JPH01103826A - Manufacture of adhesive semiconductor substrate - Google Patents

Manufacture of adhesive semiconductor substrate

Info

Publication number
JPH01103826A
JPH01103826A JP18312688A JP18312688A JPH01103826A JP H01103826 A JPH01103826 A JP H01103826A JP 18312688 A JP18312688 A JP 18312688A JP 18312688 A JP18312688 A JP 18312688A JP H01103826 A JPH01103826 A JP H01103826A
Authority
JP
Japan
Prior art keywords
surface roughness
semiconductor substrate
bonded
exceed
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18312688A
Other languages
Japanese (ja)
Other versions
JP2703933B2 (en
Inventor
Tadahide Hoshi
星 忠秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63183126A priority Critical patent/JP2703933B2/en
Publication of JPH01103826A publication Critical patent/JPH01103826A/en
Application granted granted Critical
Publication of JP2703933B2 publication Critical patent/JP2703933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To avoid any cracking and breakdown in grinding process and device manufacturing process by a method wherein the mirror surfaces of the first and the second semiconductor substrates in the surface roughness not exceeding specified value are bonded to each other to be heat-treated at the temperatures exceeding specific temperature and not exceeding the melting point temperature of the semiconductor substrate. CONSTITUTION:The surface roughness on the mirror surface of the first and the second semiconductor material substrates shall not exceed 130Angstrom represented by the maximum height Rmax(JIS B0601) measured by one side length 1mm of the reference surface set up on the specified part of mirror surface while the heat treatment temperature shall exceed 200 deg.C and not exceed the melting point of semiconductor substrates. The bond properties abruptly declines when the surface roughness exceeds 130Angstrom (positions of one dot chain line). Furthermore, if the surface roughness does not exceed 130Angstrom of the maximum height measured by one side length 1mm of the reference surface, the process control can be facilitated since to dark parts like the sea areas in moon and Mars are observed when examined by the infrared ray transmission image process.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、接着半導体基板の製造方法に関するもので、
詳しくは、シリコン基板とシリコン基板どうし、あるい
はSi、GaAs、その他の半導体材料基板の同種又は
異種の基板を直接に接着する半導体基板の製造に適用さ
れる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an adhesive semiconductor substrate,
Specifically, it is applied to the production of semiconductor substrates in which silicon substrates are directly bonded to each other, or substrates of the same type or different types such as Si, GaAs, or other semiconductor materials are directly bonded.

(従来の技術) 接着半導体基板では、従来製作がむずかしいとされてい
るpn接合やペテロ接合を短時間に容易に作ることがで
きる。 例えば、それぞれ厚さが50〜100μtもあ
るn−層と p−層との間のpn接合は、従来のエピタ
キシャル法で作るにはコストがかかりすぎるし、また三
重拡散法では3〜10日間もかかるが、n−型ウェハと
p−型ウェハとを直接接着すれば2時間という短時間で
pn接合の形成ができる。
(Prior Art) With adhesive semiconductor substrates, pn junctions and petrojunctions, which are conventionally considered difficult to manufacture, can be easily manufactured in a short time. For example, a pn junction between an n-layer and a p-layer, each 50 to 100 μt thick, is too expensive to fabricate using conventional epitaxial methods, and the triple diffusion method takes 3 to 10 days. However, if the n-type wafer and the p-type wafer are directly bonded together, a pn junction can be formed in as little as two hours.

かかる接着半導体基板の従来の製造方法では、第1A図
に示すように、接着界面3にあたる、2枚のシリコン基
板1,2の表面粗さ(fi大高さ)500Å以下の鏡面
に、清浄化洗浄処理を加えた後、その鏡面どうしをダス
トのない清浄化雰囲気において物理的に密着させ、次い
で200℃以上、通常は1100℃のN2ガス中で2時
間程度の熱処理をしてシリコン基板どうしの結合を化学
的に強固なものにしていた(特開昭60−51700号
公報参照)。
In the conventional manufacturing method of such a bonded semiconductor substrate, as shown in FIG. 1A, cleaning is applied to the mirror surface of the two silicon substrates 1 and 2, which corresponds to the bonding interface 3, and has a surface roughness (fi height) of 500 Å or less. After the cleaning process, the mirror surfaces are physically brought into close contact with each other in a clean, dust-free atmosphere, and then heat treated in N2 gas at 200°C or higher, usually 1100°C, for about 2 hours to bond the silicon substrates together. The bond was made chemically strong (see Japanese Patent Application Laid-Open No. 60-51700).

