JPS62122141A - Checking method for semiconductor substrate - Google Patents

Checking method for semiconductor substrate

Info

Publication number
JPS62122141A
JPS62122141A JP25971585A JP25971585A JPS62122141A JP S62122141 A JPS62122141 A JP S62122141A JP 25971585 A JP25971585 A JP 25971585A JP 25971585 A JP25971585 A JP 25971585A JP S62122141 A JPS62122141 A JP S62122141A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
wafer
infrared rays
infrared ray
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25971585A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Furukawa
和由 古川
Masaru Shinpo
新保 優
Kiyoshi Fukuda
潔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25971585A priority Critical patent/JPS62122141A/en
Publication of JPS62122141A publication Critical patent/JPS62122141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable the detection of an unbonded part irrespective of the impurity concentration of a wafer on the reverse side, by applying an infrared ray onto one surface of a semiconductor substrate and by detecting the infrared ray reflected therefrom to measure the reflection intensity distribution on the semiconductor substrate. CONSTITUTION:An infrared ray 4 is made to fall on one surface of a sample 3 to be checked which is obtained by bonding a wafer 1 of high impurity concentration and a wafer 2 of low impurity concentration together, and the intensity of reflection 5 therefrom is measured. The infrared ray entering the sample to be checked is reflected partly by a bonding interface 6, and this reflection is stronger in an unbonded part than in a bonded part. Accordingly, the unbonded part can be detected by measuring the intensity of the reflected infrared ray.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は2枚の半導体ウェハを接着させて得られた半導
体基板の検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for inspecting a semiconductor substrate obtained by bonding two semiconductor wafers together.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

鏡面研磨したシリコンなどの半導体ウェハの研磨筋同士
を清浄な雰囲気中で接触させて熱処理をすると、両者は
強固にくっつき接着半導体基板が得られる。このように
して接着した基板は接着剤などの異物が介在しないため
、熱的にも化学的にも安定である。この半導体ウェハの
接−R法を使用すれば、pn構造や、素子製造に使われ
るn”/n−構造の半導体基板が簡便に得られる。
When polishing strips of mirror-polished silicon or other semiconductor wafers are brought into contact with each other in a clean atmosphere and subjected to heat treatment, the two will firmly stick together and a bonded semiconductor substrate will be obtained. The substrates bonded in this manner are thermally and chemically stable because no foreign matter such as adhesive is present. If this semiconductor wafer contact-R method is used, semiconductor substrates with a pn structure or an n''/n- structure used in device manufacturing can be easily obtained.

しかし研磨面を接触させる時に、間にごみなどの異物が
介在したり7、また研磨が良くなかった場合には、その
部分は付かず未接着部分となる。
However, when bringing the polished surfaces into contact, if foreign matter such as dust is present 7 or if the polishing is not good, that part will not stick and will remain an unbonded part.

接着した半導体基板を使用してデバイスを製作した場合
、未接着部分にあたったデバイスは、もちろん不良とな
る。そればかりでなく、デバイス製造工程2例えば研磨
や高温熱処理の最中に、未接着部分が割れて剥離するな
どして、最悪の場合には製造装置自体が壊れることもあ
る。
When a device is manufactured using bonded semiconductor substrates, any device that hits the unbonded portion will of course be defective. Not only that, but during the device manufacturing process 2, such as polishing or high-temperature heat treatment, the unbonded portions may crack and peel off, and in the worst case, the manufacturing equipment itself may break.

したがって、ウェハを接着して得られた半導体基板は、
その内部に未接着部分があるか否かを、次の工程に進む
前に検査する必要がある。
Therefore, the semiconductor substrate obtained by bonding the wafers is
It is necessary to inspect whether there are any unbonded parts inside before proceeding to the next step.

