関係を明らかにするために、
上記ウェーハA−Dのすべての組合わせ(AA%AB、
AC%AD、BH,BC%BD、CC,CD、DD)に
ついて鏡面を相互に密着させ、次にN、雰囲気中で11
00℃、120分間熱処理を行うことにより接合ウェー
ハを作成した。次にボイド検査を行った。
In order to clarify the relationship between surface roughness and void generation,
All combinations of the above wafers A-D (AA%AB,
AC%AD, BH, BC%BD, CC, CD, DD), the mirror surfaces were brought into close contact with each other, and then 11
A bonded wafer was prepared by performing heat treatment at 00° C. for 120 minutes. Next, a void inspection was performed.

ここで、従来のボイド検査のように赤外透過法を用いた
のでは、赤外線の波長による制限により、結晶格子間隔
に比し極めて大きな値である0、1μm程麿以下の厚さ
のボイドを検査することができない。
Here, when infrared transmission method is used as in conventional void inspection, due to limitations due to the wavelength of infrared rays, voids with a thickness of about 0.1 μm or less, which is an extremely large value compared to the crystal lattice spacing, can be detected. cannot be inspected.

そこで、本発明者はラング・カメラを用いてボイド検査
を行った。このラング・カメラは、理学電気株式会社製
、コンピュータ制御トポグラフイメージングシステムで
ある。使用した特性X線は、MoK1+線であり、設定
した反射結晶面は(2,2,0)である。このラング・
カメラによれば、原理的にはほぼ原子レベルの厚さのボ
イドを検出することができ、ボイド検査には充分である
Therefore, the inventor conducted a void inspection using a Lang camera. This Lang camera is a computer-controlled topographic imaging system manufactured by Rigaku Denki Co., Ltd. The characteristic X-ray used was the MoK1+ ray, and the set reflection crystal plane was (2,2,0). This rung
In principle, a camera can detect voids with a thickness of approximately atomic level, which is sufficient for void inspection.

第1図(AA)〜(DD)はそれぞれ上記組合わせAA
〜DDについてのラング・カメラによるX線写真を示す
Figure 1 (AA) to (DD) are the above combinations AA, respectively.
- shows a Lang camera radiograph for DD.

ボイドの全面積は、AA>AB>BB>AC>AD>B
C>BD>CCの順になっていることが明らかである。
The total area of the void is AA>AB>BB>AC>AD>B
It is clear that the order is C>BD>CC.

また、組合わせCG、CD、DDについてはボイドが無
く、他の組合わせに比し著しく良好であることが明らか
である。
Furthermore, it is clear that the combinations CG, CD, and DD have no voids and are significantly better than other combinations.

このことから、鏡面に酸化膜を形成せずに行う場合には
、鏡面粗さを中心線平均粗さ0.45n−以下にするこ
とが、ボイドを無くすることにとって極めて重要である
ことがわかる。
From this, it can be seen that when performing this without forming an oxide film on the mirror surface, it is extremely important to reduce the mirror surface roughness to a center line average roughness of 0.45n- or less in order to eliminate voids. .

ボイドを再現性よく無くするための鏡面粗さの限界を調
べるために、さらに細かく鏡面粗さを変化させてボイド
検査を行ったところ、この限界は中心線平均粗さ表示で
0.5nsであることがわかった。
In order to investigate the limit of mirror surface roughness to eliminate voids with good reproducibility, we conducted void inspection by changing the mirror surface roughness more finely, and found that this limit was 0.5 ns in centerline average roughness display. I understand.

(2)酸化膜を介した接合 次に、2枚のンリコンウエーハ鏡面に酸化膜を形成した
後、両者を接合した場合について説明する。
(2) Bonding via oxide film Next, a case will be described in which an oxide film is formed on the mirror surfaces of two silicon wafers and then the two are bonded.

試料として上記ウェーハと同一のものを用い、各組の両
ウェーハに1μ窮の熱酸化膜を形成し、上記同一の組合
わせの接合ウェーハを作成してボイド検査を行った。
Using the same wafers as those described above as samples, a thermal oxide film of 1 μm thickness was formed on both wafers of each set, and bonded wafers of the same combination were prepared and subjected to void inspection.

結果は、鏡面粗さを中心線平均粗さ表示で0.5n1以
下にすると、0.5n−以上では多数存在したボイドが
上記同様に再現性よくほぼ消失し、0.51−以下にす
ることがボイドをなくすることにとって極めて=[’で
あることがわかった。
The results show that when the mirror surface roughness is reduced to 0.5n1 or less in terms of center line average roughness, the voids that were present in large numbers at 0.5n- or more almost disappear with good reproducibility as described above, and it becomes 0.51- or less. was found to be extremely effective in eliminating voids.

