JPS5893266A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5893266A
JPS5893266A JP56190621A JP19062181A JPS5893266A JP S5893266 A JPS5893266 A JP S5893266A JP 56190621 A JP56190621 A JP 56190621A JP 19062181 A JP19062181 A JP 19062181A JP S5893266 A JPS5893266 A JP S5893266A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
circuits
area
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56190621A
Other languages
Japanese (ja)
Inventor
Masaharu Toyama
外山 正春
Masahiro Kashiwagi
柏木 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56190621A priority Critical patent/JPS5893266A/en
Publication of JPS5893266A publication Critical patent/JPS5893266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dicing (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce a crystal distrotion in a laminated structure by reducing the area of a semiconductor layer smaller toward the upper stage when forming the semiconductor layer having an electric circuit element in the interior or on the surface and an insulating layer having a passage which transmits a signal between the layers while laminating them, and forming an IC by superposing several stages of the structure. CONSTITUTION:A plurality of electric circuits 2 which are made of MOS type semiconductor elements are formed on the surface of an Si wafer 1, and the prescribed terminal 9 are mounted at both sides. Then, a polycrystalline or non- crystalline Si layer 4 is grown through an SiO2 film on the overall surface, electric circuits 5 corresponding to the circuits 2 are also formed thereat, and terminals 10 are similarly mounted at both sides. Subsequently, the layer 4 and the film 3 are etched to isolate the circutis 5, 2 in an insular shape on the wafer 1, the laminate of the similar configuration is formed on them, is cut and isolated between the islands, thereby forming many ICs. In this structure, the circuits 2, 5 are reduced in the area toward the upper part, thereby reducing the crystal distortion and providing an IC in which the characteristics are not lowered.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明げ半導体層と絶縁層との積+1構造エリなる半導
体集積回路に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit having a product+1 structure area of a semiconductor layer and an insulating layer.

従来技術とその問題点 半導体集積回路の集積度の向上に1従来ば専っばら幾何
学的平面寸法の縮少に工ってきたが、絶縁膜上に結晶成
牛導体層t’/4成丁る技術の発展と共に素子を形成し
定半導体層を絶縁層を介して立体的に積み重ねてなお一
層の集積度同上を計る手法がある。
Prior Art and its Problems In order to improve the degree of integration of semiconductor integrated circuits, conventional techniques have focused exclusively on reducing the geometrical plane dimensions, but a crystalline conductor layer t'/4 has been formed on an insulating film. With the development of semiconductor technology, there is a method of forming elements and three-dimensionally stacking constant semiconductor layers with insulating layers interposed therebetween to further increase the degree of integration.

一方、絶縁膜上の半導体層ぼ、一般にSOS  (単結
晶サファイア上のシリコン単結晶薄膜》にみられるよう
に多量の結晶欠陥を含み易い。これば絶縁層と半導体1
−それぞれの熱膨張係数が異るため結晶成長m度から室
温へのmIf変化の過程で半導体層に塑性変形が生じそ
の定めの転位が多量に発生するからである.この傾向は
半導体!一と絶縁層全種II l,てゆくと、上層にな
るほど歪がもとなり結晶欠陥が増加すると共に極端な場
合げ積11構造そのものにクラック等の発生をみる場合
もある。
On the other hand, a semiconductor layer on an insulating film generally tends to contain a large amount of crystal defects, as seen in SOS (single crystal thin film of silicon on single crystal sapphire).
- This is because the thermal expansion coefficients of each semiconductor layer are different, so plastic deformation occurs in the semiconductor layer during the process of changing mIf from crystal growth m degrees to room temperature, and a large number of specified dislocations occur. This trend is semiconductor! As the thickness of the insulating layer increases, the higher the layer, the more strain it causes and the number of crystal defects increases, and in extreme cases, cracks may appear in the structure itself.

半導体素子特性の点からはこれらの欠陥a,キャリャ移
dIh度の低下と接合の電気的リーク増大のために動作
速変の低下と消費電力の増大という欠点につながる。
From the point of view of semiconductor device characteristics, these defects a, a decrease in the degree of carrier transfer dIh, and an increase in electrical leakage of the junction lead to disadvantages such as a decrease in operating speed and an increase in power consumption.