そのような接着半導体基板4では、熱処理前の密着させ
た状態での結合強度は5 kg/cn+2程度であるの
が、熱処理後のそれは100 kg/cn+’以上にま
でも強化される。 接着させた半導体基板には、接着面
でない外表面を荒研磨、仕上研磨を施した後、−枚基板
と同様に所要の基板内素子形成や基板上電極形成などが
施される。
In such a bonded semiconductor substrate 4, the bonding strength in a closely bonded state before heat treatment is about 5 kg/cn+2, but after heat treatment, it is strengthened to over 100 kg/cn+'. After rough polishing and finishing polishing are applied to the outer surface of the bonded semiconductor substrate, which is not the bonding surface, the required elements in the substrate and electrodes on the substrate are formed in the same manner as the substrate.

ところで、上記従来の接着半導体基板の製造方法におい
て、密着工程以前にダストが表面に付着すると、表面ど
うしの接着が妨げられてボイドが現れる。 そのような
ダストに起因するボイドをもつ接着半導体基板を赤外線
透過映像法(公開技報85−6424号参照)によって
観察すると、ダストの周囲に同心円の干渉縞が検出され
ることは知られていた。
By the way, in the above conventional method for manufacturing a bonded semiconductor substrate, if dust adheres to the surface before the adhesion step, adhesion between the surfaces is hindered and voids appear. It has been known that when a bonded semiconductor substrate with voids caused by such dust is observed using infrared transmission imaging (see Technical Report No. 85-6424), concentric interference fringes are detected around the dust. .

そこで、表面粗さが500X以下で接着面全面の平坦度
(TTV)の範囲が5μm以下の2枚の半導体基板材料
を用い、ダストに起因するボイドの干渉縞が現れないよ
うに洗浄化雰囲気を整えて両者を接着して、前記のよう
な強固な結合強度(100kq/cn’ )をもつ接着
半導体基板を得ることは、従来性なわれていた。
Therefore, we used two semiconductor substrate materials with a surface roughness of 500X or less and a flatness (TTV) of 5 μm or less over the entire bonding surface, and created a cleaning atmosphere to prevent the appearance of interference fringes due to voids caused by dust. It has been conventional practice to prepare and bond the two to obtain a bonded semiconductor substrate having a strong bonding strength (100 kq/cn') as described above.

このようなダストのない接着半導体基板4をその熱処理
前に赤外線透過影像法で検査すると、なお第1B図に示
すように月や火星の表面の海のような暗い部分が観測さ
れることがあった。 しかし、適切な熱処理後では第1
C図に示すようにこの暗い部分は消失し、最終的に得ら
れた接着半導体基板4の結合強度は上述のように十分に
大きかったので、従来はこの暗い部分の有無が接着半導
体基板の不良の発生とどう関係するのかについて考察さ
れることはなかった。
When such a dust-free bonded semiconductor substrate 4 is inspected by infrared transmission imaging before heat treatment, dark areas such as the oceans on the surface of the Moon or Mars may be observed, as shown in Figure 1B. Ta. However, after proper heat treatment, the first
As shown in Figure C, this dark area disappeared, and the bonding strength of the bonded semiconductor substrate 4 finally obtained was sufficiently large as described above. Conventionally, the presence or absence of this dark area was used to determine whether the bonded semiconductor substrate was defective. No consideration was given to how this might be related to the occurrence of

従ってこの暗い部分が生じないようにすればどんな利点
が得られるのかについては、従来知られていなかった。
Therefore, it has not been known so far what advantages can be obtained by preventing the occurrence of dark areas.

 ましてや、熱処理前にこの暗い部分が生じないように
するなめに基板の表面粗さをどの程度にしなければなら
ないのかは、従来全く未知であった。 すなわち、赤外
線透過映像法で観察した場合の、月や火星の表面におけ
る海のように暗い部分を、従来は表面粗さと関連させ不
良の一態様としてとらえられたことはなかったのである
Furthermore, it was previously unknown how rough the surface of the substrate should be in order to prevent the formation of dark areas before heat treatment. In other words, the ocean-like dark areas on the surfaces of the Moon and Mars, observed using infrared transmission imaging, had not previously been associated with surface roughness and considered to be a form of defect.