接着した半導体基板の検査方法として、赤外線をシリコ
ン基板に透過させて、その強度の面内分布から未接着部
を知る方法が考えられるが、この方法では半導体基板に
赤外線を透過させなければならないため、不純物濃度が
高い基板の検査はできない。
One possible method for inspecting bonded semiconductor substrates is to transmit infrared rays through the silicon substrate and determine unbonded areas from the in-plane distribution of the intensity; however, this method requires infrared rays to be transmitted through the semiconductor substrate. , substrates with high impurity concentrations cannot be inspected.

半導体ウェハの接着技術を工業的に応用する場合には、
例えば、高濃度のpタイプウェハと低濃度のnタイプウ
ェハを接着してp”/n−構造にしたり、高濃度と低濃
度のnタイプウェハを接着してn”/n−構造にするな
ど1片側のウェハの不純物濃度が高いことが多い、この
ような構造の半導体基板には、従来の赤外線を透過させ
る検査法は使用できず、接着技術を工業的に応用するた
めに、新たな検査方法が求められていた。
When applying semiconductor wafer bonding technology industrially,
For example, a high-concentration p-type wafer and a low-concentration n-type wafer may be bonded to form a p''/n-structure, or a high-concentration and a low-concentration n-type wafer may be bonded to form an n''/n-structure. 1. Conventional inspection methods that transmit infrared rays cannot be used for semiconductor substrates with such structures, where one side of the wafer often has a high concentration of impurities.In order to apply adhesive technology industrially, a new inspection method was developed. A method was needed.

さらに不純物濃度が低いウェハ同士を接着した半導体基
板についても、従来の検査方法では赤外線を透過させる
ために赤外線源とディテクタを半導体基板の両側に置か
なくてはならず、工業的な応用には、設置空間や検査時
の試料の保持に問題があった。
Furthermore, even for semiconductor substrates made by bonding wafers with low impurity concentrations, conventional inspection methods require placing an infrared source and a detector on both sides of the semiconductor substrate in order to transmit infrared rays. There were problems with the installation space and how to hold the sample during inspection.

〔発明の目的〕[Purpose of the invention]

本発明は、接着で得られた半導体基板において、片側の
ウェハの不純物濃度が高くても、未接着部分を検出する
ことができ、さらに検査装置の接置空間や試料保持の制
限が少ない半導体基板の検査法を提供することを目的と
する。
The present invention makes it possible to detect unbonded parts of semiconductor substrates obtained by bonding, even if the impurity concentration on one side of the wafer is high. The purpose is to provide a testing method for

〔発明の概要〕[Summary of the invention]

本発明の概要を第1図に従がって説明する。本発明は高
不純物議度ウェハ■と低不純物濃度ウェハ■を接着して
得られた被検査試料■の一面に、赤外線(4)を入射し
、その反射■の強度を測定することを特徴とする。この
際赤外線は低不純物濃度ウェハ側から入射させる。
An overview of the present invention will be explained with reference to FIG. The present invention is characterized in that infrared rays (4) are incident on one surface of the test sample (■) obtained by bonding a high impurity density wafer (■) and a low impurity concentration wafer (■), and the intensity of the reflected light (■) is measured. do. At this time, the infrared rays are made to enter from the low impurity concentration wafer side.

この方法で未接着部分を検出することができるのは以下
の原理に基づいている。すなわち被検査試料に入射した
赤外線は一部が接着界面0で曽射するが、未接着部分で
はこの反射が接着部分よりも強い。従がって反射赤外線
の強度を測定することで未接着部分を知ることができる
The ability to detect unbonded parts using this method is based on the following principle. That is, a portion of the infrared rays incident on the sample to be inspected is reflected at the bonded interface 0, but this reflection is stronger in the unbonded portion than in the bonded portion. Therefore, by measuring the intensity of reflected infrared rays, it is possible to determine the unbonded areas.

