JPH0249240A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0249240A
JPH0249240A JP1916189A JP1916189A JPH0249240A JP H0249240 A JPH0249240 A JP H0249240A JP 1916189 A JP1916189 A JP 1916189A JP 1916189 A JP1916189 A JP 1916189A JP H0249240 A JPH0249240 A JP H0249240A
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
ratio
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1916189A
Other languages
Japanese (ja)
Inventor
Noriyuki Iwamuro
憲幸 岩室
Keiji Okubo
大久保 恵司
Takafumi Fumoto
麓 孝文
Hisashi Yamazaki
山崎 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to DE3907877A priority Critical patent/DE3907877A1/en
Priority to NL8900583A priority patent/NL8900583A/en
Publication of JPH0249240A publication Critical patent/JPH0249240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve sensitivity without deteriorating reproduction CN ratio by specifying the compsn. of a thin magnetic film having the axis of easy magnetization in the direction perpendicular to the film plane. CONSTITUTION:The compsn. of the thin magnetic film having the axis of easy magnetization in the direction perpendicular to the film plane is composed to have the general formula >>Rx(Fe1-uCou)1-x]1-yCuy, where R is >=1 kinds of heavy rare earth elements the atomic weight of which is Gd or above; x is 0.23<=x<=0.36, Y is 0.1<=y<=0.3; U is zero<=u<=100, and 0.06<=u(1-x)(1-y)<=0.12. The (x) of the thin magnetic film material is specified to 0.23<=x<=0.36, by which the reproduction CN ratio is sufficiently increased. The recording sensitivity is improved without deteriorating the reproducing CN by confining y to 0.1<=y<=0.3. The CN is deteriorated if u(1-x)(1-y) is below 0.06 and the recording density is deteriorated if this value exceeds 0.12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光を用い光熱磁気的に情報を記録し、
記録された磁気的情報を磁気光学効果を利用して読み出
す光磁気記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention records information photothermomagnetically using laser light,
The present invention relates to a magneto-optical recording medium in which recorded magnetic information is read using the magneto-optic effect.

〔従来の技術〕[Conventional technology]

近年、書き換え可能な光磁気メモリの実用化が有望視さ
れている。この光磁気メモリに使用する光磁気記録媒体
は、ディスク面に対して垂直方向に磁化容易軸を有する
垂直磁化薄膜を、ガラス。
In recent years, the practical application of rewritable magneto-optical memory has been viewed as promising. The magneto-optical recording medium used in this magneto-optical memory is made of glass with a perpendicularly magnetized thin film having an axis of easy magnetization perpendicular to the disk surface.

樹脂等の基板上に形成したもので、情報の記録は、上記
磁性薄膜へのレーデ光による熱磁気書き込みにより行い
、記録情報の再生は磁気光学極力−(にerr)効果に
より、磁化の向きを検出することで行う。このような記
録媒体用の磁性薄膜材料としてTb −Fe −Co−
Cu系のものは特開昭60−231306号公報で公知
である。
It is formed on a substrate such as a resin. Information is recorded by thermomagnetic writing using Raded light on the magnetic thin film, and the recorded information is reproduced by changing the direction of magnetization using the magneto-optical toleration (err) effect. This is done by detecting. As a magnetic thin film material for such recording media, Tb -Fe -Co-
A Cu-based material is known from JP-A-60-231306.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、垂直磁化薄膜として現在用いられている磁性
薄膜のカー回転角θ、は0.3〜0.4°であり、再生
光の記録ビットによる変調度は1%程度と小さく、再生
時の読み出しCN比が十分でないことが問題となる。
However, the Kerr rotation angle θ of the magnetic thin film currently used as a perpendicularly magnetized thin film is 0.3 to 0.4°, and the degree of modulation of the reproducing light by the recording bit is as small as about 1%, making it difficult to read during reproduction. The problem is that the CN ratio is not sufficient.

そこで、磁性薄膜と基板の間に513N4.3iQ等の
誘電体膜を配置し、記録媒体の反射率を低くした時見か
け上カー回転角が増大することを利用してCN比を向上
させる方法が提案されている1゜一方、光磁気記録媒体
への情報の記録は半導体レーザを用いて行うが、情報の
転送速度を増加させるためにディスク回転数を上昇させ
ると、記録媒体上への一点に照射されるレーザビームの
照射時間が短くなり、半導体レーザでは記録媒体温度が
記録の動作点、すなわちキュリー温度まで上がらなくデ
ータ転送速度が遅いという欠点をもっている。
Therefore, there is a method to improve the CN ratio by placing a dielectric film such as 513N4.3iQ between the magnetic thin film and the substrate and taking advantage of the apparent increase in the Kerr rotation angle when the reflectance of the recording medium is lowered. Proposed 1° On the other hand, information is recorded on a magneto-optical recording medium using a semiconductor laser, but when the disk rotation speed is increased to increase the information transfer speed, the information is recorded at a single point on the recording medium. The irradiation time of the laser beam is shortened, and semiconductor lasers have disadvantages in that the temperature of the recording medium does not rise to the recording operating point, that is, the Curie temperature, and the data transfer rate is slow.