上記接着半導体基板の不良は、この基板上に多くの回路
素子を形成した後これを小さなチップにダイシングした
ときに分かる。 第1D図は一見問題なさそうに見える
第1C図の接着半導体基板4に素子形成後、これを小さ
なチップにダイシングした後の接着半導体基板の状態の
一例を示す。
A defect in the bonded semiconductor substrate can be detected when many circuit elements are formed on the substrate and then diced into small chips. FIG. 1D shows an example of the state of the bonded semiconductor substrate after elements have been formed on the bonded semiconductor substrate 4 of FIG. 1C, which appears to have no problems at first glance, and has been diced into small chips.

(第1D図は赤外線透過法でなく昔通の写真撮影により
観察される映像である。) 第1D図において縦横の線は0.5nun毎の切り込み
線を示し、第1D図の斜線の領域は、同図円り部分の拡
大斜視図である第1E図に示すように、0.510のチ
ップが接着境界面から剥がれ落ちてしまった不良部分を
示す。 このような剥がれ落ちが生じないまでも、2つ
の基板の接着が不完全なチップはやはり不良品となる。
(Figure 1D is an image observed by traditional photography rather than infrared transmission method.) In Figure 1D, the vertical and horizontal lines indicate incision lines every 0.5 nun, and the diagonally shaded areas in Figure 1D are 1E, which is an enlarged perspective view of the circular portion of the figure, shows a defective portion where a 0.510 chip has peeled off from the adhesive interface. Even if such peeling does not occur, a chip whose two substrates are incompletely bonded is still a defective product.

 ひどい場合、チップの剥がれ落ちどころではなく、基
板研磨工程あるいはデバイス製造工程(ダイシング工程
)で接着半導体基板全体が割れてしまうこともある。
In severe cases, the entire bonded semiconductor substrate may crack during the substrate polishing process or device manufacturing process (dicing process), rather than just the chip peeling off.

(発明が解決しようとする課題) 本発明の目的は、部分的に電気的抵抗が高くなったり、
研磨工程やデバイス製造工程で割れ、破壊のない歩留り
の改善された接着半導体基板の製造方法を提供すること
にある。 また本発明の別の目的は、赤外線透過映像法
で海のように暗い部分のない、均一な明るい映像をもつ
接着半導体基板の製造方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to partially increase electrical resistance,
It is an object of the present invention to provide a method for manufacturing a bonded semiconductor substrate with improved yield without cracking or destruction during a polishing process or a device manufacturing process. Another object of the present invention is to provide a method for manufacturing an adhesive semiconductor substrate that has a uniformly bright image without dark areas like the sea in infrared transmission imaging.

[発明の構成] (課題を解決するための手段) 本発明の接着半導体基板の製造方法は、シリコン基板、
ゲルマニウム基板、あるいはGa As、Ga P、I
nPなど化合物半導体基板を含めて、半導体素子基板と
して使用される同種又は異種の第1及び第2半導体材料
基板の鏡面どうしを密着させ、しかる後所定温度で所定
時間、所定の雰囲気中で熱処理を加えることにより該鏡
面を接着させるにあたり、該第1及び第2半導体材料基
板の鏡面における表面粗さが、上記鏡面上の所定部分に
設定した基準面の一辺の長さ111mmmで測定した最
大高さR,,1aX(JIS  B  0601)であ
られして130Å以下であるとともに、該熱処理温度が
200℃以上かつ半導体基板の融点未満であることを特
徴とする。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing an adhesive semiconductor substrate of the present invention includes a silicon substrate,
Germanium substrate, or Ga As, Ga P, I
The mirror surfaces of first and second semiconductor material substrates of the same or different types used as semiconductor element substrates, including compound semiconductor substrates such as nP, are brought into close contact with each other, and then heat treatment is performed at a predetermined temperature for a predetermined time in a predetermined atmosphere. In addition, when bonding the mirror surfaces, the surface roughness of the mirror surfaces of the first and second semiconductor material substrates is the maximum height measured with a side length of 111 mm on a reference surface set at a predetermined portion on the mirror surface. The heat treatment temperature is 200° C. or higher and lower than the melting point of the semiconductor substrate.

(作用) 表面粗さが、基準面−辺の長さ1mmで測定して最大高
さが130Å以下であると、まず第一に、赤外線透過映
像法で観察したときに、映像に月や火星における海のよ
うな暗い部分が現れないことが挙げられる。
(Function) If the maximum height of the surface roughness is 130 Å or less when measured from the reference surface to the side length of 1 mm, first of all, when observed using infrared transmission imaging, images such as the Moon or Mars will appear in the image. One example is that dark areas such as the ocean do not appear.