さらに檀噛数の増大a素子紫形成したウエーノ1を素子
素片に切l@(ダイシング)する除の困難さ全増大し、
積層中の歪の効果も加わって積ノー半導体層や絶縁I―
の剥離等を引き起し易くなる。
Furthermore, an increase in the number of pieces increases the difficulty of dicing the formed Ueno 1 into element pieces,
In addition to the effect of strain during lamination, the laminated semiconductor layer and insulation I-
It becomes easy to cause peeling, etc.

集積回路の電気信号入出力端子の数は集積度の同上と共
に増大する。多くの場合、素子素片全容器(パッケージ
)VC収納し使用形態に仕上げる為にに、素子素片の電
気信号入出力端子と容器から外部への信号入出力のため
の容器の端子間を金属細線で結合する必要がある(ワイ
ヤボンディング)。
The number of electrical signal input/output terminals of an integrated circuit increases as the degree of integration increases. In many cases, in order to store the entire element piece in a VC container (package) and finish it in a usage configuration, metal is connected between the electric signal input/output terminal of the element piece and the terminal of the container for signal input/output from the container to the outside. It is necessary to bond with a thin wire (wire bonding).

この際金属細線が相互に接触することを避けるために素
子素片の出力端子ぼ素子素片の周辺に配置されるが、元
来出力端子に幾何学的に大面積を占めるため素子素片に
配置できる出力端子の数t/Ci制限があり、積層構造
による集積回路の集積度の同上に出力端子積層構造の上
面の周辺にのみ配置することa不可能となり、周辺のみ
ならず内部への配置全も必須とする工うVcなり、上記
金属細線によるワイヤボンディング特に金属細線同志の
接触事故を引き起し易くなる。
At this time, the output terminals of the element pieces are placed around the element pieces in order to prevent the thin metal wires from coming into contact with each other, but since the output terminals originally occupy a large area geometrically, There is a limit on the number of output terminals that can be placed (t/Ci), and it is impossible to place output terminals only around the top surface of the stacked structure due to the density of the integrated circuit due to the stacked structure. However, since Vc is essential, wire bonding using the above-mentioned thin metal wires is likely to cause contact accidents, especially between the thin metal wires.

発明の目的 本発明の目的ぽ、檀l#構造に伴う結晶歪を低減しキャ
リヤ移動度の向上ならびに接合の電気的コークの低減に
%lたらし、筐たウェーリツ〕素子木片の切11!fl
容易にしかつ素子素片がらの電気笛号堆出し全容易にす
る端子の配Wを可能とする積1−購造素子全提供するこ
とにある。
Purpose of the Invention Purpose of the Invention The purpose of the present invention is to reduce the crystal strain associated with the porcelain structure, improve carrier mobility, and reduce electrical coke in the bonding process. fl
The object of the present invention is to provide a product of 1-purchased elements that enables the arrangement of terminals that facilitates the production of electric whistles from element pieces.

発明の概要 本発明は、絶縁ノー全弁した半導体1槽の積#構造にお
いて上1−の半導体層の面積が下t*XO小さく、各半
導体層の周辺に電気信号の出力端子が配置されているこ
とを特徴とするものである。
Summary of the Invention The present invention has a product structure of one semiconductor tank with no insulation or full valves, in which the area of the upper semiconductor layer is smaller than the bottom t*XO, and output terminals for electrical signals are arranged around each semiconductor layer. It is characterized by the presence of

発明の効果 このような構造の採用Vc工り、積層慣造素子において
みられる上層にゆくに従い電気的特性が劣化する現象の
改嵜、シリコンウェーハから素子素片全切断する際の機
械的歪の素子領域への伝播の抑制、さらI/Cv:i素
子素片全容器に収納して金属細線による外部との結、1
合時の不良事故の発生の回避等がciJ醸となる・ 発明の実施例 本発明を以下に笑権例會用いて説明する。
Advantages of the invention Adoption of Vc processing in such a structure, improvement of the phenomenon that occurs in stacked conventional devices where electrical characteristics deteriorate as the upper layers go, and reduction of mechanical strain when all device pieces are cut from a silicon wafer. Suppression of propagation to the element region, and I/Cv: I element element pieces are all housed in a container and connected to the outside using thin metal wires, 1
Examples of the invention The present invention will be explained below using an example.