本発明の課題は、上記の問題に鑑み、情報記録再生時の
再生CN比を劣化させることなく、記録感度が向上して
高速回転しても半導体レーザで十分記録可能な光磁気記
録媒体を提供することにある。
In view of the above-mentioned problems, it is an object of the present invention to provide a magneto-optical recording medium that has improved recording sensitivity and can be sufficiently recorded with a semiconductor laser even at high speed rotation without deteriorating the reproduction CN ratio during information recording and reproduction. It's about doing.

〔課題を解決するだめの手段〕[Failure to solve the problem]

」二記の課題の解決のために、膜面に垂直方向に磁化容
易軸を有する磁性薄膜の組成が(Rx(FeucOu)
 l−X ) +−yCu、の一般式をもち、RはGd
以上の原子量をもつ重稀土類元素の1種以上であり、X
は0.23≦x≦0.36、yは0.1≦y≦0.3、
Uは0≦u≦100、かつu(1,−x)(1 −y)
は0.06≦u(1−x)(1−y)≦0.12の範囲
にそれぞれあるものとする。
In order to solve the second problem, the composition of the magnetic thin film with the axis of easy magnetization perpendicular to the film surface is (Rx (FeucOu)
l-X) +-yCu, R is Gd
one or more heavy rare earth elements having an atomic weight of
is 0.23≦x≦0.36, y is 0.1≦y≦0.3,
U is 0≦u≦100, and u(1,-x)(1-y)
are in the range of 0.06≦u(1-x)(1-y)≦0.12, respectively.

あるいは、膜面に垂直方向に磁化容易軸を有するRFe
Coの第1磁性薄膜と、RFeCoCuの第2磁性薄膜
との複数層の磁性層からなり、該RはGd以上の原子量
をもつ重稀土類元素の1種以上であるものとする。
Alternatively, RFe has an easy axis of magnetization perpendicular to the film surface.
It consists of a plurality of magnetic layers including a first magnetic thin film of Co and a second magnetic thin film of RFeCoCu, and R is one or more heavy rare earth elements having an atomic weight of Gd or more.

〔作用〕[Effect]

組成が[:RX(Fe1−1.C0u)+−X:l 1
−yCuyの一般式をもつ公知の磁性薄膜材料のXを0
.23≦x≦0.36にすることにより再生CN比が十
分大きくなり、yを0.1≦y≦0.3にすることによ
り再生CN比を劣化させることなく記録感度を向上させ
ることができる。またFeとCoはその比率をどのよう
に変えてもよいが、u(1−x)(1−y)が0.06
未満のときにはCN比が劣化し、0.12を超える場合
はCuの添加効果がなくなり、記録感度が劣化する。
The composition is [:RX(Fe1-1.C0u)+-X:l 1
-x of a known magnetic thin film material with the general formula of yCuy is 0
.. By setting 23≦x≦0.36, the reproduction CN ratio becomes sufficiently large, and by setting y to 0.1≦y≦0.3, the recording sensitivity can be improved without deteriorating the reproduction CN ratio. . Also, the ratio of Fe and Co can be changed in any way, but if u(1-x)(1-y) is 0.06
When it is less than 0.12, the CN ratio deteriorates, and when it exceeds 0.12, the effect of adding Cu disappears and recording sensitivity deteriorates.

さらに、前記磁性薄膜材料よりキュリー温度Tcが高く
、かつ保磁力Hcの比較的小さいRFeC。
Furthermore, RFeC has a higher Curie temperature Tc and a relatively smaller coercive force Hc than the magnetic thin film material.

磁性薄膜を付加することにより前記磁性薄膜に低いレー
ザパワーで記録された記録磁区が交換結合力によりRF
eCo磁性薄膜に転写されるので、記録感度を劣化させ
ることなく再生CN比をさらに向上させることができる
By adding a magnetic thin film, the recording magnetic domain recorded on the magnetic thin film with low laser power becomes RF due to exchange coupling force.
Since it is transferred to the eCo magnetic thin film, the reproduction CN ratio can be further improved without deteriorating the recording sensitivity.

〔実施例〕〔Example〕

第2図は、本発明により作成される光磁気記録媒体の構
成断面図で、一実施例ではポリカーボネート(PC)か
らなる5、25インチ径の透明基板1にSiO誘電体層
2を積層し、その上にTb−Fe −C。
FIG. 2 is a cross-sectional view of the configuration of a magneto-optical recording medium produced according to the present invention. In one embodiment, a SiO dielectric layer 2 is laminated on a transparent substrate 1 made of polycarbonate (PC) with a diameter of 5.25 inches. On top of that is Tb-Fe-C.