次に、表面粗さ(最大高さ)50〜300Xの範囲で、
互いに同じ表面粗さをもつ基板の組を接着したものを多
数製作し、その接着基板の破壊試験をして、少しでも割
れや破壊などを生じた非接着基板の百分率を求め、その
表面粗さにおける接着性(%)とした。 その接着性の
表面粗さに対する依存性を第2図に示す。 第2図をみ
てわかるように、表面粗さが130人(−点鎖線の位置
)を超えたところで接着性は急激に低下する。
Next, with a surface roughness (maximum height) in the range of 50 to 300X,
A large number of bonded sets of substrates with the same surface roughness are manufactured, and the bonded substrates are subjected to destructive tests to determine the percentage of non-bonded substrates that have even the slightest crack or breakage. Adhesion (%) The dependence of the adhesion on the surface roughness is shown in FIG. As can be seen from FIG. 2, when the surface roughness exceeds 130 (the position indicated by the - dotted chain line), the adhesiveness rapidly decreases.

さらに、第2図の試験の場合と同じ試料接着基板につい
てその接着基板の両面にAI電極をっけ、2 nn+口
にダイシングしたものの抵抗を測定してみた。 この際
接着に使用したウェハはP型紙抵抗0.014〜0.0
15Ω・coである。 そして、ダイシングしたものの
多数抵抗のバラツキσをその平均抵抗の百分率(%)と
して求めた。 その抵抗バラツキの表面粗さに対する依
存性を第3図に示す。
Further, the resistance of the same sample bonded substrate as in the test shown in FIG. 2 was measured by attaching AI electrodes to both sides of the bonded substrate and dicing the sample into 2 nn+ pieces. At this time, the wafer used for bonding had a P-type paper resistance of 0.014 to 0.0.
It is 15Ω·co. Then, the variation σ of the majority resistance of the diced product was determined as a percentage (%) of the average resistance. The dependence of the resistance variation on the surface roughness is shown in FIG.

第3図をみてわかるように、第2図の接着性の場合と同
様に表面粗さが130Xを超えると、抵抗のバラツキも
急増する。
As can be seen from FIG. 3, as in the case of adhesiveness shown in FIG. 2, when the surface roughness exceeds 130X, the variation in resistance increases rapidly.

これらのことから、表面の基準面−辺の長さ1n+11
について表面粗さ(最大高さ)を130Å以下とするこ
とが、赤外線透過映像法における映像に暗い部分をなく
すことになるとともに、接着性と抵抗の均一性はいずれ
も表面粗さを130X以下とすることによりクリティカ
ルに改善されることがわかり、従って、赤外線透過映像
の暗い部分は不完全接着部分であり、表面粗さを130
X以下とすることが接着半導体基板の特性を著しく向上
させるものである。
From these facts, the reference plane of the surface - the length of the side 1n + 11
Setting the surface roughness (maximum height) to 130 Å or less eliminates dark areas in images obtained using infrared transmission imaging, and uniformity of both adhesion and resistance is improved by setting the surface roughness to 130 Å or less. Therefore, the dark areas in the infrared transmission image are incompletely bonded areas, and the surface roughness is reduced to 130.
Setting it to X or less significantly improves the characteristics of the bonded semiconductor substrate.

なお、表面粗さの基準面−辺の長さを1 nunとした
ことに表面粗さを最大130Xとする本発明の意義があ
る。 また、使用するウェハの全面の平坦度(TTL)
の範囲は5μ■以下にとっている。
It should be noted that the significance of the present invention in which the surface roughness is set to a maximum of 130X is that the length of the reference plane-side of the surface roughness is set to 1 nun. Also, the flatness of the entire surface of the wafer used (TTL)
The range is set to 5 μ■ or less.

(実施例) 次に実施例1および2により本発明を具体的に説明する
(Example) Next, the present invention will be specifically explained using Examples 1 and 2.