第1図aK示すごとくシリコンウェーハlの表面に酸化
・拡散・CVI)・イオン注入・リシグラフィ等の通常
の半導体素子製作技術を用いてMO8型半導体素子によ
る電気回路Zを設けた後この上全面に層間絶縁層として
例えばシリコン酸化膜3を堆積させる。この酸化膜に部
分的に開孔全施しシリコンウェーハ表面全部分的1C露
出させた後、多結晶或ぽ非晶シリコン層3を堆積しさら
に該層にレーザアニール或いrt を子ビームアニール
等の処理全施しその結晶性のシリコン層4とする。
As shown in Fig. 1aK, an electric circuit Z made of MO8 type semiconductor elements is provided on the surface of a silicon wafer l using ordinary semiconductor element manufacturing techniques such as oxidation, diffusion, CVI), ion implantation, and lithography, and then an electric circuit Z is formed on the entire surface of the silicon wafer l using ordinary semiconductor element manufacturing techniques such as oxidation, diffusion, CVI), ion implantation, and lithography. For example, a silicon oxide film 3 is deposited as an interlayer insulating layer. After partially opening holes in this oxide film and exposing the entire surface of the silicon wafer 1C, a polycrystalline or amorphous silicon layer 3 is deposited, and this layer is further subjected to laser annealing or RT beam annealing. After all the treatments, the crystalline silicon layer 4 is obtained.

この特層間絶縁層に設けられた開孔部aシリコン1i1
4とシリコンウェーハとの結晶方位整合全維持する機D
k果すと同時[第1図すに示すシリコンウェーハ表面に
形成されている電気回路と上層シリコン1−4に形成す
る′電気回路5を′電気的に接続する経路としても機能
する。シリコン1−4表面に′邂気回Mを形成するに際
してal特に加熱処理?必要とする場合すでに’F層シ
リコンウェーハに形成されている電気回路に影響を及ぼ
さないような条件、或いに手段を用いねばならない、電
気回路5形成の後半導体層4ならびに噛間絶#1−3全
第1図Cに示すごとく部分的にエツチング除去する。
Opening portion a silicon 1i1 provided in this special interlayer insulating layer
Machine D to fully maintain crystal orientation alignment between 4 and the silicon wafer
At the same time, it also functions as a path for electrically connecting the electric circuit formed on the surface of the silicon wafer and the electric circuit 5 formed on the upper silicon layer 1-4 as shown in FIG. Is aluminum particularly heat-treated when forming a layer M on the silicon 1-4 surface? If necessary, conditions or means must be used that do not affect the electric circuits already formed on the 'F layer silicon wafer, and after the electric circuit 5 is formed, the semiconductor layer 4 and the interlayer #1 must be removed. -3 Partially etched away as shown in Figure 1C.

