JPH0212611B2 - - Google Patents

Info

Publication number
JPH0212611B2
JPH0212611B2 JP16616183A JP16616183A JPH0212611B2 JP H0212611 B2 JPH0212611 B2 JP H0212611B2 JP 16616183 A JP16616183 A JP 16616183A JP 16616183 A JP16616183 A JP 16616183A JP H0212611 B2 JPH0212611 B2 JP H0212611B2
Authority
JP
Japan
Prior art keywords
heat treatment
hollow fiber
cellulose ester
fiber membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16616183A
Other languages
Japanese (ja)
Other versions
JPS6058210A (en
Inventor
Tsutomu Kawamura
Masaru Kaneizumi
Tetsuo Ukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16616183A priority Critical patent/JPS6058210A/en
Publication of JPS6058210A publication Critical patent/JPS6058210A/en
Publication of JPH0212611B2 publication Critical patent/JPH0212611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセルロースエステル系多孔質中空糸膜
に関するものであり、選択透過性を有する膜とし
て限外濾過、逆浸透、透析等の用途に供する多孔
質中空糸膜に関するものである。 近年、海水、工業排水、下水道排水、血液等の
液状混合物より特定の成分をその用途、目的に応
じて分離する処理方法が研究され飲用水、純水、
超純水、無菌水の製造、血液の浄化、食品の濃縮
等に応用されている。分離、濃縮、透析等の機能
をもつ膜としては多種多様な材料がすでに実用に
供され広く使用されているが、特にセルロースエ
ステル系多孔質膜は、多様な製膜方法が可能であ
り、またその製造方法に応じて広範囲な機能をも
つ膜が得られ有用な材料である。 分離、透析等の用途に実際に多孔質膜を用いる
に当つてはその用途に応じて一般に被処理液体の
導入口、導出口、透過液の導出口、透析液の導入
導出口を種々組合せもつ容器に多孔質膜を収納し
た、いわゆるモジユールの形で使用される。この
場合多孔質膜を中空糸状で容器に収納することは
広い膜面積が利用でき有用である。モジユール中
で多孔質中空糸膜は一般に収束体としてその端部
が接着剤で固定された形で収納される。 従来混合液体処理用セルロースエステル系多孔
質中空糸膜は製膜後、使用時までその分離性能、
透過性能が著しく変化しないように多価アルコー
ル類、水を含有する状態で保存することが一般に
行われてきている。しかし単にこれらを含有させ
るだけでは不十分であり特開昭55−27053号公報
にみられるようにそれらの含有量割合が変化しな
い様十分保存状態を管理することが必要である。 また多孔質中空糸膜を収束したモジユールを製
造するに際し、その収束体端部を接着剤で固定す
るに当つては、一般にエポキシ、不飽和ポリエス
テル、ウレタン等の熱硬化性樹脂が使用される。
多価アルコール類及び水を含有するセルロースエ
ステル系多孔質中空糸膜を上記熱硬化性樹脂を用
いてその収束体端部を接着固定する場合、多量の
水が存在すると接着剤樹脂の硬化反応が防げられ
る。従つて接着に当つては多孔質中空糸膜の被接
着部を予め十分乾燥しておくことが要請される。
しかしながら被接着部のみを乾燥することは困難
であり多孔質中空糸膜の被接着部以外の部分も乾
燥されることが多々あり、この場合モジユールの
分離性能、透過性能が変化し問題であつた。 本発明者等はセルロースエステル系多孔質中空
糸膜保存中の分離性能透過性能の変化を未然に防
止し、しかもモジユール製造に伴う接着時の乾燥