Cu合金からなる金属非晶質磁性薄膜3を形成し、さら
に誘電体膜からなる保護層4によって被覆したものであ
る。基板1の材料としては、PCに限らず、ガラス、樹
脂なども使用できる。
A metal amorphous magnetic thin film 3 made of a Cu alloy is formed and further covered with a protective layer 4 made of a dielectric film. The material for the substrate 1 is not limited to PC, but also glass, resin, etc. can be used.

本発明の一実施例の光磁気記録媒体としては、まず十分
脱ガスを行ったPC基板1上にアルゴンガス圧06Pa
、 スパッタリングパワー300Wの条件のRFマグネ
トロンスパッタリング法により誘電体層2を90nmの
厚さに形成したのち、Tb2sFegsC06合金ター
ゲットに l mm X 1 mm X40mmの寸法
の銅片を埋め込んだ複合ターゲットを用い、スパッタリ
ング装置の真空を破らずにアルゴンガス圧4. OPa
 、スパッタリングパワー300Wの条件のDCマグネ
トロンスパッタリング法でI:Tbo、 s + 3(
Feo162COO,+3s) o、 s、、〕o−t
3scuo、 284の組成を有するTb −Fe −
Co−Cu合金からなる磁性薄膜3を70nmの厚さに
形成した。さらに、その上に保護層4として誘電体層2
と同じ膜を同じ条件のRFマグネトロンスパッタリング
法で1001mの厚さに成膜した。このようにして製作
された光磁気記録媒体の最適記録レーザパワーPl’1
optおよび信号再生時のCN比を測定したところ、 
PWOPtは6.0mWと十分低い値となり、再生CN
比もディジタル記録に必要な45dBを大きく上まわる
49.4dBが得られた。同様にしてTb23Fess
Cos合金ターゲットに埋め込むCu片の数を変えるこ
とにより、(Tbo、 ag(Feo、 e2scOo
、 + 72) 0. ass 〕o、 5saCuo
−362の組成を有する磁性薄膜3を備えた光磁気記録
媒体ではp w o p tが3.5mWと向上したが
、再生CN比は36.5dBと約12dB低下した。
As a magneto-optical recording medium according to an embodiment of the present invention, first, an argon gas pressure of 06 Pa is applied onto a sufficiently degassed PC board 1.
After forming the dielectric layer 2 to a thickness of 90 nm by RF magnetron sputtering with a sputtering power of 300 W, sputtering was performed using a composite target in which copper pieces with dimensions of 1 mm x 1 mm x 40 mm were embedded in a Tb2sFegsC06 alloy target. 4. Argon gas pressure without breaking the vacuum of the device. OPa
, I:Tbo, s + 3(
Feo162COO, +3s) o, s,,]o-t
Tb-Fe- with a composition of 3scuo, 284
A magnetic thin film 3 made of a Co-Cu alloy was formed to a thickness of 70 nm. Further, a dielectric layer 2 is added thereon as a protective layer 4.
The same film was formed to a thickness of 1001 m using the RF magnetron sputtering method under the same conditions. Optimum recording laser power Pl'1 of the magneto-optical recording medium produced in this way
When I measured the CN ratio during opt and signal reproduction,
PWOPt is a sufficiently low value of 6.0mW, and the reproduction CN
The ratio was also 49.4 dB, which is much higher than the 45 dB required for digital recording. Similarly, Tb23Fess
By changing the number of Cu pieces embedded in the Cos alloy target, (Tbo, ag(Feo, e2scOo
, +72) 0. ass ] o, 5saCuo
In the magneto-optical recording medium provided with the magnetic thin film 3 having a composition of -362, the p w op t improved to 3.5 mW, but the reproduction CN ratio decreased by about 12 dB to 36.5 dB.

このような方法でCu含有量の異なる磁性薄膜およびC
u片を埋め込まないTb、、Fe、、[:0.の組成を
もつ磁性薄膜をもつ光磁気記録媒体を作成し、PWOP
Lおよび再生CN比を測定した結果が第1図で、PWQ
PLを線11により、CN比を線12により示している
。この図からCuの量が10.0原子%を超えるあたり
からPWoptが低下しはじめて感度が向上し、30.
0原子%を超えると再生CN比が45d8以下に劣化す
る。特にCu含有量が18.0〜28.0原子%の範囲
では再生CN比48〜50dB、  Pwopt6.0
〜7.0mWとほぼ均一で良好な特性が実現できた。
With this method, magnetic thin films with different Cu contents and C
Tb, , Fe, , [:0. A magneto-optical recording medium with a magnetic thin film having a composition of
Figure 1 shows the results of measuring L and regenerated CN ratio.
PL is shown by line 11, and CN ratio is shown by line 12. This figure shows that when the amount of Cu exceeds 10.0 atomic %, PWopt begins to decrease and sensitivity improves.
If it exceeds 0 atomic %, the reproduction CN ratio will deteriorate to 45d8 or less. In particular, when the Cu content is in the range of 18.0 to 28.0 at%, the reproduction CN ratio is 48 to 50 dB, and the Pwopt is 6.0.
Approximately uniform and good characteristics of ~7.0 mW were achieved.