この際残存させる半導体層4と絶縁層の面積げ下層のシ
リコンウェーハ表面に形成された出力端子9會含む電気
回路の面積よV′%小であるようにする。この後さらV
c第1図dVC示すごとく層間絶縁層と丁べき絶縁層例
えばシリコン酸化膜6をウェーハ全面に堆積した後、電
気回路5上の所要部に開孔部を設けた後、多結晶或は非
晶シリコン層7を堆積した後電気回路5に特性変化に%
たらさない方法、例えばレーザアニール又1’J ’!
子ビームアニール等にエフその結晶化全針る。この後結
晶性シリコン層7に所望の回路8を形成する。この時の
電気回′N1に電気回路5の出力端子に重ならないよう
に形成し、電気回路形成後ば、第1図eK示すごとく電
気回路5の出力端子lOが露出するように結晶性シリコ
ン層7とノー間絶縁膜6とを電気回路8を残してエツチ
ング除去する。斯くして第2図のLつな上層にゆくに従
い面積の小さくなるシリコンの3層積層構造を有した集
積回路素子が形成される。素子i−j 31−の積層構
造であるにも拘らず素子素片間のウエーノ・厚さは、一
層構造と同一であるため通常の切断!、法、例えばダイ
ヤモンドスクライバ、レーザスクライノ(等で切vfI
部周辺の素子に悪影#を与えることなく素子素片への切
断が可能となる。また素子の出力端子は、常に各圧接触
この後シリコンウエーノ・1の露出しているが元のシリ
コ、ンウエーノ−のみの友め厚さが比較的薄いため切断
時のクラック或ぼ機械歪が横方向へ拡がる程度に従来デ
バイスと同程度であり、積層構造にしたために予想され
る工つな切断に伴う素子劣化を及ぼす領域の拡大はとく
にみられない。
At this time, the area of the semiconductor layer 4 and the insulating layer to be left is set to be V'% smaller than the area of the electric circuit including the output terminal 9 formed on the surface of the underlying silicon wafer. After this Sara V
c As shown in FIG. 1 dVC, after depositing an interlayer insulating layer and a suitable insulating layer, such as a silicon oxide film 6, on the entire surface of the wafer, openings are formed in required parts on the electrical circuit 5, and then polycrystalline or amorphous After depositing the silicon layer 7, the characteristics of the electrical circuit 5 change by %.
For example, laser annealing or 1'J'!
The entire crystallization process is performed by beam annealing, etc. Thereafter, a desired circuit 8 is formed on the crystalline silicon layer 7. At this time, the electric circuit 'N1 is formed so as not to overlap the output terminal of the electric circuit 5, and after the electric circuit is formed, a crystalline silicon layer is formed so that the output terminal 10 of the electric circuit 5 is exposed as shown in FIG. 7 and the insulation film 6 are etched away leaving the electrical circuit 8. In this way, an integrated circuit element having a three-layer laminated structure of silicon, the area of which decreases toward the L-shaped upper layer shown in FIG. 2, is formed. Although it is a laminated structure of elements i-j 31-, the thickness between the element pieces is the same as that of a single-layer structure, so it can be cut normally! , method such as diamond scriber, laser scriber (etc.)
It becomes possible to cut into element pieces without giving any negative shadow to the elements around the area. In addition, the output terminal of the element is always in contact with each pressure, and after that, the silicon wafer 1 is exposed, but since the thickness of the original silicon wafer is relatively thin, cracks or mechanical distortion occur when cutting. The degree of expansion in the lateral direction is the same as that of conventional devices, and there is no particular expansion of the area that would cause device deterioration due to rough cutting, which would be expected due to the layered structure.