不純物濃度の異なるウェハを接着した試料について説明
したが、本発明の検査法はこれに限らず不純物濃度が同
じウェハ同士の試料にも応用できる。すなわち、赤外線
を入射させる側のウェハが赤外線を通せば良い。この限
界は、ウェハの種類や厚さ、赤外線の波長や強度、赤外
線ディテクタの性能によって多少異なるが、不純物濃度
が10i7cm−’以下であれば、未接着部分の検出が
できる。
Although a sample in which wafers with different impurity concentrations are bonded together has been described, the inspection method of the present invention is not limited to this, and can also be applied to samples in which wafers have the same impurity concentration. That is, it is sufficient that the wafer on the side where the infrared rays are incident will pass the infrared rays. This limit varies somewhat depending on the type and thickness of the wafer, the wavelength and intensity of the infrared rays, and the performance of the infrared detector, but if the impurity concentration is 10i7 cm-' or less, the unbonded portion can be detected.

使用する赤外線の波長は、片側のウェハを透過するもの
であればよい。しかし赤外線の検知にInSbやCd1
1gTeがよく使われるので、検知器が感度を持つ波度
、InSbなら1.5 μm〜6 p m、 Cd11
gTeなら1.5〜15μmが実用的である。
The wavelength of the infrared rays used may be any wavelength that can be transmitted through one side of the wafer. However, InSb and Cd1 are used for infrared detection.
Since 1gTe is often used, the wave intensity to which the detector is sensitive is 1.5 μm to 6 pm for InSb, Cd11
For gTe, 1.5 to 15 μm is practical.

検査時の試料の保持は、例えば裏側を一般に使用されて
いる真空チャック等で固定しておくか、さらにはウェハ
搬送用のベルト上に置いたままでもよく、特別な治具な
どは必要ない。
The sample can be held during inspection by, for example, fixing the back side with a commonly used vacuum chuck, or even leaving it on a wafer transport belt, and no special jig is required.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体基板検査法では、接着したウェハの片側
を通過して接着界面で反射する赤外線を検出している。
In the semiconductor substrate inspection method of the present invention, infrared rays that pass through one side of the bonded wafer and are reflected at the bonded interface are detected.

このため逆側のウェハの不純物濃度にかかわりなく未接
着部分を検出することができる。
Therefore, the unbonded portion can be detected regardless of the impurity concentration of the wafer on the opposite side.

また本検査法では赤外線源とディテクタを試料に対して
同じ側に置くために、赤外線を透過させる従来の方法に
比べて検査装置の設置に際して空間的な制限が少ない。
In addition, in this inspection method, the infrared source and detector are placed on the same side of the sample, so there are fewer spatial restrictions when installing the inspection device compared to conventional methods that transmit infrared rays.

このように本発明の半導体基板検査法は、直接接着技術
を工業的に応用するにあたって多大の効果がある。
As described above, the semiconductor substrate inspection method of the present invention has great effects in industrially applying direct bonding technology.

〔発明の実施例〕[Embodiments of the invention]

不純物濃度101s101s、厚さ380 μmのnタ
イプシリコンウェハと不純物濃度101014a’、 
)すさ380μmのnタイプシリコンウェハを直接接着
して、被検査用試料である半導体基板を作成した。この
際、通常クラス2以下の清浄な雰囲気下で行う接着をク
ラス1000で行い、ごみの界在による未接着部分がで
きやすくした。
An n-type silicon wafer with an impurity concentration of 101s101s and a thickness of 380 μm and an impurity concentration of 101014a',
) An n-type silicon wafer with a height of 380 μm was directly bonded to create a semiconductor substrate as a sample to be inspected. At this time, adhesion, which is normally performed in a clean atmosphere of class 2 or lower, was performed at class 1000 to prevent unbonded areas from forming due to the presence of dust.

