JPH02126444A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH02126444A
JPH02126444A JP8527089A JP8527089A JPH02126444A JP H02126444 A JPH02126444 A JP H02126444A JP 8527089 A JP8527089 A JP 8527089A JP 8527089 A JP8527089 A JP 8527089A JP H02126444 A JPH02126444 A JP H02126444A
Authority
JP
Japan
Prior art keywords
dielectric layer
ratio
zns
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8527089A
Other languages
Japanese (ja)
Inventor
Noriyuki Iwamuro
憲幸 岩室
Keiji Okubo
大久保 恵司
Takafumi Fumoto
麓 孝文
Hisashi Yamazaki
山崎 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8527089A priority Critical patent/JPH02126444A/en
Priority to NL8901688A priority patent/NL8901688A/en
Publication of JPH02126444A publication Critical patent/JPH02126444A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details

Abstract

PURPOSE:To obtain the magneto-optical recording medium having excellent recording sensitivity and erasing characteristic by incorporating one among Ti, Cr, Cu, In, Sn, Pt, and Sm into a ZnS film formed as a dielectric layer provided between a substrate and a magnetic film. CONSTITUTION:The dielectric layer 2 is laminated on the transparent substrate 1 consisting of glass or resin and the amorphous magnetic film 3 consisting of TbFe, TbFeCo, etc., is formed thereon; further, a protective layer 4 consisting of the dielectric film is laminated thereon to form the recording medium. Any one among the Ti, Cr, Cu, In, Sn, Pt, and Sm is incorporated into the ZnS film formed as the layer 2. The magneto-optical recording medium having the large reproduction C/N at the time of signal reproducing and the excellent recording sensitivity and characteristic is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光を用い光熱磁気的に情報を記録し、
記録された磁気的情報を磁気光学効果を利用して読み出
す光磁気記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention records information photothermomagnetically using laser light,
The present invention relates to a magneto-optical recording medium in which recorded magnetic information is read using the magneto-optic effect.

〔従来の技術〕[Conventional technology]

返本、書き換え可能な光磁気メモリの実用化が有望視さ
れている。この光磁気メモリに使用する光磁気記録媒体
は、例えばTbFeCoのような希土類を含む遷移金属
非晶質材料からなり、ディスク面に対して垂直方向に磁
化容易軸を有する垂直磁化薄膜を、ガラス、樹脂等の基
板上に形成したもので、情報の記録は上記磁性薄膜への
レーデ光による熱磁気書き込みにより行い、記録情報の
再生は磁気光学極力−(Kerr)効果による上記磁性
薄膜からの反射光の偏光面回転(カー回転)を検出する
ことで行う。
The practical application of magneto-optical memory that can be returned and rewritten is seen as promising. The magneto-optical recording medium used in this magneto-optical memory is made of a rare earth-containing transition metal amorphous material such as TbFeCo. It is formed on a substrate such as a resin. Information is recorded by thermomagnetic writing using Raded light on the magnetic thin film, and recorded information is reproduced using reflected light from the magnetic thin film using the magneto-optical (Kerr) effect. This is done by detecting the rotation of the polarization plane (Kerr rotation).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、垂直磁化薄膜として現在用いられている磁性
薄膜のカー回転角θには0.3°〜0.4°であり、再
生光の記録ビットによる変調度は1%程度と小さく、再
生時の読み出しCN比が十分でないことが問題となる。
However, the Kerr rotation angle θ of magnetic thin films currently used as perpendicularly magnetized thin films is 0.3° to 0.4°, and the degree of modulation of the reproducing light due to the recording bits is as small as about 1%. The problem is that the read CN ratio is not sufficient.

再生CN比は、40dB以上あれば媒体の誤り率が一定
になると報告されており、信頼性を高めるためには45
dB以上であることが望ましいとされている。そこで、
磁性薄膜と基板の間にSin、 MW等の誘電体膜を配
置して記録媒体の反射率を低くした時に、見かけ上カー
回転角が増大することを利用してCN比を向上させる方
法が提案されている。
It is reported that the error rate of the medium becomes constant if the playback CN ratio is 40 dB or more, and in order to increase reliability, it is necessary to
It is said that a value of dB or more is desirable. Therefore,
A method has been proposed to improve the CN ratio by utilizing the apparent increase in Kerr rotation angle when a dielectric film such as Sin or MW is placed between the magnetic thin film and the substrate to lower the reflectance of the recording medium. has been done.

