JPS6130043B2 - - Google Patents

Info

Publication number
JPS6130043B2
JPS6130043B2 JP53125639A JP12563978A JPS6130043B2 JP S6130043 B2 JPS6130043 B2 JP S6130043B2 JP 53125639 A JP53125639 A JP 53125639A JP 12563978 A JP12563978 A JP 12563978A JP S6130043 B2 JPS6130043 B2 JP S6130043B2
Authority
JP
Japan
Prior art keywords
pva
degree
swelling
dry
hollow fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125639A
Other languages
Japanese (ja)
Other versions
JPS5551818A (en
Inventor
Akinori Sueoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP12563978A priority Critical patent/JPS5551818A/en
Publication of JPS5551818A publication Critical patent/JPS5551818A/en
Publication of JPS6130043B2 publication Critical patent/JPS6130043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はPVA系中空糸(HF)の製造法に関す
る。さらに詳しくは寸法安定性、即ちドライから
ウエツト時の膨潤度が極度に小さなPVA系HFの
製造法に関する。 本発明者らはPVA系メンブレンについて種々
の検討を行なつており、透過性能の著しくすぐれ
た均質多孔質構造を有するPVA系メンブレン、
さらには、耐圧性や耐熱性等の機械的性能および
耐酸耐アルカリ性等の耐薬品性が極度にすぐれた
高度に架橋処理をしたPVA系メンブレンについ
て出願している。これらの発明はPVA系ポリマ
ーが―OH基を有しているという特徴から、親水
性であるため透過性能にすぐれ、さらに架橋処理
等変性処理が容易であるという、PVA系ポリマ
ー独特の特異性を利用することにより達成された
ものである。 たとえば湿潤状態で、加圧下での使用目的、耐
熱性を必要とする使用用途に対しては、アセター
ル化等の疎水化及び/又は架橋処理を行なうこと
により目的に合つた性能を賦与することができ
る。 しかしながらPVAは元来親水性ポリマーであ
り、さらに本発明に用いられる膜は均質多孔質構
造を有しているため吸水性が高いことなどからド
ライからウエツト時の寸法安定性、即ち膨潤度を
ある一定値よりも下げることは非常に困難であ
る。たとえば高度にアセタール化をしても、完全
には疎水化されないこと(理論的最高アセタール
化度は80%まで)および多孔質構造であることか
ら、HFの膨潤度は3〜10%程度でありそれに以
下にすることができないことを認めた。一方
PAN系メンブレンのようにPVAに比べ疎水性ポ
リマーを用いたものの場合、疎水性であるために
膨潤度を小さくすることは容易である。 このようにドライからウエツトにおける寸法安
定性に関してPVAは特有の間題を有している。 寸法安定性、即ちドライからウエツトの膨潤度
は、特にHFのモジユール化に際して非常に重要
な因子である。通常HFの場合HF内部に加圧下液
を送りこみ過を行なう内圧方式が用いられる
が、この場合HFはモジユールの両端を接着剤で
シールされる。またHFは接着剤との接着性等の
問題から乾燥状態でシールされる。そしてこのド
ライのHFは実際の使用に際しては、ウエツト状
態にされる。 この場合HFの膨潤度が大の場合、モジユール
のHFは両端が固定された状態でHFの長さが大に
なることにより、HF同志がからみ合つたり、HF
が変曲するため、HF内の液の流れがスムースに
行かなつたり、モジユール内がHFにより閉塞さ
れ透過液の流れが阻害されたりする。さらに、耐
圧性、耐熱性等を向上させるために、高度に架橋
処理等をした剛直なHFの場合、ドライからウエ
ツトの膨潤に際しHFが破損する可能性がある。 このように膨潤度が大の場合各種のトラブルが
生じ実際の使用が困難になることがある。これら
トラブルを生じせしめないためには膨潤度を極力
小さくすること、望ましくは1%以下にすること
が必要であることを認めた。 ここで言う膨潤度とは次式から求めたものであ
る。 膨潤度=(ウエツト時のHFの長さ/ドラ イ時のHFの長さ−1)×100(%) ドライの測定は25℃−RH60%に24hrs、放
置後行ない、ウエツトの測定は25℃−水中
に1hrs、浸漬し水中で測定した 本発明者らはかかる点について改良を重ねた結
果本発明を完成した。 即ち本発明は、均質多孔質構造を有するPVA
系中空糸を10〜100%のC数2〜4個の脂肪族多
価アルコールを含む溶液中に浸漬し、該脂肪族多
価アルコールを10〜150wt%含有させた後乾燥す
ることを特徴とする。寸法安定性に秀れたPVA
系中空糸の製造法である。 本発明で用いるPVA系ポリマーは平均分子量
500〜3500、ケン化度85〜100モル%のPVA及び
エチレン、ビニルピロリドン、塩化ビニル等を10
モル%未満含有するPVAとの共重合体等が含ま
れる。 均質多孔質構造とは、詳しくは50〜5000Åの厚
さの膜壁からなる平均径0.02〜2μの微細孔が横
断面において実質的に均一に配列されてなる構造
である。 さらにPVA系中空糸は凝固浴を出た後の任意
の段階でホルムアルデヒド、アセトアルデヒド等
のモノアルデヒドあるいはグルタルアルデヒド、
グリオキザール等のジアルデヒドでアセタール化
したり、エステル化等の変性処理を行なうことが
できる。 PVAは親水性であり、さらに多孔質構造を有
しているため、上記の変性処理を行なうことによ
り実用上の強度を賦与することができる。 しかしながら上記の変性処理例えば疎水化又は
分子間架橋を高度に行なつても、膨潤度を極度に
小さくすることはできない。 しかしながら該PVA中空糸を脂肪族多価アル
コール溶液中に浸漬、乾燥処理することにより、
極度に小さい膨潤度即ち1%以下に押えることが
できることを見い出した。 ここでいう脂肪族多価アルコールとはグリセリ
ン、エチレングリコール、ジエチレングリコー
ル、1,3―ブタンジオール等およびそれらの混
合物である。これら多価アルコールの溶媒として
は水、エタノール、アセトン等が用いられる。該