次に、この被検査試料と、赤外線源、赤外線ディテクタ
を第1図のごとく配置した。第1図中■が試料、■が赤
外線源、(8)が赤外線ディテクタである。赤外線源に
は黒色塗装した銅板を50℃に加熱したものを、ディテ
クタには市販の赤外&!温度計“A G A ther
+++ovision 680”を使用した。
Next, this test sample, an infrared source, and an infrared detector were arranged as shown in FIG. In FIG. 1, ■ is a sample, ■ is an infrared source, and (8) is an infrared detector. The infrared source was a black-painted copper plate heated to 50℃, and the detector was a commercially available infrared &! Thermometer “A G A ther”
+++ovision 680'' was used.

赤外線温度計で得られた画像では、反射赤外線の強度が
強い部分は比較的白く、弱い部分は比較的黒く写る。ウ
ェハの縁はベベル加工がしであるため接着せず、この部
分の反射赤外強度は強い。
In images obtained with an infrared thermometer, areas with strong reflected infrared rays appear relatively white, and areas with weak reflected infrared rays appear relatively black. The edge of the wafer is beveled, so it is not bonded, and the reflected infrared intensity in this area is strong.

接着基板の内側にも、中央から右にかけて反射赤外線線
強度の強い未接着部分が検出された。
An unbonded area with strong reflected infrared ray intensity was also detected inside the bonded substrate from the center to the right.

確認のため、この接着基板を1mmピッチにダイアモン
ドプレートでダイシングしたところ、反射強度が高い部
分は、剥離し未接着であった。
For confirmation, this bonded substrate was diced with a diamond plate at a pitch of 1 mm, and the parts with high reflection intensity were peeled off and not bonded.

比較のために、赤外線@ (17)と試料(13)とデ
ィテクタ(18)を第2図のごとく配置し、赤外線透過
による検査をこころみたが、未接着部の検出はできなか
った。
For comparison, an infrared ray @ (17), a sample (13), and a detector (18) were arranged as shown in Figure 2, and an attempt was made to conduct an inspection using infrared transmission, but no unbonded portion could be detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体基板の検査方法を説明する図、
第2図は従来の検査法を示す図である。 1・・・高濃度ウェハ    2・・・低濃度ウェハ3
.13・・・被検査半導体基板 4,14・・・入射赤
外線5・・・反射赤外線     6・・・直接接着界
面7.17・・・赤外線源     8,18・・・デ
ィテクタ代理人 弁理士 則 近 志 佑 同    竹 花 喜久男
FIG. 1 is a diagram illustrating the semiconductor substrate inspection method of the present invention;
FIG. 2 is a diagram showing a conventional inspection method. 1...High concentration wafer 2...Low concentration wafer 3
.. 13... Semiconductor substrate to be inspected 4, 14... Incident infrared rays 5... Reflected infrared rays 6... Direct adhesive interface 7.17... Infrared source 8, 18... Detector agent Patent attorney Nori Chika Yudo Shi Kikuo Takehana

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板の一面に赤外線を照射し、この反射さ
れた赤外線を検出して前記半導体基板上の反射強度分布
を測定することを特徴とする半導体基板の検査方法。
(1) A method for inspecting a semiconductor substrate, which comprises irradiating one surface of the semiconductor substrate with infrared rays, detecting the reflected infrared rays, and measuring the reflection intensity distribution on the semiconductor substrate.
(2)前記半導体基板が2枚の半導体ウェハを直接接着
したものであることを特徴とする特許請求の範囲第1項
記載の半導体基板の検査方法。
(2) The method for inspecting a semiconductor substrate according to claim 1, wherein the semiconductor substrate is made by directly bonding two semiconductor wafers.
(3)前記赤外線の照射は、前記半導体基板の不純物濃
度が高くないウェハ側から行うことを特徴とする特許請
求の範囲第1項記載の半導体基板の検査方法。
(3) The method for inspecting a semiconductor substrate according to claim 1, wherein the infrared rays are irradiated from the wafer side of the semiconductor substrate where the impurity concentration is not high.
(4)前記直接接着した2枚のウェハのうち少なくとも
一方の不純物濃度が10^1^7cm^−^3以下であ
ることを特徴とする特許請求の範囲第2項記載の半導体
基板の検査方法。
(4) The method for inspecting a semiconductor substrate according to claim 2, wherein the impurity concentration of at least one of the two directly bonded wafers is 10^1^7 cm^-^3 or less. .
(5)前記赤外線の波長は1.5〜15μmであること
を特徴とする特許請求の範囲第1項記載の半導体基板の
検査方法。
(5) The method for inspecting a semiconductor substrate according to claim 1, wherein the wavelength of the infrared rays is 1.5 to 15 μm.
JP25971585A 1985-11-21 1985-11-21 Checking method for semiconductor substrate Pending JPS62122141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25971585A JPS62122141A (en) 1985-11-21 1985-11-21 Checking method for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25971585A JPS62122141A (en) 1985-11-21 1985-11-21 Checking method for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS62122141A true JPS62122141A (en) 1987-06-03