[発明の効果コ 以上説明した如く、本発明に係る半導体ウェーハ接合方
法によれば、ボイドが再現性よく実質的に消失するとい
う優れた効果を奏し、半導体集積回路の高集積化及び歩
留の向上に寄与するところが大きい。
[Effects of the Invention] As explained above, according to the semiconductor wafer bonding method according to the present invention, voids are substantially eliminated with good reproducibility, which is an excellent effect, and it is possible to increase the integration density and yield of semiconductor integrated circuits. It greatly contributes to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第1O図はラング・カメラによる接合ウェー
ハのX線写真である。
1 to 1O are X-ray photographs of bonded wafers taken with a Lang camera.

Claims (1)

【特許請求の範囲】 1)、鏡面研磨された2枚の半導体ウェーハの該鏡面を
相互に密着させて両半導体ウェーハを接合させる半導体
ウェーハ接合方法において、 鏡面研磨により該鏡面の表面粗さを中心線平均粗さ0.
5nm以下にした半導体ウェーハを接合させることを特
徴とする半導体ウェーハ接合方法。 2)、前記2枚の半導体ウェーハは、シリコンウェーハ
若しくは化合物半導体ウェーハの何れか一方又は、これ
らの組み合わせであることを特徴とする請求項1記載の
方法。 3)、前記2枚の化合物半導体ウェーハは、同種又は異
種のウェーハであることを特徴とする請求項2記載の半
導体ウェーハ接合方法。 4)、前記2枚の化合物半導体ウェーハは同種であって
、混晶比が同一又は異なるウェーハであることを特徴と
する請求項3記載の半導体ウェーハ接合方法。 5)、鏡面研磨されかつ該鏡面の一方又は両方が酸化さ
れた2枚のシリコンウェーハの該鏡面を相互に密着させ
て両シリコンウェーハを接合させるシリコンウェーハ接
合方法において、 鏡面研磨により該鏡面の表面粗さを中心線平均粗さ表示
で0.5nm以下にしたシリコンウェーハを接合させる
ことを特徴とするシリコンウェーハ接合方法。
[Claims] 1) A semiconductor wafer bonding method in which the mirror surfaces of two mirror-polished semiconductor wafers are brought into close contact with each other to bond the two semiconductor wafers, the method comprising: Line average roughness 0.
A semiconductor wafer bonding method characterized by bonding semiconductor wafers having a thickness of 5 nm or less. 2) The method according to claim 1, wherein the two semiconductor wafers are either a silicon wafer or a compound semiconductor wafer, or a combination thereof. 3) The semiconductor wafer bonding method according to claim 2, wherein the two compound semiconductor wafers are of the same type or different types. 4) The semiconductor wafer bonding method according to claim 3, wherein the two compound semiconductor wafers are of the same type and have the same or different mixed crystal ratios. 5) In a silicon wafer bonding method in which the mirror surfaces of two silicon wafers that have been mirror-polished and one or both of the mirror surfaces are oxidized are brought into close contact with each other to bond both silicon wafers, the surfaces of the mirror surfaces are bonded by mirror polishing. A silicon wafer bonding method characterized by bonding silicon wafers having a roughness of 0.5 nm or less in terms of center line average roughness.
JP63280055A 1988-11-05 1988-11-05 Semiconductor wafer bonding method Expired - Lifetime JPH0636407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280055A JPH0636407B2 (en) 1988-11-05 1988-11-05 Semiconductor wafer bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280055A JPH0636407B2 (en) 1988-11-05 1988-11-05 Semiconductor wafer bonding method

Publications (2)

Publication Number Publication Date
JPH02126625A true JPH02126625A (en) 1990-05-15
JPH0636407B2 JPH0636407B2 (en) 1994-05-11

Family

ID=17619676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280055A Expired - Lifetime JPH0636407B2 (en) 1988-11-05 1988-11-05 Semiconductor wafer bonding method

Country Status (1)