しかし、光磁気記録媒体への情報の記録および消去は半
導体レーザを用いて行うが、情報の転送速度を増加させ
るためにディスク回転数を上昇させると、記録媒体上へ
の一点に照射されるレーザビームの照射時間が短くなり
、半導体レーザでは記録媒体温度が記録および消去の動
作点、すなわちキュリー温度まで上がらなくなる可能性
がある。
However, information is recorded and erased on magneto-optical recording media using semiconductor lasers, but when the disk rotational speed is increased to increase the information transfer speed, the laser irradiates a single point on the recording medium. As the beam irradiation time becomes shorter, the temperature of the recording medium in a semiconductor laser may not rise to the operating point for recording and erasing, that is, the Curie temperature.

本発明の目的は、上記の問題を解決し、磁性薄膜と基板
の間に誘電体膜を配置して向上させた再生CN比を低下
させることなく、半導体レーザを用いて高いディスク回
転数における記録媒体への記録および消去が可能な光磁
気記録媒体を提供することにある。
An object of the present invention is to solve the above-mentioned problems and record data at high disk rotational speeds using a semiconductor laser without reducing the reproduction CN ratio, which has been improved by disposing a dielectric film between a magnetic thin film and a substrate. An object of the present invention is to provide a magneto-optical recording medium that allows recording and erasing on the medium.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、基板上に誘電体
層を介して基板面に垂直方向に磁化容易軸を有する磁性
薄膜を備えた光磁気記録媒体において、誘電体層がTi
、 Cr、 Cu、 In、 Sn、 Pt、釦のうち
のいずれか1つを含むZnS膜であるものとする。
In order to solve the above problems, the present invention provides a magneto-optical recording medium having a magnetic thin film having an axis of easy magnetization perpendicular to the substrate surface via a dielectric layer on a substrate, in which the dielectric layer is made of Ti.
, Cr, Cu, In, Sn, Pt, and button.

〔作用〕[Effect]

ZnSにTi、 Cr、 Cu、 In、 Sn、 P
t、 Smを適量加えることにより、再生CN比を45
dB以上に確保し、−力信号記録および消去のために必
要なレーザパワーを低下させることができる。
ZnS with Ti, Cr, Cu, In, Sn, P
By adding appropriate amounts of t and Sm, the regenerated CN ratio can be increased to 45.
dB or more, and the laser power required for recording and erasing the -power signal can be reduced.

〔実施例〕〔Example〕

第1図は、本発明の実施例の光磁気記録媒体の構成を示
す断面図である。すなわち、ガラス、樹脂などからなる
透明基板1上に本発明に基づく各種誘電体層2を積層し
、その上にTbFe、 TbFeCoなどの非晶質磁性
薄膜3を形成し、さらに誘電体膜からなる保護層4を積
層したものである。
FIG. 1 is a sectional view showing the structure of a magneto-optical recording medium according to an embodiment of the present invention. That is, various dielectric layers 2 based on the present invention are laminated on a transparent substrate 1 made of glass, resin, etc., an amorphous magnetic thin film 3 of TbFe, TbFeCo, etc. is formed thereon, and a dielectric film made of a dielectric film is further formed. The protective layer 4 is laminated.

以下に述べる実施例では基板1として十分に脱ガスを行
った5、25インチのポリカーボネート板を用い、磁性
薄膜3としてはスパッタリング法で形成したTbzsF
essCOaまたはTt]2aFetocOs膜を用い
、保護層4としては誘電体層2と同じ材料を同じ方法で
1100nの厚さに成膜した。
In the examples described below, a 5.25-inch polycarbonate plate that has been sufficiently degassed is used as the substrate 1, and a TbzsF film formed by sputtering is used as the magnetic thin film 3.
The protective layer 4 was formed using the same material as the dielectric layer 2 to a thickness of 1100 nm using the same method as the dielectric layer 2, using an essCOa or Tt]2aFetocOs film.