アルコール溶液の濃度は10〜100%が用いられ
る。浸漬処理によりPVA系HFは該多価アルコー
ルを10〜150wt%含有させる。10%以下の場合は
膨潤度を1%以下におさえることができないし、
150%以上にしても目的とする効果が変らぬ上に
多価アルコールが過剰となり不必要である。浸漬
時間は溶媒や該アルコール濃度等により異なるが
5分以上の浸漬で十分に目的が達せられる。次に
該アルコール溶液に浸漬したPVA系中空糸は乾
燥される。この乾燥工程は中空糸と接着剤との接
着性等を考慮し、十分に乾燥し溶媒を極力除去す
ることが望ましい。たとえばグリセリン―水系の
場合、乾燥工程に長時間要するために、高温で乾
燥することが望ましい。高度に架橋処理した
PVA系中空糸は耐熱性が非常に秀れているた
め、100〜120℃での高温乾燥が可能であり、その
結果乾燥工程を1〜4hrs.と短時間で行なうこと
ができるため、非常に秀れている。 以下実施例により説明する。 実施例1〜4、比較例1、2 ケン化度98.5%、2400のPVAと分子量1000
のポリエチレングリコール(PEG)をPVAに対
し95%混合しPVA濃度16%の水溶液を調整し
た。この紡糸原液を環状ノズルを通してNaOH/
Na2SO4=80/230g/の凝固浴に紡出し中空糸
を得た。 次いで得られたHFをグルタルアルデヒド
(GA)/H2SO4/Na2O4=3/30/200g/処
理浴中70℃―3hrs架橋処理した後、90℃―1hrs流
水洗した。得られた中空糸は外径800μ、内径400
μであつた。 得られたHFを十分に水切りした後表―1に示
した組成の水―グリセリン系液中に10分間浸漬し
た。その後十分に液切りした後、105℃乾燥器中
3hrs乾燥しドライHFを得た。 表―1から明らかなように実施例のものは膨潤
度が1%以下と極度におさえられ、比較例(該ア
ルコール処理せず、そのまま乾燥)HFの5%に
比べ明らかに秀れていた。 実施例1比較例2と同一のドライHFの各1400
本について、30cmL×50mmφの透析用ハウジング
に両端をウレタンシールし、0.5m2のモジユール
を作成した。 比較例2のHFを用いたモジユールを水に浸漬
し、HFをウエツトにしたところ、HFがハウジン
グ内全体にわたり膨潤し、HF3本が破損した。ま
たハウジング内をHFが閉塞しハウジング内に液
が流れないというトラブルが生じた。 実施例1のHFを用いたモジユールをウエツト
にした場合トラブルは全く生じず良好であつた。
The present invention relates to a method for producing PVA-based hollow fibers (HF). More specifically, the present invention relates to a method for producing PVA-based HF that has dimensional stability, that is, extremely low degree of swelling from dry to wet conditions. The present inventors have conducted various studies on PVA-based membranes, and found that PVA-based membranes have a homogeneous porous structure with outstanding permeation performance,
Furthermore, we have filed an application for a highly crosslinked PVA membrane that has extremely high mechanical properties such as pressure resistance and heat resistance, and chemical resistance such as acid and alkali resistance. These inventions utilize the unique characteristics of PVA-based polymers, which are hydrophilic and have excellent permeability due to their -OH group, and are also easy to undergo modification treatments such as cross-linking. This was achieved through the use of For example, for applications that require heat resistance and are intended to be used under pressure in a wet state, it is possible to impart performance that suits the purpose by performing hydrophobization such as acetalization and/or crosslinking treatment. can. However, PVA is originally a hydrophilic polymer, and since the membrane used in the present invention has a homogeneous porous structure, it has high water absorption, and therefore has a high dimensional stability from dry to wet conditions, that is, a degree of swelling. It is very difficult to lower it below a certain value. For example, even if it is highly acetalized, it is not completely hydrophobic (the theoretical maximum degree of acetalization is up to 80%) and because it has a porous structure, the swelling degree of HF is about 3 to 10%. I admitted that I can't do less than that. on the other hand