次に、第2図の構成をもち上述と同様のスパックリング
条件でターゲットの組成を変えて〔Tb++、 2G 
(Feo、6cOo、 + 4)O,so ) o−t
zscuo、 264の組成を有する磁性薄膜を形成し
た。この磁性薄膜を有する光磁気記録媒体のPWOPL
は5.5mWで、第1図に示した実施例の同じCu含有
量のものよりQ、 5ml+低下しているが、再生CN
比は43.0dBで6.4dB劣化した。同様にしてT
b組成の異なる磁性薄膜を形成して測定した結果が第3
図で、P W、Op tを線31により、CN比を線3
2により示している。この図より[Tbx(FeCo)
 l−X 〕0.736CLI0.264の磁性薄膜の
組成のXが0.23を超えるあたりから再生CN比が4
5dB以上となり、Xが0.36以上になると再び再生
CN比が45dB以下に劣化する。特に0.25≦x≦
0.32の範囲にあるとき、再生CN比48〜50dB
 、  P wop t640〜6.5mWと最も良好
な記録再生特性が得られた。
Next, using the configuration shown in Figure 2 and changing the composition of the target under the same spuckling conditions as described above [Tb++, 2G
(Feo, 6cOo, + 4)O,so) o-t
A magnetic thin film having a composition of 264 was formed. PWOPL of magneto-optical recording medium having this magnetic thin film
is 5.5 mW, which is Q, 5 ml+ lower than that of the example shown in Fig. 1 with the same Cu content, but the regenerated CN
The ratio was 43.0 dB, which was degraded by 6.4 dB. Similarly, T
b The third result is the measurement results obtained by forming magnetic thin films with different compositions.
In the figure, P W and Op t are expressed by line 31, and CN ratio is expressed by line 3.
2. From this figure, [Tbx(FeCo)
l -
When it becomes 5 dB or more and X becomes 0.36 or more, the reproduction CN ratio deteriorates again to 45 dB or less. Especially 0.25≦x≦
When in the range of 0.32, reproduction CN ratio 48-50dB
, P wop t of 640 to 6.5 mW, and the best recording and reproducing characteristics were obtained.

さらに(Tt++(Fed−、Cou) l−X 〕+
−yCu、なる組成をもつ磁性薄膜合金のx =0.3
1.  Y =0.26のときにUを変化させた場合の
測定結果が第4図で、Pw。1、を線41により、CN
比を線42によりu(1−x)(1−y)に関して示し
ている。この図よりu(1−x)(1−y)が0.06
未満の場合はカー回転角θ8の減少によりCN比が劣化
し、0.06でCN比45dBである。また、u(1−
x>(1−y)が0.12でPWOPtが9.0mWで
あり それを超えるとCuの添加効果がなくなりpWo
ptがさらに増大し、記録感度が劣化する。従って、u
(1−x)(1−y)を0.06から0.12の範囲に
おさめることが必要である。
Furthermore, (Tt++ (Fed-, Cou) l-X ]+
-yCu, x = 0.3 of the magnetic thin film alloy with the composition
1. Figure 4 shows the measurement results when U is changed when Y = 0.26, and Pw. 1, by line 41, CN
The ratio is shown by line 42 for u(1-x)(1-y). From this figure, u(1-x)(1-y) is 0.06
If it is less than 0.06, the CN ratio deteriorates due to a decrease in the Kerr rotation angle θ8, and at 0.06, the CN ratio is 45 dB. Also, u(1-
When x>(1-y) is 0.12, PWOPt is 9.0mW, and beyond that, the effect of adding Cu disappears and pWo
pt further increases, and recording sensitivity deteriorates. Therefore, u
It is necessary to keep (1-x)(1-y) within the range of 0.06 to 0.12.

なお、以上の結果はTb0代わりにGd、 ayなど他
の1稀土類元素を用いた場合、あるいはTbの一部をそ
れらの1稀土類元素で置換して磁性薄膜を形成した記録
媒体においても同様に得られた。
Note that the above results are the same when other rare earth elements such as Gd and ay are used instead of Tb0, or in recording media in which a magnetic thin film is formed by replacing part of Tb with one of these rare earth elements. obtained.