この切断した素子素片上パッケージに収納固定した後各
層の周辺に配置された素子出力端子から容器の端子との
間會アルミニウム細線を用いてワイヤボンディングに工
9結合する。この時ワイヤポンディングは最下1−の素
子出力端子から順次上層の出力端子と行なうことにエフ
アルミニウム細線の相互接触を防ぐことができる。この
ようにして完成した積層構造素子の特性金側足してみる
と基本素子−q M OS型トランジスタとした場合、
上層と下層とが同一面積の積層構造素子では第三層に形
成したトランジスタのチャネルのキャリヤ移動度が第一
4のシリコン基板の約50%であるのに対し上層が下層
19面積的に小さくなる本発明の積層構造素子でに、第
三1−のトランジスタのチャネルのキャリヤ移動度f[
!−/−のシリコン基板の約80%で、明らかに本発明
の構造採用による改善の効果がみられる。ま九同様に、
第三層に形成した接合と第一層基板シリコyVC形成し
た接合の単位■積層9の電気的リーク全比較すると、上
層とr層が同一面積の積l−7購造累子でぼ約2〜3桁
の劣化であるのに対(1シ土層が下+=、Cり面積の小
石のような本発明の積層構造でa約1桁程1fvCとど
まり結晶歪抑制による改善効果がみられる。
After the cut element pieces are housed and fixed in a package, the element output terminals arranged around each layer are connected to terminals of the container by wire bonding using thin aluminum wires. At this time, wire bonding is performed from the lowest element output terminal to the upper layer output terminals in order, thereby preventing the F-aluminum fine wires from coming into contact with each other. Characteristics of the laminated structure element thus completed When adding the gold side to the basic element -q MOS type transistor,
In a multilayer structure element in which the upper layer and the lower layer have the same area, the carrier mobility of the channel of the transistor formed in the third layer is about 50% of that of the first silicon substrate, whereas the upper layer is smaller in area than the lower layer 19. In the multilayer structure element of the present invention, the carrier mobility f[
! In about 80% of the -/- silicon substrates, the improvement effect achieved by adopting the structure of the present invention is clearly seen. Like Maku,
The unit of the junction formed in the third layer and the junction formed in the first layer substrate silico y VC Electrical leakage of laminated layer 9 When comparing the total, it is found that the upper layer and r layer have the same area and the product l-7 is approximately 2. While the deterioration is ~3 orders of magnitude, in the laminated structure of the present invention, such as a pebble-like structure with a soil layer below += C, the deterioration remains at 1 fvC by about one order of magnitude, and an improvement effect by suppressing crystal strain can be seen. .

発明の他の実施例 本実施例でに、半導体t―としてシリコン1絶縁層とし
てシリコン酸化膜の例について述べたが、半導体層とし
てa1シリコン以外にゲルマニウム砒化ガリウム或に燐
化ガリウムまたぼシリコンを含めたこれら半導体間の二
橢或ば三種の組合せた構造の場合でt2さらに絶縁層と
じてに、窒化シリコン膜、酸化アルミニウム、炭化シリ
コン膜昔たaシリコン酸化膜金倉めたこれら絶縁膜の二
種或ぼ二種或げ四種を組合せた構造の場合でもやぼり同
様の効果が得られることに云うまでもない。
Other Embodiments of the Invention In this embodiment, an example of a silicon oxide film as a silicon 1 insulating layer as a semiconductor t- was described, but germanium gallium arsenide, gallium phosphide, or silicon may be used as a semiconductor layer in addition to a1 silicon. In the case of a structure in which two or three types of these semiconductors are combined, t2 is also used as an insulating layer. Needless to say, even in the case of a structure in which one or two or four types are combined, the same effect as that of a canopy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e1g1本発明構造の半導体集積回路
の製造工程断面図、第2図ぼ本発明構造の半導体集積回
路の斜視図である。 図に於いて 4.7・・・・・・半導体I−13,6・・・・・・絶
縁層、2.5.8・・・・・・′電気回路、  9,1
0・・・・・・端子代理人 升理士 則 近 憲 佑 
他1名第1図
FIGS. 1(a) to (e1g1) are sectional views of the manufacturing process of a semiconductor integrated circuit having the structure of the present invention, and FIG. 2 is a perspective view of the semiconductor integrated circuit having the structure of the present invention. ...Semiconductor I-13,6...Insulating layer, 2.5.8...'Electric circuit, 9,1
0...Terminal agent Noriyuki Chika
1 other personFigure 1

Claims (1)

【特許請求の範囲】 1)半導体層と絶縁層との層状構造エフなり、半導体層
にぼその内部もしくに表面に電気回路素子金倉み、絶縁
層VCに半導体層間に信号を伝える経路を含み、該半導
体I−ぽ積層順に上層に行くほど面積が小さくなること
を特徴とする半導体集積回路。 2各半導体層の階段上に露出した面に端子をとりつけた
ことを特徴とする特許 1項記載の半導体集積回路。
[Claims] 1) A layered structure of a semiconductor layer and an insulating layer, the semiconductor layer includes an electric circuit element inside or on the surface, and the insulating layer VC includes a path for transmitting signals between the semiconductor layers. , a semiconductor integrated circuit characterized in that the area of the semiconductor I-P becomes smaller as one goes to an upper layer in the stacking order. 2. The semiconductor integrated circuit described in Patent No. 1, characterized in that terminals are attached to the surfaces exposed on the steps of each semiconductor layer.
JP56190621A 1981-11-30 1981-11-30 Semiconductor integrated circuit Pending JPS5893266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190621A JPS5893266A (en) 1981-11-30 1981-11-30 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190621A JPS5893266A (en) 1981-11-30 1981-11-30 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS5893266A true JPS5893266A (en) 1983-06-02