実施例1: 誘電体層2としてTiを添加したZnSを用いた実施例
である。誘電体層2の形成は、例えば1mmX1 mm
 X 40mmの寸法のT1片を埋め込んだZnS焼結
ターゲットを用い、アルゴンガス圧0.6Pa、  ス
パッタパワー300Wの条件下でのRFマグネトロンス
パッタリング法によりTi4.5原子%を含むZnS誘
電体層2を9Qnmの厚さに形成した後、真空を破らず
にTbFeCo合金ターゲットを用い、アルゴンガス圧
5.0Pa、  スパッタパワー300Wの条件下での
DCマグネトロンスパッタリング法によりTt12aF
etoCOs薄膜を磁性薄膜3として70nmの厚さに
積層した。さらにその上に保護層4として同様の条件の
RFマグネトロンスパッタリング法により上記誘電体層
2と同じ膜を1100nの厚さに形成した。同様にして
ZnS焼結ターゲットに埋め込むT1片を変えるのみで
T1の含有量の異なる誘電体層2を有する光磁気記録媒
体を作成した。Ti4.5原子%を含むZnS誘電体層
を有する光磁気記録媒体においては、信号記録時の最適
記録レーザパワーPWIIFLI信号消去時の消去レー
ザパワーP。
Example 1: This is an example in which Ti-added ZnS was used as the dielectric layer 2. The formation of the dielectric layer 2 is, for example, 1 mm x 1 mm.
Using a ZnS sintered target embedded with a T1 piece with a size of 40 mm, a ZnS dielectric layer 2 containing 4.5 at. After forming to a thickness of 9Q nm, Tt12aF was formed by DC magnetron sputtering using a TbFeCo alloy target without breaking the vacuum, under conditions of argon gas pressure of 5.0 Pa and sputtering power of 300 W.
An etoCOs thin film was laminated as the magnetic thin film 3 to a thickness of 70 nm. Furthermore, the same film as the dielectric layer 2 was formed thereon as a protective layer 4 to a thickness of 1100 nm by RF magnetron sputtering under the same conditions. Similarly, magneto-optical recording media having dielectric layers 2 with different T1 contents were created by simply changing the T1 piece embedded in the ZnS sintered target. In a magneto-optical recording medium having a ZnS dielectric layer containing 4.5 atomic % of Ti, the optimum recording laser power PWIIFLI when recording a signal is the erasing laser power P when erasing a signal.

および信号再生時のCN比を測定したところ、PVOp
t+Plはともに5.5m Wと十分低い値となり、ま
た再生CN比もディジタル記録に必要な45dBを大き
く上回る52dBが得られた。しかし、Ti11.8原
子%を含むZnS誘電体層を有するものではP、。□。
When we measured the CN ratio during signal reproduction, we found that PVOp
Both t+Pl were sufficiently low values of 5.5 mW, and a reproduction CN ratio of 52 dB was obtained, which far exceeded the 45 dB required for digital recording. However, in one with a ZnS dielectric layer containing 11.8 at.% of Ti, P. □.

Pgはともに4.5m Wと4.5原子%と余り変わら
ないが、再生CN比は43dBとなり45dBを下回る
。第2図にTl含有量と再生CN比 pw。8.P8 
との関係をそれぞれ線21.22.23で示す。ZnS
誘電体層2に含有されるT1の量が0.2原子%を超え
るあたりから P、。、い P、が低下しはじめ、10
.0原子%を超えると再生CN比が45dB以下に劣化
する。
Pg is both 4.5 mW and 4.5 atomic %, which are not much different, but the reproduction CN ratio is 43 dB, which is less than 45 dB. Figure 2 shows the Tl content and regenerated CN ratio pw. 8. P8
The relationships between the two are shown by lines 21, 22, and 23, respectively. ZnS
When the amount of T1 contained in the dielectric layer 2 exceeds 0.2 atomic %, P. , P starts to decrease, 10
.. If it exceeds 0 atomic %, the reproduction CN ratio will deteriorate to 45 dB or less.

特に、Tl含有量が1.0〜6.0原子%の範囲では、
再生CN比が51〜52dB、 P、、、い P。は5
.5〜6.9+n Wとほぼ均一な特性が実現できる。
In particular, when the Tl content is in the range of 1.0 to 6.0 at%,
Reproduction CN ratio is 51-52dB, P. is 5
.. Almost uniform characteristics of 5 to 6.9+nW can be achieved.