次に第5図は、本発明の他の実施例の光磁気記録媒体の
構成断面図であり、この実施例ではポリカーボネート(
PC)からなる5、25インチ径の透明基板1にSlO
誘電体層2を積層し、その上に高キ、I)−温度、低保
磁力なTb −Fe−Co合金からなる第1の金属非晶
質磁性薄膜5を形成し、その上に低キュリー温度、高保
磁力なTb −Fe −Co−Cu合金からなる第2の
金属非晶質磁性薄膜3を形成し、さらに誘電体膜からな
る保護層4によって被覆したものである。基板1の材料
としては、PCに限らず、アクリル、エポキシ等の樹脂
、ガラスなども使用できる。
Next, FIG. 5 is a cross-sectional view of the configuration of a magneto-optical recording medium according to another embodiment of the present invention, and in this embodiment, polycarbonate (
A transparent substrate 1 with a diameter of 5.25 inches made of PC) is coated with SlO
A dielectric layer 2 is laminated, and a first metal amorphous magnetic thin film 5 made of a Tb-Fe-Co alloy having a high temperature and a low coercive force is formed thereon. A second metal amorphous magnetic thin film 3 made of a Tb-Fe-Co-Cu alloy having high temperature and high coercive force is formed, and is further covered with a protective layer 4 made of a dielectric film. The material for the substrate 1 is not limited to PC, but resins such as acrylic and epoxy, glass, etc. can also be used.

本発明の他の実施3例の光磁気記録媒体としては、まず
十分脱ガスを行ったPC基板l上にアルゴンガス圧0.
6Pa 、スパッタリングパワー300Wの条件のRF
マグネトロンスパッタリング法により誘電体層2を9Q
nmの厚さに形成したのち、TbFeCo合金ターゲッ
トを用い、スパッタリング装置の真空を破うずにアルゴ
ンガス圧2. OPa 、  スパッタリングパワー3
00Wの条件のDCマグネトロンスパッタリング法でT
tlo、 1sFeQ、 73co0.12の組成を有
する第1の磁性薄膜5を50nmの厚さに形成した。続
いて同じ条件でTbFeC0合金ターゲットに銅片を埋
め込んだ複合ターゲットを用い、Tbo、 20pe0
.4?COO,osCuo、zsの組成を有する第2の
磁性薄膜3を50nmの厚さに形成した。さらに、その
上に保護層4として誘電体層2と同じ膜を同じ条件のR
Fマグネトロンスパッタリング法で1100nの厚さに
成膜した。このようにして製作された光磁気記録媒体の
最適記録レーザパワーpwopt (媒体の回転数18
0Orpm、記録信号の周波数1.88&lHz、 d
uty50%。
As for the magneto-optical recording medium of the other three embodiments of the present invention, first, the argon gas pressure is set to 0.
RF condition of 6Pa, sputtering power 300W
Dielectric layer 2 is 9Q formed by magnetron sputtering method.
After forming the film to a thickness of 2.0 nm, using a TbFeCo alloy target, the argon gas pressure was increased to 2.0 nm without breaking the vacuum of the sputtering apparatus. OPa, sputtering power 3
T by DC magnetron sputtering method under 00W condition.
A first magnetic thin film 5 having a composition of tlo, 1sFeQ, 73co0.12 was formed to a thickness of 50 nm. Next, under the same conditions, using a composite target in which copper pieces were embedded in a TbFeC0 alloy target, Tbo, 20pe0
.. 4? A second magnetic thin film 3 having a composition of COO, osCuo, and zs was formed to a thickness of 50 nm. Furthermore, the same film as the dielectric layer 2 is applied as a protective layer 4 on top of the protective layer 4 under the same conditions.
A film with a thickness of 1100 nm was formed by F magnetron sputtering. Optimum recording laser power pwopt (medium rotation speed 18
0Orpm, recording signal frequency 1.88 & lHz, d
Uty 50%.

Hex =4000e、  r =30 >および信号
再生時のCN比を測定したところ、 PWOP冒ま4.
5mWと十分低い値となり、再生CN比もディジタル記
録に必要な45dBを大きく上まわる56.3dBが得
られた。同様にしてTbFeCo合金ターゲットの組成
を変えることにより、Tbo、 +5Feo、oCOo
−12,Tt)o、 +4Feo、 64CO1)、 
12+Tbo、 5oFeo、 5scOo、 + 2
の組成の第1の磁性薄膜5を有する媒体をそれぞれ作製
した。それぞれの最適記録レーザパワーPw。、tおよ
びCN比を測定したところ、 pwOPLは4.5mW
、 4.釦W、4.5mL CN比は57.1dB、 
56.8dB、 55.4dBが得られた。
Hex = 4000e, r = 30 > and when the CN ratio during signal reproduction was measured, PWOP was affected.4.
The value was 5 mW, which was sufficiently low, and the reproduction CN ratio was 56.3 dB, which was much higher than the 45 dB required for digital recording. By changing the composition of the TbFeCo alloy target in the same way, Tbo, +5Feo, oCOo
-12,Tt)o, +4Feo, 64CO1),
12+Tbo, 5oFeo, 5scOo, +2
A medium having a first magnetic thin film 5 having a composition of 1 was prepared. Each optimum recording laser power Pw. , t and CN ratio were measured, pwOPL was 4.5 mW
, 4. Button W, 4.5mL CN ratio is 57.1dB,
56.8dB and 55.4dB were obtained.