実施例 1 直径100100r、比抵抗20〜30Ω・CIlのN
型シリコンウェハで、従来から使用されている平坦度(
TTV)5μm以下で表面粗さが30〜280Xの範囲
に分布する500枚以上を用意した。 表面粗さの測定
方法は、■東京精密製の非接触表面粗さ形状測定機S 
urfco1192 OA (スポット径1.6μll
l )を用い、倍率1.Goo、000倍、測定距離1
n+iで最大高さをウェハ上5点で測定し、その平均を
そのウェハの表面粗さとしな。
Example 1 N with a diameter of 100100r and a specific resistance of 20 to 30Ω・CIl
The flatness of conventionally used silicon wafers (
TTV) At least 500 sheets with surface roughness of 5 μm or less and surface roughness distributed in the range of 30 to 280× were prepared. The method for measuring surface roughness is ■Non-contact surface roughness profile measuring machine S manufactured by Tokyo Seimitsu.
urfco1192 OA (spot diameter 1.6 μll
l ) and a magnification of 1. Goo, 000x, measurement distance 1
At n+i, the maximum height is measured at five points on the wafer, and the average is taken as the surface roughness of the wafer.

そして測定した500枚以上のなかから、表面粗さ 1
30X以下の500枚を10ツトとして選別し、そのロ
ット内のウェハを2枚1組に密着させて250枚の接着
ウェハとし、その後1100’C(シリコンウェハの融
点は約1400℃である)で2時間、N2ガス中で接着
熱処理を行った。 なお、熱処理を利用した半導体ウェ
ハの接着技術は、米国特許第4,671,846号明細
書、米国特許第4,700,466号明細書に詳細に開
示されている。
Then, from over 500 sheets measured, surface roughness 1
500 wafers of 30X or less were sorted into 10 lots, and the wafers in that lot were brought into close contact with each other in sets of 250 bonded wafers, and then heated at 1100'C (the melting point of silicon wafers is approximately 1400°C). Adhesion heat treatment was performed in N2 gas for 2 hours. Semiconductor wafer bonding technology using heat treatment is disclosed in detail in US Pat. No. 4,671,846 and US Pat. No. 4,700,466.

一方、比較例として、選別しないで表面粗さ30〜28
01の範囲に分布する別のウェハ500枚をとり、実施
例1と同様の方法で比較例の接着ウェハ250枚を製作
した。
On the other hand, as a comparative example, the surface roughness was 30 to 28 without screening.
Another 500 wafers distributed in the 01 range were taken, and 250 bonded wafers of a comparative example were manufactured in the same manner as in Example 1.

実施例1と比較例の接着ウェハの赤外線透過映像法検査
によるボイドの内容を第4図に示す。
FIG. 4 shows the contents of voids in the bonded wafers of Example 1 and Comparative Example by infrared transmission imaging inspection.

すなわち、比較例のボイド全体には、同心円状の干渉縞
によって示されるダストに起因するボイドと、月や火星
の海のような暗い部分によって示される凹凸に起因する
ボイドとが含まれるが、実施例1のボイドには、比較例
とほぼ同量のダストに起因するボイドがあるだけで、凹
凸に起因するボイドは皆無であった。
In other words, the overall voids in the comparative example include voids caused by dust shown by concentric interference fringes and voids caused by unevenness shown by dark areas such as the oceans of the Moon and Mars. Among the voids in Example 1, there were only voids caused by approximately the same amount of dust as in the comparative example, and there were no voids caused by unevenness.

第6A図は実施例1の代表的なサンプルAを赤外線透過
法により観察しな状態を示す。 サンプルAの所定の3
点(A、B、C)における表面粗さの実測結果(一部分
)はそれぞれ第6B図、第6C図、第6D図に示され、
A、B、Cにおける表面粗さの値はそれぞれ92X 、
 124 X、 106 Xである。 第6A図の実施
例ウェハは全面にわたりボイドが観察されないことを示
している。
FIG. 6A shows the state of representative sample A of Example 1 observed by an infrared transmission method. Predetermined 3 of sample A
The actual measurement results (partial) of the surface roughness at points (A, B, C) are shown in Figures 6B, 6C, and 6D, respectively.
The surface roughness values at A, B, and C are 92X, respectively.
124X, 106X. The example wafer of FIG. 6A shows that no voids are observed over the entire surface.