実施例2: 誘電体層2としてCrを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、T1片の
代わりに1mm X l mm x4Qnonの寸法の
Cr片を埋め込んだZnS焼結ターゲットを用いた場合
はZnS薄膜にCrを2,9原子%含有させた9Qnm
の厚さの誘電体層2を得、その他は実施例1と全く同じ
構成でCr含有量の異なる誘電体層2を有する光磁気記
録媒体を作成した。Cr2.9原子%を含むZnS誘電
体層の場合、 p、。、、は6.OmW、  Pgは5
.5m Wと十分低い値となり、また再生CN比もディ
ジタル記録に必要な45dBを大きく上回る52dBが
得られた。しかし、Cr11.5原子%を含むZnS誘
電体層を有するものでは Pw。pl+P!はともに5
.0m Wと余り変わらないが、再生CN比は42dB
となり45dBを下回る。
Example 2: This is an example in which ZnS doped with Cr was used as the dielectric layer 2. In the same method as described in Example 1, when a ZnS sintering target in which a Cr piece with dimensions of 1 mm x 1 mm x 4 Qnon was embedded instead of a T1 piece was used, 2.9 at.% of Cr was added to the ZnS thin film. 9Qnm contained
A magneto-optical recording medium having a dielectric layer 2 having a thickness of 100 Cr and a dielectric layer 2 having a different Cr content with the same structure as in Example 1 was otherwise produced. For a ZnS dielectric layer containing 2.9 at.% Cr, p. ,, is 6. OmW, Pg is 5
.. A sufficiently low value of 5 mW was obtained, and a reproduction CN ratio of 52 dB, which far exceeds the 45 dB required for digital recording, was obtained. However, in the case of a ZnS dielectric layer containing 11.5 at.% of Cr, Pw. pl+P! are both 5
.. Although it is not much different from 0mW, the reproduction CN ratio is 42dB.
This is less than 45 dB.

第3図にCr含有量と再生CN比+  Pwapt+ 
 Pt との関係をそれぞれ線31.32.33で示す
。ZnS誘電体層2に含有されるCrO量が0.2原子
%を超えるあたりからP、。□、Paが低下しはじめ、
10.0原子%を超えると再生CN比が45dB以下に
劣化する。
Figure 3 shows the Cr content and regenerated CN ratio + Pwapt +
The relationship with Pt is shown by lines 31, 32, and 33, respectively. When the amount of CrO contained in the ZnS dielectric layer 2 exceeds 0.2 atomic %, P. □, Pa begins to decrease,
If it exceeds 10.0 atomic %, the reproduced CN ratio deteriorates to 45 dB or less.

特にCr含有量が1.0〜6.0原子%の範囲では、再
生CN比が51〜52[IB−Pw。−t、  Piは
5.5〜6.0m Wとほぼ均一な特性が実現できる。
In particular, when the Cr content is in the range of 1.0 to 6.0 at%, the regenerated CN ratio is 51 to 52 [IB-Pw. -t, Pi is 5.5 to 6.0 mW, and almost uniform characteristics can be achieved.

実施例3: 誘電体層2としてCuを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、T1片の
代わりにl mm X l n++++ X4Qmmの
寸法のCu片を埋め込んだZnS焼結ターゲットを用い
た場合はZnS薄膜にCuを3.0原子%含有させた9
0nmの厚さの誘電体層2を得、その他は実施例1と全
く同じ構成でCu含有量の異なる誘電体層2を有する光
磁気記録媒体を作成した。Cu3.0原子%を含むZn
S誘電体層の場合、 P 116pt+  Pl+はと
もに5.5m Wと十分低い値となり、また再生CN比
もディジタル記録に必要な45dBを大きく上回る52
dBが得られた。
Example 3: This is an example in which ZnS added with Cu was used as the dielectric layer 2. In the same method as described in Example 1, when a ZnS sintering target in which a Cu piece with a size of l mm Contained 9%
A dielectric layer 2 having a thickness of 0 nm was obtained, and a magneto-optical recording medium having the dielectric layer 2 having a different Cu content was produced with the other configuration being exactly the same as in Example 1. Zn containing 3.0 atomic% of Cu
In the case of the S dielectric layer, P116pt+Pl+ are both sufficiently low values of 5.5 mW, and the reproduction CN ratio is also much higher than the 45 dB required for digital recording52
dB was obtained.

しかし、Cu11.5原子%を含むZnS誘電体層を有
するものでは P、。pL+Piはともに5. Qm 
Wと余り変わらないが、再生CN比は43dBとなり4
5dBを下回る。第4図にCu含有量と再生CN比、 
 Pvopt+Ptとの関係をそれぞれ線41.42.
43で示す。ZnS誘電体層2に含有される[Uの量が
0.2原子%を超えるあたりから PWllpL+PI
+が低下しはじめ、10.0原子%を超えると再生CN
比が45dB以下に劣化する。特にCu含有量が1.0
〜6.0原子%の範囲では、再生CN比が51〜52d
B、 P、、、t、  Pgは5.5〜6、Q+n W
とほぼ均一な特性が実現できる。
However, in one with a ZnS dielectric layer containing 11.5 at.% of Cu, P. Both pL+Pi are 5. Qm
Although it is not much different from W, the reproduction CN ratio is 43 dB, which is 4
Less than 5dB. Figure 4 shows Cu content and recycled CN ratio.
The relationship with Pvopt+Pt is shown by lines 41, 42, respectively.
43. From the point where the amount of U contained in the ZnS dielectric layer 2 exceeds 0.2 at% PWllpL+PI
When + starts to decrease and exceeds 10.0 atomic%, regenerated CN
The ratio deteriorates to 45 dB or less. Especially when the Cu content is 1.0
In the range of ~6.0 at%, the regenerated CN ratio is 51~52d
B, P, , t, Pg is 5.5 to 6, Q+n W
Almost uniform characteristics can be achieved.