工程においてその分離性能、透過性能が変化しな
いような多価アルコール類及び水含有セルロース
エステル系多孔質中空糸膜について鋭意研究を行
つてきた結果、ある条件下で熱処理を行うことに
より膜が著しく安定化することを見い出し本発明
を完成するに至つたものである。 即ち本発明はセルロースエステル、多価アルコ
ール類、及び水より構成されかつその水含有量が
25重量%以下であるセルロースエステル系多孔質
膜を湿度10〜20g−H2O/Kg−dry air乾球温度
55〜85℃の雰囲気下で熱処理を行うことを特徴と
するセルロースエステル系多孔質中空糸膜の製造
方法である。更に本発明によるセルロースエステ
ル系多孔質中空糸膜は真空度740mmHg以上の高真
空下で55℃にて乾燥を行なつてもその限外濾過速
度変化率は15%以下でありモジユール製造に伴う
乾燥工程においても変化が少なく品質管理を容易
に行うことができる特徴も併せもつている。 本発明でいうセルロースエステル系多孔質膜と
は、セルロースジアセテート、セルローストリア
セテート、硝酸セルロース、プロピオン酸セルロ
ース等のセルロースエステル高分子重合体を主成
分とする分離、濃縮、透析、濾過等の液体処理の
用途に供する多孔質膜であり若干の非セルロース
エステル系材料が含まれている場合も本発明の中
に含まれる。またその製膜法に関しては乾式製膜
法、湿式製膜法、溶融式製膜法等及びこれらの併
用が考えられるが何れかに限定されるものではな
い。又本発明でいう多価アルコール類とはエチレ
ングリコール、ジエチレングリコール、トリエチ
レングリコール、ポリエチレングリコール、プロ
ピレングリコール、ジプロピレングリコール、ポ
リプロピレングリコール、グリセリン及びこれら
の混合物をいう。 本発明を実施するに際してはセルロースエステ
ル系多孔質中空糸膜を製膜した後多価アルコール
類水溶液に浸漬し含有させる方法が一般に採用さ
れるが、この方法に限定される必要はなく、予め
製膜工程においてセルロースエステル系高分子重
合体に多価アルコール類を添加しておく方法も本
発明の中に含まれる。続いて得られた多価アルコ
ール類、水を含有するセルロースエステル系多孔
質中空糸膜を必要に応じて乾燥しその水含有量を
重量割合で25%以下にする。続いて湿度10〜20g
−H2O/Kg−dry air、乾球温度55〜85℃の雰囲
気下で熱処理を行う。熱処理前の水含有量が25%
より大きい場合本発明による熱処理を実施して
も、熱処理後の保存雰囲気即ち相対湿度の変化に
対してその限外濾過速度変化が大きく好ましくな
い。熱処理条件が湿度10g−H2O/Kg−dry air
以下およびまたは乾球温度85℃以上の場合はその
限外濾過速度が実用に供するには小さい多孔質膜
しか得られない。また湿度20g−H2O/Kg−dry
air以上およびまたは乾球温度55℃以下の条件で
熱処理を行う場合は、熱処理後の保存雰囲気の変
化に対してその限外濾過速度変化が大きく好まし
くない。尚製膜条件および熱処理条件は前述の範
囲で熱処理後の多孔質中空糸膜の重量割合が高分
子重合体35〜60%、多価アルコール類35〜60%お
よび水20%以下となるように選択されるのが好ま
しい。高分子重合体含有量が35%以下およびまた
は多価アルコール類含有量が60%以上および水含
有量が20%以上の場合は熱処理後の保存雰囲気の
変化に対してその限外濾過速度が大きく変化して
好ましくない。一方高分子重合体含有量が60%以
上およびまたは多価アルコール類含有量が30%以
下の場合は得られる膜の限外濾過速度が小さく実
用に供しないため本発明より除外される。尚本発
明でいう含有量とは熱処理工程直前あるいは直後
で測定される値であり、例えば本発明品を高湿度
下に於て保存する場合多価アルコール類の吸水に
より重量構成割合は変化するが熱処理直後の値が
前述の範囲にある場合は本発明に含まれる。更に
本発明熱処理を行うに当つてはその前後の水含有
量の減少率(={1−(熱処理後水含有割合(%)
÷(熱処理前水含有割合(%))}×100(%))を60
%以下に抑制することが好ましく、このため密閉
容器内に収納して熱処理を行うことが好ましい。
水含有量の減少率が60%以上の場合は得られるセ
ルロースエステル系多孔質中空糸膜に斑が発生し
均一な分離性能あるいは均一な透過性能が得られ
ないことがある。また熱処理時間は処理される多
孔質中空糸膜の重量によつて選択されるが大略10