なお、第6A図に示すサンプルAの周囲の狭いリング状
縁取りは、例えば直径100n+n+の半導体ウェハに
対して幅2Illl程度はどうしても生じてしまう未接
着領域であるが、実際には接着半導体基板の加工工程に
おいて除去される部分である。 この部分は、いわゆる
ウェハの面だれにより生ずるもので、本願発明が注目し
ている表面粗さ等には関係ない。
Note that the narrow ring-shaped edging around sample A shown in FIG. 6A is an unbonded area that inevitably has a width of about 2Illll for a semiconductor wafer with a diameter of 100n+n+, but in reality, it is difficult to process a bonded semiconductor substrate. This is the part that is removed during the process. This portion is caused by so-called surface sagging of the wafer, and is not related to the surface roughness, etc., which is the focus of the present invention.

第7A図は、比較例の代表的なサンプルBを赤外線透過
法により観察した状態を示す。 サンプルBの3点(A
、B、C)における表面粗さの実測結果(一部分)はそ
れぞれ第7B図、第7C図、第7D図に示され、A、B
、Cにおける表面粗さ−11= の値はそれぞれ286人、 124 X 、 146 
Xであって、130X以下と130Xを超えたところの
双方を含む。
FIG. 7A shows a typical sample B of the comparative example observed by an infrared transmission method. Three points of sample B (A
, B, and C) are shown in Figures 7B, 7C, and 7D, respectively.
, the values of surface roughness -11= at C are 286 people, 124 x, 146, respectively.
X, including both below 130X and above 130X.

第7A図において、白抜きの部分は表面粗さ130大以
下でボイドのないことを示し、クロスハツチ部分は表面
粗さが130久を超える部分で、ダイシングの際に接着
不良の起きていることを示す。
In Figure 7A, the white areas indicate that the surface roughness is 130 degrees or less and there are no voids, and the crosshatch areas are areas that have surface roughness exceeding 130 degrees, indicating that poor adhesion occurred during dicing. show.

第5図は、実施例1と比較例の接着半導体基板が同じ実
際のデバイス工程を経たときの歩留りを示すグラフであ
る。 同図にみるように、実施例1は比較例に比較して
13%の歩留り向上がみられるが、これは表面粗さを1
30X以下としたことによる基板割れ、破壊不良が皆無
になったためであることが確認された。
FIG. 5 is a graph showing the yield when bonded semiconductor substrates of Example 1 and Comparative Example were subjected to the same actual device process. As shown in the figure, Example 1 shows a 13% improvement in yield compared to Comparative Example, but this is because the surface roughness is reduced by 1.
It was confirmed that this was due to the fact that there were no substrate cracks or destruction defects due to the use of 30X or less.

さらに、実施例1の素子における接着界面に関連する素
子特性(第3図参照)は、比較例のそれに比較してバラ
ツキが著しく改善されることも確認された。
Furthermore, it was also confirmed that the device characteristics related to the adhesive interface in the device of Example 1 (see FIG. 3) were significantly improved in variation compared to those of the comparative example.

以上のような表面粗さの130大を境とする結果は、繰
り返し実験をしても変らなかった。
The above results with a surface roughness of 130 or greater did not change even after repeated experiments.

なお、表面粗さ130X以下の無歪鏡面ウェハは、「昭
和56年度(1981)精機学会秋期大会学術講演会論
文集、 p440〜451(石川遺失)に開示のポリシ
ング法により実現できる。
Incidentally, a distortion-free mirror wafer with a surface roughness of 130X or less can be realized by the polishing method disclosed in ``Proceedings of the 1981 Autumn Conference of the Japan Society of Precision Machinery, pp. 440-451 (Ishikawa et al.).

以上の説明では、接着界面の観察に赤外線透過法を用い
たが、この観察には、周波数が10〜30MH7または
それ以上の超音波を利用することができる。 この超音
波利用の方法の1つとして、公知のコンピュータ・トモ
グラフィ(CT)を利用したものと、接着界面における
超音波の反射を利用したものがある。 後者の超音波反
射利用法は、例えば特願昭60−259715号に開示
されている(ここでは30M Hz以上の超音波が利用
されている)。
In the above description, the infrared transmission method was used to observe the adhesive interface, but ultrasonic waves having a frequency of 10 to 30 MH7 or more can be used for this observation. One of the methods of using this ultrasonic wave is one that uses the well-known computer tomography (CT), and the other that uses the reflection of the ultrasonic wave at the adhesive interface. The latter method of utilizing ultrasonic reflection is disclosed, for example, in Japanese Patent Application No. 60-259715 (here, ultrasonic waves of 30 MHz or higher are used).