Country Link
JP (1) JPH0636407B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705421A (en) * 1994-11-24 1998-01-06 Sony Corporation A SOI substrate fabricating method
US5773352A (en) * 1994-03-24 1998-06-30 Nec Corporation Fabrication process of bonded total dielectric isolation substrate
US5843832A (en) * 1995-03-01 1998-12-01 Virginia Semiconductor, Inc. Method of formation of thin bonded ultra-thin wafers
WO2004021433A1 (en) * 2002-08-27 2004-03-11 Shin-Etsu Handotai Co.,Ltd. Method for manufacturing soi wafer
WO2005045925A1 (en) * 2003-11-07 2005-05-19 Shinko Electric Industries Co., Ltd. Electronic device and process for manufacturing same
WO2010109712A1 (en) * 2009-03-25 2010-09-30 シャープ株式会社 Insulating substrate for semiconductor device, and semiconductor device
JP2013165146A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Silicon light-emitting element and process of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051700A (en) * 1983-08-31 1985-03-23 Toshiba Corp Bonding method of silicon crystalline body
JPS60121777A (en) * 1983-12-06 1985-06-29 Toshiba Corp Joining method of silicon crystal
JPS61183918A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor device
JPS62283655A (en) * 1986-06-02 1987-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor multilayered substrate
JPH01103826A (en) * 1987-07-24 1989-04-20 Toshiba Corp Manufacture of adhesive semiconductor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051700A (en) * 1983-08-31 1985-03-23 Toshiba Corp Bonding method of silicon crystalline body
JPS60121777A (en) * 1983-12-06 1985-06-29 Toshiba Corp Joining method of silicon crystal
JPS61183918A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor device
JPS62283655A (en) * 1986-06-02 1987-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor multilayered substrate
JPH01103826A (en) * 1987-07-24 1989-04-20 Toshiba Corp Manufacture of adhesive semiconductor substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773352A (en) * 1994-03-24 1998-06-30 Nec Corporation Fabrication process of bonded total dielectric isolation substrate
US5705421A (en) * 1994-11-24 1998-01-06 Sony Corporation A SOI substrate fabricating method
US5843832A (en) * 1995-03-01 1998-12-01 Virginia Semiconductor, Inc. Method of formation of thin bonded ultra-thin wafers
WO2004021433A1 (en) * 2002-08-27 2004-03-11 Shin-Etsu Handotai Co.,Ltd. Method for manufacturing soi wafer
WO2005045925A1 (en) * 2003-11-07 2005-05-19 Shinko Electric Industries Co., Ltd. Electronic device and process for manufacturing same
JPWO2005045925A1 (en) * 2003-11-07 2007-05-24 新光電気工業株式会社 Electronic device and manufacturing method thereof
US7847411B2 (en) 2003-11-07 2010-12-07 Shinko Electric Industries Co., Ltd. Electronic device and method of manufacturing the same
WO2010109712A1 (en) * 2009-03-25 2010-09-30 シャープ株式会社 Insulating substrate for semiconductor device, and semiconductor device
JP2013165146A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Silicon light-emitting element and process of manufacturing the same

Also Published As

Publication number Publication date
JPH0636407B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
TWI331777B (en) Method for fabricating sige-on-insulator (sgoi) and ge-on-insulator (goi) substrates
US4962879A (en) Method for bubble-free bonding of silicon wafers
Tong et al. Semiconductor wafer bonding: recent developments
CN101106072B (en) Direct water-repellent gluing method of two substrates used in electronics, optics or optoelectronics
US20080227270A1 (en) Low temperature fusion bonding with high surface energy using a wet chemical treatment
JPH07263652A (en) Soi substrate and its manufacture
JP2007214256A (en) Soi wafer
Esser et al. Improved Low-Temperature Si Si Hydrophilic Wafer Bonding
JPH02126625A (en) Junction of semiconductor wafer
JPH02106052A (en) Inspection method for junction wafer
JPH07506937A (en) Thermally matched readout/detector structure and its fabrication method
JPS60121715A (en) Bonding method for semiconductor wafer
JPH02170514A (en) Method of mutually bonding silicon wafer for manufacturing semiconductor device
JPH02237121A (en) Manufacture of semiconductor device
JPH03228326A (en) Manufacture of semiconductor device
JPH10303089A (en) Manufacture of laminated substrate
JP2807614B2 (en) Manufacturing method of SOI wafer
JP2796666B2 (en) Bonded semiconductor substrate with reduced COP and method of manufacturing the same
JPS60121777A (en) Joining method of silicon crystal
JPH02137218A (en) Quartz glass sheet for soi substrate
JPH088413A (en) Method of manufacturing semiconductor substrate
JP3795150B2 (en) Oxide film bonded substrate and manufacturing method thereof
JPS5893266A (en) Semiconductor integrated circuit
Blackstone Recent advances in wafer bonding of silicon and alternative materials
JPH03214615A (en) Manufacture of semiconductor device