Family

ID=17337931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25971585A Pending JPS62122141A (en) 1985-11-21 1985-11-21 Checking method for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62122141A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122133A (en) * 1987-11-06 1989-05-15 Toshiba Corp Inspecting method for junction type semiconductor substrate
US5196375A (en) * 1987-07-24 1993-03-23 Kabushiki Kaisha Toshiba Method for manufacturing bonded semiconductor body
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
EP4070072A4 (en) * 2019-12-05 2023-12-20 Aurora Solar Technologies (Canada) Inc. Systems and methods of characterizing semiconductor materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196375A (en) * 1987-07-24 1993-03-23 Kabushiki Kaisha Toshiba Method for manufacturing bonded semiconductor body
JPH01122133A (en) * 1987-11-06 1989-05-15 Toshiba Corp Inspecting method for junction type semiconductor substrate
JPH06331559A (en) * 1993-05-18 1994-12-02 Hitachi Ltd Method and apparatus for inspection of foreign body
EP4070072A4 (en) * 2019-12-05 2023-12-20 Aurora Solar Technologies (Canada) Inc. Systems and methods of characterizing semiconductor materials

Similar Documents

Publication Publication Date Title
ES8308638A1 (en) Surface inspection scanning system and method.
JPS60501424A (en) Method of testing electrical devices such as integrated circuits or printed circuits
US5162251A (en) Method for making thinned charge-coupled devices
US6480012B1 (en) Probe card device
TW202300892A (en) Method and setup for detecting surface haze of materials
KR100294128B1 (en) Test method for a bonding pad on a semiconductor chip
JPS62122141A (en) Checking method for semiconductor substrate
JPH02106052A (en) Inspection method for junction wafer
JP2001083080A (en) Crystal defect measuring device
TW202247314A (en) Silicon wafer edge roughness detection jig and detection method
JPS62122142A (en) Checking method for semiconductor substrate
KR20080073584A (en) Evaluation method for surface of silicon wafer
JPH02191353A (en) Inspection of semiconductor substrate
JPH0346314A (en) Treatment upon bonding or before polishing of semiconductor substrate
JP4617788B2 (en) Bonded wafer evaluation method and bonded wafer evaluation apparatus
JPH10154734A (en) Method for evaluating semiconductor crystal
JPS6242537Y2 (en)
CN1555486A (en) Method of examining a wafer of semiconductor material by means of x-rays
JP2596784B2 (en) Inspection method for bonded SOI substrate
US20230341336A1 (en) Method and setup for detecting surface haze of materials
JP2006112871A (en) Inspection method of semiconductor substrate, and its inspection device
Mendaros et al. Resolving the Failure Analysis Challenges on Stacked Die Structure in Lead Frame Chip Scale Package
Dennis et al. Detection of a new surface killer defect on starting Si material using Nomarski principle of differential interference contrast
Davis et al. Failure analysis of advanced microprocessors through backside approaches
JPS5929433A (en) Measuring method for life time of semiconductor substrate