実施例4: 誘電体N2として1Gを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、T1片の
代わりにl mm x l mm X4(1mmの寸法
の1G片を埋め込んだZnS焼結ターゲットを用いた場
合はZnS薄膜にInを2.5原子%含有させた9Qr
++nの厚さの誘電体層2を得、その他は実施例1と全
く同じ構成でIn含有量の異なる誘電体層2を有する光
磁気記録媒体を作成した。In2.5原子%を含むZn
S誘電体層の場合、 P wgptl  pHはともに
5.5mWと十分低い値となり、また再生CN比もディ
ジタル記録に必要な45dBを大きく上回る52dBが
得られた。しかし、In11.5原子%を含むlnS誘
電体層を存するものでは P、。、い Pwはともに5
. Qm Wと余り変わらないが、再生CN比は42.
8dBとなり45dBを下回る。第5図にIn含有量と
再生CN比、Pw。、。
Example 4: This is an example using ZnS doped with 1G as the dielectric N2. In the same manner as described in Example 1, when using a ZnS sintering target in which a 1G piece of 1 mm x 1 mm size was embedded instead of a T1 piece, 2.5 mm of In was added to the ZnS thin film. 9Qr containing 5 at%
A dielectric layer 2 having a thickness of ++n was obtained, and a magneto-optical recording medium having the same structure as in Example 1 except for the dielectric layer 2 having a different In content was produced. Zn containing 2.5 atomic% In
In the case of the S dielectric layer, both P, wgptl, and pH were sufficiently low values of 5.5 mW, and a reproduction CN ratio of 52 dB, which far exceeded the 45 dB required for digital recording, was obtained. However, in those with an lnS dielectric layer containing 11.5 at.% of InP,. , Pw are both 5
.. Although it is not much different from Qm W, the reproduction CN ratio is 42.
8dB, which is less than 45dB. Figure 5 shows the In content, regenerated CN ratio, and Pw. ,.

P、とめ関係をそれぞれ線51.52.53で示す。Z
nS透電体層2に含有されるInの量が0.2原子%を
超えるあたりから P、。PL+  plが低下しはじ
め、10.0原子%を超えると再生CN比が45dB以
下に劣化する。特にIn含を量が1.0〜6.0原子%
の範囲では、再生CN比が51〜52dB、 Pwep
イP、は5.5〜5、 Qm Wとほぼ均一な特性が実
現できる。
P, the stop relationship is shown by lines 51, 52, and 53, respectively. Z
When the amount of In contained in the nS conductive layer 2 exceeds 0.2 atomic %, P. When PL+ pl begins to decrease and exceeds 10.0 atomic %, the reproduced CN ratio deteriorates to 45 dB or less. In particular, the amount of In content is 1.0 to 6.0 at%
In the range of , the reproduction CN ratio is 51-52 dB, Pwep
P is 5.5 to 5, Qm W, and almost uniform characteristics can be achieved.

実施例5: 誘電体層2としてSnを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、Ti片の
代わりにl+nm X l mm X4Qmmの寸法の
Sn片を埋め込んだZnS焼結ターゲットを用いた場合
はIns薄膜に3nを3.0原子%含有させた90nm
の厚さの誘電体層2を得、その他は実施例1と全く同じ
構成でSn含有量の異なる誘電体層2を有する光磁気記
録媒体を作成した。Sn3. Q原子%を含む2nS誘
電体層の場合、 P、。、い PEはともに5.5+n
 Wと十分低い値となり、また再生CN比もディジタル
記録に必要な45dBを大きく上回る52.4dBが得
られた。
Example 5: This is an example in which ZnS added with Sn was used as the dielectric layer 2. In the same method as described in Example 1, when using a ZnS sintered target in which Sn pieces with dimensions of 1+nm x 1 mm x 4Qmm were embedded instead of Ti pieces, 3.0 atomic % of 3n was added to the Ins thin film. 90nm contained
A magneto-optical recording medium having a dielectric layer 2 having a thickness of 1,000,000 yen and a dielectric layer 2 having a different Sn content with the same structure as in Example 1 was otherwise produced. Sn3. For a 2nS dielectric layer containing Q atomic %, P,. , PE is both 5.5+n
W, a sufficiently low value, and a reproduction CN ratio of 52.4 dB, which far exceeds the 45 dB required for digital recording.