実施例 2 半導体材料基板として、Ge 、Ga As、In P
、Ga Pを用いて同様な実験を行ったところ、実施例
1と同様に表面粗さが130人を境に特性の急変が現れ
る結果が得られた。
Example 2 As a semiconductor material substrate, Ge, GaAs, InP
When similar experiments were conducted using GaP, similar to Example 1, results were obtained in which the characteristics suddenly changed when the surface roughness reached 130.

[発明の効果] 本発明の接着半導体基板の製造方法によれば、接着前の
半導体材料基板の表面粗さを130X以下としたことに
より、基板表面の凹凸による未接着部分を完全に防ぐこ
とができ、その結果、接着半導体基板の基板割れ、破壊
などの不良は激減することになった。 また接着界面に
おける電気的特性のバラツキもなくなり、接着半導体基
板における素子特性を安定させることも可能になった。
[Effects of the Invention] According to the method for manufacturing a bonded semiconductor substrate of the present invention, by setting the surface roughness of the semiconductor material substrate before bonding to 130X or less, it is possible to completely prevent unbonded portions due to irregularities on the substrate surface. As a result, defects such as substrate cracking and destruction of bonded semiconductor substrates have been drastically reduced. Furthermore, variations in electrical properties at the bonded interface are eliminated, making it possible to stabilize the device properties of the bonded semiconductor substrate.

以上により、本発明製造方法は、接着半導体基板による
チップ製造の歩留り向上と低コスト化に大いに寄与する
ものである。
As described above, the manufacturing method of the present invention greatly contributes to improving the yield and reducing the cost of chip manufacturing using bonded semiconductor substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は接着半導体基板の概略構成を示す断面図、第
1B図は第1A図の接着半導体基板をその密着段階につ
き赤外線透過法により観察したときにみられる火星の海
のような暗部を例示する図、第1C図は第1B図の密着
半導体基板を熱処理をした後に赤外線透過法により観察
したときの状態を例示する図、第1D図は接着半導体基
板をダイシングしたときのチップの剥れ落ちを示す図、
第1E図は第1D図の円り部分にかかる拡大斜視図、第
2図及び第3図は本発明製造方法の作用を説明するグラ
フ、第4図及び第5図は本発明実施例1の効果を説明す
る棒グラフ、第6A図は実施例1にかかるサンプルAを
赤外線透過法により観察した図、第6B図乃至第6D図
はそれぞれ第6A図のA点乃至0点における表面粗さの
断面曲線図、第7A図は比較例にかかるサンプルBを赤
外線透過法により観察した図、第7B図乃至第7D図は
それぞれ第7A図のA点乃至0点における表面粗さの断
面曲線図である。 ■、2・・・半導体材料基板、3・・・接着界面、4・
・・接着半導体基板。 −15= 臂 −箇へ 8     8      。 曹瀝Cも ン 第1B図 第1D図 第1C図 第1E図 第4図 椿 第5図 鵬−ばa    ILIIITIIJ 第6A図 負 mEa  ILNT:ん 第7A図
Figure 1A is a cross-sectional view showing the schematic structure of the bonded semiconductor substrate, and Figure 1B is an example of a dark area like the oceans of Mars seen when the bonded semiconductor substrate of Figure 1A is observed using an infrared transmission method at the adhesion stage. Figure 1C is a diagram illustrating the state of the adhesive semiconductor substrate in Figure 1B observed by infrared transmission method after heat treatment, and Figure 1D is a diagram showing chips peeling off when the adhesive semiconductor substrate is diced. A diagram showing
FIG. 1E is an enlarged perspective view of the circular portion of FIG. 1D, FIGS. 2 and 3 are graphs explaining the operation of the manufacturing method of the present invention, and FIGS. 4 and 5 are graphs of the embodiment 1 of the present invention. A bar graph explaining the effect, FIG. 6A is a diagram obtained by observing sample A according to Example 1 using an infrared transmission method, and FIGS. 6B to 6D are cross sections of surface roughness at points A to 0 in FIG. 6A, respectively. The curve diagram, FIG. 7A is a diagram obtained by observing sample B according to a comparative example using an infrared transmission method, and FIGS. 7B to 7D are cross-sectional curve diagrams of surface roughness at points A to 0 in FIG. 7A, respectively. . ■, 2... Semiconductor material substrate, 3... Adhesive interface, 4...
...Adhesive semiconductor substrate. -15 = arm - part 8 8. Figure 1B Figure 1D Figure 1C Figure 1E Figure 4 Camellia Figure 5 Peng-ba ILIIIITIIJ Figure 6A Negative mEa ILNT: N Figure 7A