時間以上であればよい。10時間未満の場合熱処理
が不均一に行われ得られる多孔質中空糸膜の分離
性能あるいは透過性能に斑が生じる場合がある。
本発明における熱処理は、カセ状、ボビン状など
の集合体の状態でおこなわれる。 このようにして得られる多価アルコール類およ
び水含有セルロースエステル系多孔質中空糸膜は
相対湿度12〜100%下の環境下における限外濾過
速度変化率が10%以下に保たれるというメリツ
ト、つまり保存環境の変化に対して、その性能が
安定で、しかも保存において環境管理に多大な労
力を要さず、またモジユール製造に際しての乾燥
工程でもその限外濾過速度が安定しており工業上
有用である。 次に本発明の内容を実施例によりさらに詳しく
説明する。 実施例 1 セルロースジアセテート33重量部をジメチルホ
ルムアミド54重量部エチレングリコール13重量部
の混合溶媒に溶解し、得られた溶液をミリスチン
酸イソプロピルを芯剤として2重管ノズルより吐
出し0.08秒間空中を走行させた後、ジメチルホル
ムアミド20wt%、エチレングリコール5wt%、水
75wt%からなる10℃の凝固浴中に導き4.0秒間通
過させた後40℃の温水中を60秒間通過させ脱溶
媒、洗浄を行なつた後45wt%のグリセリン水溶
液中を5秒間通過させ、60℃の雰囲気を10秒間通
過させ捲取つた。得られた中空糸膜は内径200μ、
膜厚15μであつた。続いて湿度13および19g−
H2O/Kg−dry airに調湿された密閉容器に収納
し温度65℃にて20時間熱処理を行なつた。熱処理
前後の重層構成比、得られた中空糸膜の限外濾過
速度および種々の環境下に暴された後の限外濾過
速度の変化率を表−1に示す。 実施例 2 セルローストリアセテート25重量部を、N−メ
チル−2−ピロリドン68重量部トリエチレングリ
コール7重量部からなる混合溶媒に溶解し、得ら
れた溶液を流動パラフインを芯剤として2重管ノ
ズルより吐出し0.04秒間空中を走行させた後N−
メチル−2−ピロリドン13wt%、トリエチレン
グリコール2wt%、水85wt%からなる14℃の凝固
浴中に導き4.0秒間通過させた後45℃の温水中を
60秒間通過させ脱溶媒、洗浄を行つた。続いて
70wt%のグリセリン水溶液中を5秒間通過させ、
80℃の雰囲気を10秒間通過させ乾燥を行い捲取つ
た。得られた中空糸膜の内径は220μ、膜厚は19μ
であつた。続いて湿度14g−H2O/Kg−dry air
に調湿された密閉容器に収納し温度70℃および80
℃にて15時間熱処理を行つた。表−1に実施例1
同様の項目について諸特性を示す。 比較例 1 熱処理工程の湿度を8および22g−H2O/Kg
−dry airに調湿し他の条件は実施例1と同様の
操作を行つた。表1に実施例1同様の項目につい
て諸特性を示す。 比較例 2 実施例1と同様で製膜(紡糸)を行い熱処理条
件を種々変え得られた中空糸膜の諸特性を評価し
た。ただし使用したグリセリン水溶液の濃度は
39wt%であつた。結果を表−1に示す。 表−1中斜線部は初期限外濾過速度が小さすぎ
実用に供しないため評価しなかつたことを示す。 表−1に示した如く本発明によるセルロースエ
ステル系中空糸膜は種々の環境下に於て極めて安
定した限外濾過特性を示し有用であることが判
る。
The present invention relates to a cellulose ester-based porous hollow fiber membrane, and relates to a porous hollow fiber membrane that has selective permselectivity and is used for applications such as ultrafiltration, reverse osmosis, and dialysis. In recent years, research has been conducted on treatment methods that separate specific components from liquid mixtures such as seawater, industrial wastewater, sewage wastewater, and blood, depending on their use and purpose.