しかし、5n11.Q原子%を含むZnS 誘電体層を
有するものでは P、。8.P9はともに5.0+n 
Wと余り変わらないが、再生CN比は40dBとなり4
5dBを下回る。第6図にSn含有量と再生CN比、P
w。2.。
However, 5n11. In those with a ZnS dielectric layer containing Q atomic % P,. 8. Both P9 are 5.0+n
Although it is not much different from W, the reproduction CN ratio is 40 dB, which is 4
Less than 5dB. Figure 6 shows the Sn content and regenerated CN ratio, P
lol. 2. .

P、との関係をそれぞれ線61.62.63で示す。Z
nS誘電体層2に含有されるSnの量が0.2原子%を
超えるあたりから P w+l+PL+  PEが低下
しはじめ、10.0原子%を超えると再生CN比が45
dB以下に劣化する。特にSn含有量が1.0〜6.0
原子%の範囲では、再生CN比が51〜52dBSP、
0pc、  Piは5.5〜6、 Qm Wとほぼ均一
な特性が実現できる。
The relationships with P, are shown by lines 61, 62, and 63, respectively. Z
When the amount of Sn contained in the nS dielectric layer 2 exceeds 0.2 at%, P w + l + PL + PE begins to decrease, and when it exceeds 10.0 at%, the regenerated CN ratio becomes 45
It deteriorates below dB. Especially when the Sn content is 1.0 to 6.0
In the atomic% range, the reproduction CN ratio is 51-52 dBSP,
0pc, Pi 5.5 to 6, QmW, and almost uniform characteristics can be achieved.

実施例6: 誘電体層2としてptを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、Ti片の
代わりにl mm x l m+n x4Q+nmの寸
法のPt片を埋め込んだZnS焼結ターゲットを用いた
場合はZnS薄膜にptを2.5原子%含有させた9Q
nmの厚さの誘電体層2を得、その他は実施例1と全く
同じ構成でpt含有量の異なる誘電体層2を有する光磁
気記録媒体を作成した。Pt2.5原子%を含むZnS
誘電体層の場合、 pwopLは6.OmW、  PI
は5.5m Wと十分低い−となり、また再生CN比も
ディジタル記録に必要な45dBを大きく上回る52d
Bが得られた。
Example 6: This is an example in which ZnS doped with pt was used as the dielectric layer 2. In the same method as described in Example 1, when using a ZnS sintering target in which Pt pieces with dimensions of l mm x l m + n x 4 Q + nm were embedded instead of Ti pieces, 2.5 atoms of pt were added to the ZnS thin film. 9Q containing %
A dielectric layer 2 with a thickness of nm was obtained, and a magneto-optical recording medium having the dielectric layer 2 having a different pt content was produced with the other configuration being exactly the same as in Example 1. ZnS containing 2.5 at.% of Pt
For dielectric layer, pwopL is 6. OmW, P.I.
is sufficiently low at 5.5 mW, and the playback CN ratio is 52 dB, which far exceeds the 45 dB required for digital recording.
B was obtained.

しかし、Pt11. O原子%を含むZnS誘電体層を
存するものでは PwOP’は5.OmW、P敢は4.
5m Wと余り変わらないが、再生CN比は42dBと
なり45dBを下回る。第7図にPt含有量と再生CN
比、Pw。pu。
However, Pt11. In the case where a ZnS dielectric layer containing O atomic % is present, PwOP' is 5. OmW, P is 4.
Although it is not much different from 5 mW, the reproduction CN ratio is 42 dB, which is less than 45 dB. Figure 7 shows Pt content and recycled CN.
ratio, Pw. pu.