次に比較のため次の3つの媒体を作製した。Next, the following three media were prepared for comparison.

(比較例1) 前記実施例における第1の磁性薄膜5.第2の磁性薄膜
30代わりに、TbzoFet2C08組成の磁性薄膜
単独で膜厚を70nmとし、他の構成は同一の媒体を作
製した。
(Comparative Example 1) First magnetic thin film 5 in the above example. Instead of the second magnetic thin film 30, a magnetic thin film having a composition of TbzoFet2C08 was used alone, and the film thickness was 70 nm, and a medium having the same structure as above was fabricated.

再生CN比、最適記録レーザパワーP w a p t
を測定したところ、 CN比は54.8dB、  Pw
optは6゜OmWが得られた。
Reproduction CN ratio, optimum recording laser power P w a p t
When measured, the CN ratio was 54.8dB, Pw
Opt was obtained at 6°OmW.

(比較例2) 前記実施例における第1の磁性薄膜5.第2の磁性薄膜
3の代わりに、Tb2aFes*CO@Cu+o組成の
磁性薄膜単独で膜厚を70nmとし、他の構成は同一の
媒体を作製した。
(Comparative Example 2) First magnetic thin film 5 in the above example. Instead of the second magnetic thin film 3, a magnetic thin film having a composition of Tb2aFes*CO@Cu+o was used alone, and the film thickness was 70 nm, and a medium with the other configurations the same was fabricated.

CN比は51.9dB、  PWoptは5.5m−が
得られた。
A CN ratio of 51.9 dB and a PWopt of 5.5 m- were obtained.

(比較例3) 前記実施例における第1の磁性薄膜5.第2の磁性薄膜
30代わりに、TtlzoFea7CJICu2s組成
の磁性薄膜単独で膜厚を70nmとし、他の構成は同一
の媒体を作製した。
(Comparative Example 3) First magnetic thin film 5 in the above example. Instead of the second magnetic thin film 30, a magnetic thin film having a composition of TtlzoFea7CJICu2s was used alone, and the film thickness was 70 nm, and the other configurations were the same.

CN比は51.gdB、  Pwoptは4.5+nW
が得られた。
The CN ratio is 51. gdB, Pwopt is 4.5+nW
was gotten.

比較例1では、CN比54.8dBと高いCN比が得ら
れるが、最適記録レーザパワーが6.0+nWと大きい
。ここで、比較例2゜3のようにTbFeCoにCuを
含有させることで、最適記録レーザパワーを4.5mW
まで低減できることがわかる。しかしながら、CN比約
52dBでTbFeCoに比へ2〜3dB低いので、最
適記録レーザパワーを小さく保った上でさらにCN比を
向上させることが望まれる。
In Comparative Example 1, a high CN ratio of 54.8 dB is obtained, but the optimum recording laser power is as large as 6.0+nW. Here, by incorporating Cu into TbFeCo as in Comparative Example 2゜3, the optimum recording laser power was increased to 4.5 mW.
It can be seen that it can be reduced to However, since the CN ratio is about 52 dB, which is 2 to 3 dB lower than that of TbFeCo, it is desirable to further improve the CN ratio while keeping the optimum recording laser power low.

第6図は、Tt12oFe<tcOscUzs組成の第
2の磁性薄膜30条件を固定し、TbFeCo組成の第
1の磁性薄膜5のCo含有量を12原子%一定とし1、
Tb含有Iを変化させた時の再生CN比と最適記録レー
ザパワーとの関係を示したものでありPwoptを線6
1により、CN比を線62により示している。これから
、最適記録レーザパワーは、Tb含有量に係わらず、第
2の磁性薄膜3の記録特性と同じ4.5mWであり、C
N比はTb含有量が15原子%〜30原子%の範囲にお
いて、CN比約55dB以上が得られ、第1.第2の磁
性薄膜5.3を積層構造にしたことにより、最適記録レ
ーザパワーが小さく、かつCN比が高い光磁気記録媒体
が得られることがわかる。
In FIG. 6, the conditions of the second magnetic thin film 30 having a composition of Tt12oFe<tcOscUzs are fixed, and the Co content of the first magnetic thin film 5 having a TbFeCo composition is constant at 12 atomic %1,
This figure shows the relationship between the reproduction CN ratio and the optimum recording laser power when the Tb content I is changed, and Pwopt is expressed as line 6.
1, the CN ratio is indicated by a line 62. From this, it can be seen that the optimum recording laser power is 4.5 mW, which is the same as the recording characteristics of the second magnetic thin film 3, regardless of the Tb content, and C
Regarding the N ratio, a CN ratio of about 55 dB or more was obtained when the Tb content was in the range of 15 at % to 30 at %. It can be seen that by forming the second magnetic thin film 5.3 into a laminated structure, a magneto-optical recording medium with a low optimum recording laser power and a high C/N ratio can be obtained.