Family

ID=16261113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190621A Pending JPS5893266A (en) 1981-11-30 1981-11-30 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5893266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167350A (en) * 1984-02-09 1985-08-30 Matsushita Electronics Corp Manufacture of semiconductor device
JPS61251147A (en) * 1985-04-30 1986-11-08 Oki Electric Ind Co Ltd Division of semiconductor wafer into chips
JPH02116739U (en) * 1990-02-28 1990-09-19
WO2001071805A1 (en) * 2000-03-23 2001-09-27 Seiko Epson Corporation Semiconductor device, method of manufacture thereof, circuit board, and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167350A (en) * 1984-02-09 1985-08-30 Matsushita Electronics Corp Manufacture of semiconductor device
JPS61251147A (en) * 1985-04-30 1986-11-08 Oki Electric Ind Co Ltd Division of semiconductor wafer into chips
JPH02116739U (en) * 1990-02-28 1990-09-19
WO2001071805A1 (en) * 2000-03-23 2001-09-27 Seiko Epson Corporation Semiconductor device, method of manufacture thereof, circuit board, and electronic device
US6707153B2 (en) 2000-03-23 2004-03-16 Seiko Epson Corporation Semiconductor chip with plural resin layers on a surface thereof and method of manufacturing same
CN1311547C (en) * 2000-03-23 2007-04-18 精工爱普生株式会社 Semiconductor device, method of manufacture thereof, circuit board and electronic device

Similar Documents

Publication Publication Date Title
US5131963A (en) Silicon on insulator semiconductor composition containing thin synthetic diamone films
KR100510112B1 (en) Multistack 3-dimensional high density semiconductor device and method for fabrication
JP6345251B2 (en) Method and structure for forming a microstrip transmission line on a thin silicon-on-insulator (SOI) wafer
JPH0719839B2 (en) Method for manufacturing semiconductor substrate
JPH07263652A (en) Soi substrate and its manufacture
JP2001237403A (en) Method of manufacturing semiconductor device and ultrathin type semiconductor device
JPS59169121A (en) Method of producing semiconductor device
JPH08505009A (en) Circuit structure of silicon on diamond and method of manufacturing the same
US6844236B2 (en) Method and structure for DC and RF shielding of integrated circuits
JPS5893266A (en) Semiconductor integrated circuit
JPH02199860A (en) High density semiconductor structure and its manufacture
JP2007095951A (en) Semiconductor substrate and manufacturing method thereof
JP2003068593A (en) Semiconductor multilayer substrate and its producing method
US9761445B2 (en) Methods and structures for forming microstrip transmission lines on thin silicon carbide on insulator (SICOI) wafers
US20140319612A1 (en) Semiconductor-on-insulator structure and process for producing same
JP2597750B2 (en) Method for manufacturing semiconductor device
KR100833250B1 (en) Manufacturing method of integrated circuit having multilayer structure and the integreted circuit
JPS6042855A (en) Semiconductor device
KR20080025310A (en) Method of producing bonded wafer
JPH04199632A (en) Soi wafer and manufacture thereof
JPH0341984B2 (en)
JP2001298169A (en) Semiconductor device and producing method therefor
KR0180622B1 (en) Method of manufacturing soi wafer having a multi-layer structure by silicon wafer junction at low temperature and soi wafer manufactured by this method
JP3189055B2 (en) Compound semiconductor device wafer and method of manufacturing the same
CN111146141A (en) Preparation method of on-chip single crystal material