It is applied to the production of ultrapure water, sterile water, blood purification, food concentration, etc. A wide variety of materials have already been put into practical use and widely used as membranes with functions such as separation, concentration, and dialysis, but cellulose ester-based porous membranes in particular can be fabricated in a variety of ways, and It is a useful material that can produce membranes with a wide range of functions depending on the manufacturing method. When porous membranes are actually used for separation, dialysis, etc., they generally have various combinations of inlets and outlets for the liquid to be treated, outlets for the permeate, and inlets and outlets for the dialysate, depending on the purpose. It is used in the form of a so-called module, in which a porous membrane is housed in a container. In this case, it is useful to house the porous membrane in the container in the form of hollow fibers, since a large membrane area can be utilized. In the module, the porous hollow fiber membrane is generally housed as a bundle with its ends fixed with an adhesive. Conventional cellulose ester-based porous hollow fiber membranes for treating mixed liquids have excellent separation performance,
In order to prevent significant changes in permeation performance, it is common practice to store materials containing polyhydric alcohols and water. However, it is not enough to simply contain these, and as shown in Japanese Patent Application Laid-Open No. 55-27053, it is necessary to sufficiently manage the storage conditions so that the proportion of their content does not change. Furthermore, when manufacturing a module in which porous hollow fiber membranes are bundled, a thermosetting resin such as epoxy, unsaturated polyester, or urethane is generally used to fix the ends of the bundle with an adhesive.
When a cellulose ester-based porous hollow fiber membrane containing polyhydric alcohols and water is adhesively fixed at the ends of the convergent body using the above-mentioned thermosetting resin, the presence of a large amount of water may cause a curing reaction of the adhesive resin. It can be prevented. Therefore, when adhering, it is required that the part of the porous hollow fiber membrane to be adhered be sufficiently dried in advance.
However, it is difficult to dry only the adhered part, and parts of the porous hollow fiber membrane other than the adhered part are often dried, and in this case, the separation performance and permeation performance of the module change, which is a problem. . The present inventors have developed a cellulose ester-based porous hollow fiber membrane to prevent changes in separation and permeation performance during storage, and to prevent changes in separation and permeation performance during the drying process during adhesion during module production. As a result of intensive research on polyhydric alcohol and water-containing cellulose ester-based porous hollow fiber membranes, the present inventors discovered that heat treatment under certain conditions significantly stabilizes the membrane, leading to the completion of the present invention. It is something. That is, the present invention is composed of cellulose ester, polyhydric alcohol, and water, and the water content is
Cellulose ester porous membrane with a content of 25% by weight or less at a humidity of 10 to 20g - H2O /Kg - dry air dry bulb temperature
This is a method for producing a cellulose ester porous hollow fiber membrane, which is characterized by performing heat treatment in an atmosphere of 55 to 85°C. Furthermore, even when the cellulose ester-based porous hollow fiber membrane according to the present invention is dried at 55°C under a high vacuum with a degree of vacuum of 740 mmHg or higher, the rate of change in ultrafiltration rate is 15% or less. It also has the characteristic that there are few changes in the process, making quality control easy. The cellulose ester-based porous membrane referred to in the present invention refers to liquid processing such as separation, concentration, dialysis, and filtration that is mainly composed of cellulose ester polymers such as cellulose diacetate, cellulose triacetate, cellulose nitrate, and cellulose propionate. The present invention also includes porous membranes that contain some non-cellulose ester materials. Regarding the film forming method, dry film forming method, wet film forming method, melt film forming method, etc., and combinations thereof can be considered, but the method is not limited to any one of them. The polyhydric alcohols used in the present invention include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, glycerin, and mixtures thereof. When carrying out the present invention, a method is generally adopted in which a cellulose ester-based porous hollow fiber membrane is formed and then immersed in an aqueous polyhydric alcohol solution. However, it is not necessary to be limited to this method; The present invention also includes a method in which polyhydric alcohols are added to the cellulose ester polymer in the membrane process. Subsequently, the obtained cellulose ester-based porous hollow fiber membrane containing polyhydric alcohols and water is dried as necessary to reduce the water content to 25% or less by weight. Next, humidity 10-20g
Heat treatment is performed in an atmosphere of −H 2 O/Kg−dry air and a dry bulb temperature of 55 to 85°C. Water content before heat treatment is 25%
If it is larger, even if the heat treatment according to the present invention is performed, the ultrafiltration rate will change greatly with respect to changes in the storage atmosphere, that is, relative humidity after the heat treatment, which is not preferable. Heat treatment conditions are humidity 10g- H2O /Kg-dry air
If the dry bulb temperature is below 85° C. or above, only a porous membrane with an ultrafiltration rate too small for practical use will be obtained. Also humidity 20g-H 2 O/Kg-dry
When heat treatment is performed under conditions of air or higher and/or dry bulb temperature of 55° C. or lower, the ultrafiltration rate changes greatly with respect to changes in the storage atmosphere after the heat treatment, which is undesirable. The membrane forming conditions and heat treatment conditions are within the above-mentioned range so that the weight percentage of the porous hollow fiber membrane after heat treatment is 35 to 60% of high molecular weight polymer, 35 to 60% of polyhydric alcohol, and 20% or less of water. Preferably selected. If the polymer content is 35% or less, or the polyhydric alcohol content is 60% or more, and the water content is 20% or more, the ultrafiltration rate will be large against changes in the storage atmosphere after heat treatment. It changes and is not desirable. On the other hand, when the polymer content is 60% or more and/or the polyhydric alcohol content is 30% or less, the obtained membrane has a low ultrafiltration rate and cannot be put to practical use, and is therefore excluded from the present invention. The content referred to in the present invention is a value measured immediately before or after the heat treatment process. For example, when the product of the present invention is stored under high humidity, the weight composition ratio may change due to water absorption of polyhydric alcohols. If the value immediately after heat treatment is within the above range, it is included in the present invention. Furthermore, when performing the heat treatment of the present invention, the reduction rate of water content before and after the heat treatment (={1-(water content ratio after heat treatment (%)
÷ (water content before heat treatment (%)) x 100 (%)) 60
% or less, and for this reason, it is preferable to carry out the heat treatment while being housed in a closed container.