P、との関係をそれぞれ線71.72.73で示す。Z
nS誘電体層2に含有されるptの量が0.2原子%を
超えるあたりから P、。pt+Piが低下しはじめ、
10.0原子%を超えると再生CN比が45dB以下に
劣化する。特にPt含有量が1.0〜6.0原子%の範
囲では、再生CN比が51〜52dB、 P、、、、、
  Piは5.5〜6.0IIIWとほぼ均一な特性が
実現できる。
The relationships with P, are shown by lines 71, 72, and 73, respectively. Z
When the amount of pt contained in the nS dielectric layer 2 exceeds 0.2 atomic %, P. pt+Pi begins to decrease,
If it exceeds 10.0 atomic %, the reproduced CN ratio deteriorates to 45 dB or less. In particular, when the Pt content is in the range of 1.0 to 6.0 at%, the reproduction CN ratio is 51 to 52 dB, P...
Pi has substantially uniform characteristics of 5.5 to 6.0IIIW.

実施例7: 誘電体層2としてSmを添加したZnSを用いた実施例
である。実施例1で述べたのと同様な方法で、T1片の
代わりに1mm X l mm x4Qmmの寸法の軸
片を埋め込んだZnS焼結ターゲットを用いた場合はZ
nS薄膜にSmを3.5原子%含有させた90nmの厚
さの誘電体層2を得、その他は実施例1と全く同じ構成
でSm含有量の異なる誘電体層2を有する光磁気記録媒
体を作成した。Sm3.5原子%を含むZnS誘電体層
の場合、 P、。、い P2はともに4.5m Wと十
分低い値となり、また再生CN比もディジタル記録に必
要な456eを大きく上回る50dBが得られた。しか
し、Sm11.O原子%を含むZnS誘電体層を有する
ものでは P、。pt+Piはともに4.Qm Wと余
り変わらないが、再生CN比は40dBとなり45dB
を下回る。
Example 7: This is an example in which ZnS doped with Sm was used as the dielectric layer 2. In the same method as described in Example 1, when a ZnS sintered target in which a shaft piece with dimensions of 1 mm x l mm x 4 Q mm was embedded instead of the T1 piece was used, Z
Magneto-optical recording medium having a dielectric layer 2 with a thickness of 90 nm in which an nS thin film contains 3.5 at% of Sm, and the dielectric layer 2 has the same structure as in Example 1 except that the dielectric layer 2 has a different Sm content. It was created. For a ZnS dielectric layer containing 3.5 at.% of Sm, P,. , and P2 were both sufficiently low values of 4.5 mW, and a reproduction CN ratio of 50 dB, which far exceeds the 456e required for digital recording, was obtained. However, Sm11. For those with a ZnS dielectric layer containing atomic percent O, P. Both pt+Pi are 4. Qm It is not much different from W, but the reproduction CN ratio is 40dB and 45dB.
below.

第8図にSm含有量と再生CN比、Pw。20.Ptと
の関係をそれぞれ線81.82.83で示す。ZnS誘
電体層2に含有されるSmの量が0.3原子%を超える
あたりからP、。Pt+Piが低下しはじめ、7.5原
子%を超えると再生CN比が45dB以下に劣化する。
Figure 8 shows the Sm content, regenerated CN ratio, and Pw. 20. The relationship with Pt is shown by lines 81, 82, and 83, respectively. When the amount of Sm contained in the ZnS dielectric layer 2 exceeds 0.3 atomic %, P. When Pt+Pi begins to decrease and exceeds 7.5 atomic %, the reproduction CN ratio deteriorates to 45 dB or less.

特に軸合有量が1.5〜6.0原子%の範囲では、再生
CN比が49〜50dB 、  P−0pt 、  P
 *は4.0〜5. Qm Wとほぼ均一な特性が実現
できる。
In particular, when the axial content is in the range of 1.5 to 6.0 at%, the reproduction CN ratio is 49 to 50 dB, P-0pt, P
* is 4.0-5. Qm W and almost uniform characteristics can be achieved.