これはTcが低いTbFeCoCuからなる第2の磁性
薄膜3に低いレーザパワーで記録された記録磁区が交換
結合力によりTbFeCoからなる第1の磁性薄膜に転
写され、第1の磁性薄膜5のTcが高く、かつθ、も大
きいため再生CN比が向上し、従ってこの構成の媒体は
記録感度及び再生CN比が共に向上するためである。
This is because the recorded magnetic domain recorded with low laser power on the second magnetic thin film 3 made of TbFeCoCu with a low Tc is transferred to the first magnetic thin film made of TbFeCo by exchange coupling force, and the Tc of the first magnetic thin film 5 is This is because the reproduction CN ratio is improved because both the recording sensitivity and the reproduction CN ratio are high, and therefore the recording sensitivity and the reproduction CN ratio of the medium with this configuration are improved.

また、第7図は、第1の磁性薄膜5のTb含有量を19
原子%一定とし、CO含有潰を変化させた時の再生CN
比との関係を示したものでありCN比を線72により示
している。これから再生CN比は、Co含有量が12原
子%を超えるあたりから飽和しはじめ、20原子%程度
で飽和することがわかる。
Further, FIG. 7 shows that the Tb content of the first magnetic thin film 5 is 19
Regenerated CN when the atomic % is constant and the CO content is changed
The line 72 shows the CN ratio. It can be seen from this that the regenerated CN ratio begins to become saturated when the Co content exceeds 12 at % and reaches saturation at about 20 at %.

なお、以上の結、果はTb0代わりにGd、 Dyなど
他の重稀土類元素を用いた場合、あるいはTbの一部を
それらの重稀土類元素で置換して磁性薄膜を形成した記
録媒体においても同様に得られた。
The above results show that when other heavy rare earth elements such as Gd and Dy are used instead of Tb0, or in recording media in which a part of Tb is replaced with these heavy rare earth elements to form a magnetic thin film. was similarly obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光磁気記録媒体の記録薄膜層の垂直磁
化膜の材料としてR−Fe −Co −Cu (ただし
Rは重稀土類元素の1種以上)を用いる場合、組成をC
Rx(Fe+−uCo) l−X ] +−yCuy 
の一般式であられして0.23≦x≦OJ6,0.1≦
y≦0.3.  O≦u≦100.0.06≦u(1−
x)(1−y)≦0.12 の限定を付けることにより
信号再生時の再生CN比がディジタル記録に必要な45
dB以上と十分に大きく、かつ記録感度のすぐれた光磁
気記録媒体を得ることができた。
According to the present invention, when R-Fe-Co-Cu (where R is one or more heavy rare earth elements) is used as the material of the perpendicular magnetization film of the recording thin film layer of a magneto-optical recording medium, the composition is changed to C.
Rx(Fe+-uCo) l-X] +-yCuy
With the general formula, 0.23≦x≦OJ6, 0.1≦
y≦0.3. O≦u≦100.0.06≦u(1-
x)(1-y)≦0.12, the reproduction CN ratio during signal reproduction is 45, which is necessary for digital recording.
It was possible to obtain a magneto-optical recording medium with sufficiently high recording sensitivity of dB or more and excellent recording sensitivity.

さらに、前記磁性薄膜材料よりキュリー温度が高く、保
磁力の小さいRFeCo磁性薄膜を付加することにより
、記録感度を劣化させることなく再生CN比をさらに向
上させることができた。
Furthermore, by adding an RFeCo magnetic thin film having a higher Curie temperature and a smaller coercive force than the magnetic thin film material, it was possible to further improve the reproduction CN ratio without deteriorating the recording sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTb −Fe −Co−Cu合金の磁性薄膜を
もつ光磁気記録媒体における記録および再生特性とCu
含有量との関係線図、第2図は本発明の実施される光磁
気記録媒体の構成断面図、第3図はTb −Fe−Co
−Cu合金の磁性薄膜をもつ記録媒体における記録およ
び再生特性とTb含有量との関係線図、第4図は(Tb
x (Pe+−ucot+) l−X 〕+−ycuy
であられされる合金の磁性薄膜をもつ記録媒体における
記録および再生特性とu(1−x)(1  5’)の値
との関係線図、第5図は本発明の他の実施例の光磁気記
録媒体の構成断面図、第6図はTb−Fe−Co合金の
第1の磁性薄膜をもつ光磁気記録媒体における記録およ
び再生特性とTb含有量との関係線図、第7図は同じく
再生特性とCO含有量との関係線図である。 1 透明基板、2 誘電体層、3,5 磁性薄Tb含有
量X110.736 (原子%)第3図 0υ含有量(原子%)
Figure 1 shows the recording and reproducing characteristics of a magneto-optical recording medium with a magnetic thin film of Tb-Fe-Co-Cu alloy and Cu.
Fig. 2 is a cross-sectional view of the configuration of a magneto-optical recording medium in which the present invention is implemented, Fig. 3 is a diagram showing the relationship between Tb-Fe-Co and Tb-Fe-Co.
- Figure 4 is a diagram showing the relationship between the recording and reproducing characteristics of a recording medium having a magnetic thin film of Cu alloy and the Tb content.
x (Pe+-ucot+) l-X ]+-ycuy
FIG. 5 is a diagram showing the relationship between the recording and reproducing characteristics of a recording medium having a magnetic thin film of an alloy coated with a magnetic thin film and the value of u(1-x)(15'). A cross-sectional view of the configuration of the magnetic recording medium, FIG. 6 is a diagram showing the relationship between recording and reproducing characteristics and Tb content in a magneto-optical recording medium having a first magnetic thin film of Tb-Fe-Co alloy, and FIG. 7 is the same diagram. FIG. 3 is a relationship diagram between regeneration characteristics and CO content. 1 Transparent substrate, 2 Dielectric layer, 3, 5 Magnetic thin Tb content X110.736 (atomic %) Figure 3 0υ content (atomic %)