If the reduction rate of water content is 60% or more, unevenness may occur in the cellulose ester-based porous hollow fiber membrane obtained, and uniform separation performance or uniform permeation performance may not be obtained. The heat treatment time is selected depending on the weight of the porous hollow fiber membrane to be treated, but approximately 10
It is sufficient if it is more than an hour. If the heating time is less than 10 hours, the heat treatment may be performed non-uniformly, resulting in uneven separation performance or permeation performance of the resulting porous hollow fiber membrane.
The heat treatment in the present invention is carried out in the form of an aggregate such as a skein or a bobbin. The polyhydric alcohol and water-containing cellulose ester porous hollow fiber membrane obtained in this way has the advantage that the ultrafiltration rate change rate is kept below 10% in an environment with relative humidity of 12 to 100%. In other words, its performance is stable against changes in the storage environment, and it does not require much effort in environmental management during storage, and its ultrafiltration rate is stable even during the drying process during module production, making it industrially useful. It is. Next, the content of the present invention will be explained in more detail with reference to Examples. Example 1 33 parts by weight of cellulose diacetate was dissolved in a mixed solvent of 54 parts by weight of dimethylformamide and 13 parts by weight of ethylene glycol, and the resulting solution was discharged from a double tube nozzle using isopropyl myristate as a core material and passed through the air for 0.08 seconds. After running, dimethylformamide 20wt%, ethylene glycol 5wt%, water
The sample was introduced into a 10°C coagulation bath consisting of 75wt% and passed for 4.0 seconds, then passed through 40°C warm water for 60 seconds to remove solvent and wash, and then passed through a 45wt% glycerin aqueous solution for 5 seconds. It was passed through an atmosphere at ℃ for 10 seconds and rolled up. The obtained hollow fiber membrane had an inner diameter of 200μ,
The film thickness was 15μ. followed by humidity 13 and 19 g−
It was stored in a sealed container with humidity controlled to H 2 O/Kg-dry air and heat-treated at a temperature of 65° C. for 20 hours. Table 1 shows the multilayer composition ratio before and after heat treatment, the ultrafiltration rate of the obtained hollow fiber membrane, and the rate of change in ultrafiltration rate after being exposed to various environments. Example 2 25 parts by weight of cellulose triacetate was dissolved in a mixed solvent consisting of 68 parts by weight of N-methyl-2-pyrrolidone and 7 parts by weight of triethylene glycol, and the resulting solution was poured through a double tube nozzle using liquid paraffin as a core material. After discharging and running in the air for 0.04 seconds, N-
It was introduced into a 14°C coagulation bath consisting of 13wt% methyl-2-pyrrolidone, 2wt% triethylene glycol, and 85wt% water, passed through it for 4.0 seconds, and then immersed in warm water at 45°C.
The solution was passed for 60 seconds to remove solvent and wash. continue
Pass through a 70wt% glycerin aqueous solution for 5 seconds,
It was dried by passing through an atmosphere at 80°C for 10 seconds and then rolled up. The inner diameter of the obtained hollow fiber membrane is 220μ, and the membrane thickness is 19μ.