〔発明の効果〕〔Effect of the invention〕

垂直磁化膜を磁性薄膜とする光磁気記録媒体において、
基板と磁性薄膜との間に誘電体層としてZnS膜にTi
、 Cr、 Cu、  In、 Sn、 Pt、釦のう
ちのいずれが1つを含有させることにより、信号再生時
の再生CN比が十分大きく、かつ記録感度、消去特性に
すぐれた光磁気記録媒体が得られ、ディスク回転数を上
げても半導体レーザの照射による記録および消去が可能
になった。
In a magneto-optical recording medium in which a perpendicularly magnetized film is a magnetic thin film,
Ti is added to the ZnS film as a dielectric layer between the substrate and the magnetic thin film.
By containing one of , Cr, Cu, In, Sn, Pt, and button, a magneto-optical recording medium with a sufficiently large reproduction CN ratio during signal reproduction and excellent recording sensitivity and erasing characteristics can be obtained. As a result, recording and erasing by semiconductor laser irradiation became possible even when the disk rotational speed was increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光磁気記録媒体の断面構造
図、第2図、第3図、第4図、第5図。 第6図、第7図、第8図はそれぞれZnS膜中のTI。 Cr、 Cu、 In、 Sn、 Pt、 Smの含有
量と再生CN比。 最適記録レーデパワー、消去レーザパワーとの関係線図
である。 1 基板、2・誘電体層、3 磁性薄膜、4第 図 T1含有量(原子%) 第 図 C「含有量(原子%) 第 図 Cu含有量(原子%) 第 図 In含有量(原子%) 第 図 Sn含有量(yA子%) 第 図 pt含有量(f!A子%) 第 図 Sm含有量(原子%) 第8図
FIG. 1 is a cross-sectional structural diagram of a magneto-optical recording medium according to an embodiment of the present invention, and FIGS. 2, 3, 4, and 5. FIGS. 6, 7, and 8 show TI in a ZnS film, respectively. Contents of Cr, Cu, In, Sn, Pt, and Sm and regenerated CN ratio. FIG. 3 is a relationship diagram between optimum recording laser power and erasing laser power. 1 Substrate, 2 Dielectric layer, 3 Magnetic thin film, 4 Figure T1 content (atomic %) Figure C content (atomic %) Figure Cu content (atomic %) Figure In content (atomic %) ) Fig. Sn content (yA%) Fig. PT content (f!A%) Fig. Sm content (atomic%) Fig. 8

Claims (1)

【特許請求の範囲】[Claims] 1)基板上に誘電体層を介して基板面に垂直方向に磁化
容易軸を有する磁性薄膜を備えたものにおいて、前記誘
電体層がチタン、クロム、銅、インジウム、すず、白金
、サマリウムのうちのいずれか1つを含む硫化亜鉛膜で
あることを特徴とする光磁気記録媒体。
1) A magnetic thin film having an axis of easy magnetization perpendicular to the substrate surface on a substrate via a dielectric layer, in which the dielectric layer is made of titanium, chromium, copper, indium, tin, platinum, or samarium. A magneto-optical recording medium characterized by being a zinc sulfide film containing any one of the following.
JP8527089A 1988-07-04 1989-04-04 Magneto-optical recording medium Pending JPH02126444A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8527089A JPH02126444A (en) 1988-07-04 1989-04-04 Magneto-optical recording medium
NL8901688A NL8901688A (en) 1988-07-04 1989-07-03 MAGNETO-OPTICAL STORAGE MEDIUM.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16660588 1988-07-04
JP63-166605 1988-07-04
JP8527089A JPH02126444A (en) 1988-07-04 1989-04-04 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH02126444A true JPH02126444A (en) 1990-05-15

Family

ID=26426285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8527089A Pending JPH02126444A (en) 1988-07-04 1989-04-04 Magneto-optical recording medium

Country Status (2)

Country Link
JP (1) JPH02126444A (en)
NL (1) NL8901688A (en)

Also Published As

Publication number Publication date
NL8901688A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
JPH0467263B2 (en)
US4777082A (en) Optical magnetic recording medium
JPH02126444A (en) Magneto-optical recording medium
EP0475452B1 (en) Use of a quasi-amorphous or amorphous zirconia dielectric layer for optical or magneto-optic data storage media
JPS6314342A (en) Magneto-optical recording medium
JPH02126445A (en) Magneto-optical recording medium
JP2957260B2 (en) Magneto-optical recording medium
JPH02265043A (en) Magneto-optical recording medium
KR940007286B1 (en) Optical-magnetic medium
JP2550698B2 (en) Magneto-optical recording medium
KR100587257B1 (en) magneto-optical disk and method for fabricating the same
JPS6332748A (en) Information recording medium
EP0310392B1 (en) Magneto-optic memory medium
JP2932687B2 (en) Magneto-optical recording medium
EP0316803A2 (en) Magneto-optical recording medium
KR930004332B1 (en) Optical magnetic recording material
KR930004331B1 (en) Optical magnetic recording materials
JP3237977B2 (en) Magneto-optical recording medium
JPH01118244A (en) Magneto-optical recording film
JPH0249240A (en) Magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPS623449A (en) Optical magnetic recording media
JPH08315435A (en) Magneto-optical recording medium
JPH07114034B2 (en) Magneto-optical recording medium