Claims (1)

【特許請求の範囲】[Claims] 1、長さ1mm当たりの最大高さが130Å以下である
表面粗さの鏡面をもつ第1半導体基板と、長さ1mm当
たりの最大高さが130Å以下である表面粗さの鏡面を
もつ第2半導体基板とを用意し、前記第1半導体基板の
鏡面と前記第2半導体基板の鏡面とを密着させる工程、
及び前記密着された第1及び第2半導体基板を200℃
以上かつ半導体基板の融点未満の温度で熱処理する工程
を具備する接着半導体基板の製造方法。
1. A first semiconductor substrate having a mirror surface with a surface roughness of 130 Å or less in maximum height per 1 mm of length, and a second semiconductor substrate having a mirror surface with a surface roughness of 130 Å or less in maximum height per 1 mm of length. a step of preparing a semiconductor substrate and bringing a mirror surface of the first semiconductor substrate and a mirror surface of the second semiconductor substrate into close contact;
and the closely attached first and second semiconductor substrates at 200°C.
A method for manufacturing an adhesive semiconductor substrate, which comprises the step of heat treatment at a temperature lower than the melting point of the semiconductor substrate.
JP63183126A 1987-07-24 1988-07-22 Method for manufacturing bonded semiconductor substrate Expired - Lifetime JP2703933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183126A JP2703933B2 (en) 1987-07-24 1988-07-22 Method for manufacturing bonded semiconductor substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18351887 1987-07-24
JP62-183518 1987-07-24
JP63183126A JP2703933B2 (en) 1987-07-24 1988-07-22 Method for manufacturing bonded semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH01103826A true JPH01103826A (en) 1989-04-20
JP2703933B2 JP2703933B2 (en) 1998-01-26

Family

ID=26501672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183126A Expired - Lifetime JP2703933B2 (en) 1987-07-24 1988-07-22 Method for manufacturing bonded semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2703933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126625A (en) * 1988-11-05 1990-05-15 Shin Etsu Handotai Co Ltd Junction of semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182216A (en) * 1985-02-08 1986-08-14 Toshiba Corp Bonding method of semiconductor device
JPS62122119A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182216A (en) * 1985-02-08 1986-08-14 Toshiba Corp Bonding method of semiconductor device
JPS62122119A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126625A (en) * 1988-11-05 1990-05-15 Shin Etsu Handotai Co Ltd Junction of semiconductor wafer

Also Published As

Publication number Publication date
JP2703933B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US5932048A (en) Method of fabricating direct-bonded semiconductor wafers
US5196375A (en) Method for manufacturing bonded semiconductor body
Nishiguchi et al. Highly reliable Au-Sn bonding with background GaAs LSI chips
KR102327328B1 (en) Method for evaluating surface defects of substrates for bonding
JPH02106052A (en) Inspection method for junction wafer
JPH01103826A (en) Manufacture of adhesive semiconductor substrate
JPH11186120A (en) Close bonding between substrates made of same or different materials
JPH01259539A (en) Soi substrate and manufacture thereof
US11810821B2 (en) Semiconductor chip and method for manufacturing the same
EP0300433B1 (en) Method for manufacturing bonded semiconductor body
JPH0888272A (en) Manufacture of substrate for semiconductor integrated circuit
JP3166466B2 (en) Manufacturing method of bonded semiconductor substrate and bonding defect inspection apparatus for semiconductor substrate
JPH05275300A (en) Method of joining semiconductor wafers
JPS6387736A (en) Semiconductor device
JP3996557B2 (en) Manufacturing method of semiconductor junction wafer
JP3030545B2 (en) Manufacturing method of bonded wafer
JPH0590116A (en) Manufacture of substrate for forming semiconductor element
JPH09232197A (en) Method for manufacturing joined semiconductor wafer
JP2007073853A (en) Screening method for semiconductor device chip
JP2005158813A (en) Manufacturing method of bonded semiconductor
JPS62122141A (en) Checking method for semiconductor substrate
JP2740675B2 (en) Semiconductor device
TW200411812A (en) Method of fabricating shallow trench isolation
JPS59175738A (en) Semiconductor device
JP4177293B2 (en) Semiconductor bonded wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term