It was hot. Then humidity 14g-H 2 O/Kg-dry air
Stored in a sealed container with humidity controlled at 70°C and 80°C.
Heat treatment was performed at ℃ for 15 hours. Table 1 shows Example 1
Indicates various characteristics of similar items. Comparative Example 1 Humidity in heat treatment process was 8 and 22g-H 2 O/Kg
The humidity was adjusted to -dry air, and the other conditions were the same as in Example 1. Table 1 shows various characteristics for the same items as in Example 1. Comparative Example 2 Film formation (spinning) was carried out in the same manner as in Example 1, heat treatment conditions were varied, and various properties of the obtained hollow fiber membranes were evaluated. However, the concentration of the glycerin aqueous solution used is
It was 39wt%. The results are shown in Table-1. The shaded area in Table 1 indicates that the initial ultrafiltration rate was too low to be of practical use and was not evaluated. As shown in Table 1, the cellulose ester hollow fiber membrane according to the present invention exhibits extremely stable ultrafiltration properties under various environments and is found to be useful.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 セルロースエステル、多価アルコール類及び
水より構成されかつその水含有量が25重量%以下
であるセルロースエステル系多孔質膜を、湿度10
〜20g−H2O/Kg−dry air、乾球温度55〜85℃
の雰囲気下で熱処理を行うことを特徴とするセル
ロースエステル系中空糸膜の製造方法。
1. A cellulose ester-based porous membrane composed of cellulose ester, polyhydric alcohols, and water with a water content of 25% by weight or less is heated at a humidity of 10%.
~20g- H2O /Kg-dry air, dry bulb temperature 55-85℃
1. A method for producing a cellulose ester hollow fiber membrane, the method comprising performing heat treatment in an atmosphere of
JP16616183A 1983-09-08 1983-09-08 Preparation of cellulose ester type hollow yarn membrane Granted JPS6058210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16616183A JPS6058210A (en) 1983-09-08 1983-09-08 Preparation of cellulose ester type hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16616183A JPS6058210A (en) 1983-09-08 1983-09-08 Preparation of cellulose ester type hollow yarn membrane

Publications (2)

Publication Number Publication Date
JPS6058210A JPS6058210A (en) 1985-04-04
JPH0212611B2 true JPH0212611B2 (en) 1990-03-22

Family

ID=15826197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616183A Granted JPS6058210A (en) 1983-09-08 1983-09-08 Preparation of cellulose ester type hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS6058210A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343669A (en) * 1986-08-08 1988-02-24 帝人株式会社 Production of blood treatment device
JP2826823B2 (en) * 1987-10-15 1998-11-18 エヌオーケー株式会社 Manufacturing method of hollow fiber module
US5853647A (en) * 1996-03-07 1998-12-29 Akzo Nobel Nv Process for the stabilization of the properties of cellulosic membranes

Also Published As

Publication number Publication date
JPS6058210A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
JPH01107812A (en) Method for making porous membrane hydrophilic
JP2860908B2 (en) Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same
US6214382B1 (en) Hydrophilic film and process for producing the same
JPH0212611B2 (en)
JPH05317664A (en) Porous hollow fiber membrane
JP2000061277A (en) Production of cellulosic crosslinked membrane
JPH0122008B2 (en)
JP2001190934A (en) Hollow fiber membrane module with a little effluent
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JP2000350928A (en) Composite diaphragm, composite diaphragm module and its manufacture
JPS6054402B2 (en) Manufacturing method of recycled cellulose hollow fiber
JPS63309536A (en) Rendering porous film hydrophilic
JPS60206404A (en) Permselective membrane and its prepration
JPH01184001A (en) Porous membrane of polysulfone
JPS6229524B2 (en)
JPS6064602A (en) Dried translucent membrane and its manufacture
JPH09239248A (en) Method for treatment of pervaporation membrane
JPH054126B2 (en)
JPS6325805B2 (en)
JP2883406B2 (en) Hydrophilic membrane
JP2000350927A (en) Composite semipermeable membrane module
JPS60193504A (en) Hollow fiber membrane for dialysis
JPS60187307A (en) Preparation of cellulose membrane
JPS63111907A (en) Production of dry separation membrane
JPS6130043B2 (en)