Claims (1)

【特許請求の範囲】 1)膜面に垂直方向に磁化容易軸を有する磁性薄膜の組
成が〔Rx(Fe_1_−_uCo_u)_1_−_x
〕_1_−_xCu_yの一般式をもち、RはGd以上
の原子量をもつ重稀土類元素の1種以上であり、xは0
.23≦x≦0.36、yは0.1≦y≦0.3、uは
0≦u≦100、かつu(1−x)(1−y)は0.0
6≦u(1−x)(1−y)≦0.12の範囲にそれぞ
れあることを特徴とする光磁気記録媒体。 2)膜面に垂直方向に磁化容易軸を有するRFeCoの
第1磁性薄膜と、RFeCoCuの第2磁性薄膜との複
数層の磁性層からなり、該RはGd以上の原子量をもつ
重稀土類元素の1種以上であることを特徴とする光磁気
記録媒体。
[Claims] 1) The composition of the magnetic thin film having an axis of easy magnetization perpendicular to the film surface is [Rx(Fe_1_−_uCo_u)_1_−_x
]_1_-_xCu_y, R is one or more heavy rare earth elements with an atomic weight of Gd or more, and x is 0
.. 23≦x≦0.36, y is 0.1≦y≦0.3, u is 0≦u≦100, and u(1-x)(1-y) is 0.0
A magneto-optical recording medium characterized in that the values are in the range of 6≦u(1-x)(1-y)≦0.12. 2) Consisting of a plurality of magnetic layers including a first magnetic thin film of RFeCo and a second magnetic thin film of RFeCoCu having an axis of easy magnetization perpendicular to the film surface, R is a heavy rare earth element having an atomic weight of Gd or more. A magneto-optical recording medium characterized by being one or more of the following.
JP1916189A 1988-03-11 1989-01-27 Magneto-optical recording medium Pending JPH0249240A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE3907877A DE3907877A1 (en) 1988-03-11 1989-03-10 Magneto-optical recording material
NL8900583A NL8900583A (en) 1988-03-11 1989-03-10 MAGNETIC-OPTICAL ELEMENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5755888 1988-03-11
JP63-57558 1988-03-11

Publications (1)

Publication Number Publication Date
JPH0249240A true JPH0249240A (en) 1990-02-19

Family

ID=13059150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1916189A Pending JPH0249240A (en) 1988-03-11 1989-01-27 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0249240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679852A (en) * 1992-07-13 1994-03-22 Sanyo Chem Ind Ltd Cleansing for screen printing board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679852A (en) * 1992-07-13 1994-03-22 Sanyo Chem Ind Ltd Cleansing for screen printing board

Similar Documents

Publication Publication Date Title
JPH07244876A (en) Magneto-optic recording medium and magneto-optically recording/reproducing method
KR100308857B1 (en) Magneto-optical recording medium, magneto-optical recording method, and magneto-optical recording apparatus
GB2158281A (en) Optical recording medium
JPH0249240A (en) Magneto-optical recording medium
JPH0550400B2 (en)
JPH0350344B2 (en)
JP3208275B2 (en) Magneto-optical recording medium
EP0524799A2 (en) Magnetooptic recording medium
JP2921794B2 (en) Magneto-optical disk
JP3214513B2 (en) Magneto-optical recording medium
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JP3237977B2 (en) Magneto-optical recording medium
JP2550698B2 (en) Magneto-optical recording medium
KR100214028B1 (en) Magneto-optical recording medium for short wave length
JPH05325283A (en) Magneto-optical recording medium
JPS6332748A (en) Information recording medium
KR100203832B1 (en) Optical magnetic recording media for short wave length
JP3490138B2 (en) Magneto-optical recording medium
JP2607476B2 (en) Magneto-optical recording method
JPH05303777A (en) Magnetic optical recording medium and its production
JPH08315435A (en) Magneto-optical recording medium
JPH08124229A (en) Magnetooptic recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film
JPH04370550A (en) Magneto-optical recording medium
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same