In the case of a membrane using a hydrophobic polymer, such as a PAN membrane, compared to PVA, it is easier to reduce the degree of swelling due to its hydrophobicity. As described above, PVA has unique problems regarding dimensional stability from dry to wet. Dimensional stability, ie, degree of swelling from dry to wet, is a very important factor, especially when modularizing HF. Normally, in the case of HF, an internal pressure method is used in which a liquid under pressure is pumped into the HF, but in this case, both ends of the HF module are sealed with adhesive. Furthermore, HF is sealed in a dry state due to problems such as adhesion with adhesives. In actual use, this dry HF is wetted. In this case, if the degree of swelling of the HF is large, the HF of the module will have both ends fixed and the length of the HF will increase, causing the HF to become entangled or
Because of this bending, the flow of liquid within the HF may not be smooth, or the inside of the module may be blocked by the HF and the flow of permeate may be obstructed. Furthermore, in the case of rigid HF that has been highly crosslinked to improve pressure resistance, heat resistance, etc., there is a possibility that the HF will be damaged when it swells from dry to wet. When the degree of swelling is high as described above, various troubles may occur and actual use may become difficult. It has been recognized that in order to avoid these troubles, it is necessary to reduce the degree of swelling as much as possible, preferably 1% or less. The degree of swelling referred to here is determined from the following equation. Swelling degree = (length of HF when wet / length of HF when dry - 1) x 100 (%) Dry measurement was performed after being left at 25℃ - RH 60% for 24 hours, wet measurement was performed at 25℃ - Measured by immersion in water for 1 hr. The present inventors have completed the present invention as a result of repeated improvements in this respect. That is, the present invention provides PVA having a homogeneous porous structure.
The system hollow fibers are immersed in a solution containing 10 to 100% aliphatic polyhydric alcohol having 2 to 4 carbon atoms, and dried after containing 10 to 150 wt% of the aliphatic polyhydric alcohol. do. PVA with excellent dimensional stability
This is a method for manufacturing hollow fibers. The PVA-based polymer used in the present invention has an average molecular weight of
500-3500, PVA with a saponification degree of 85-100 mol%, ethylene, vinylpyrrolidone, vinyl chloride, etc.
Copolymers with PVA containing less than mol% are included. More specifically, the homogeneous porous structure is a structure in which fine pores with an average diameter of 0.02 to 2 μ, which are formed by a membrane wall with a thickness of 50 to 5000 Å, are arranged substantially uniformly in a cross section. Furthermore, PVA-based hollow fibers can be treated with formaldehyde, monoaldehyde such as acetaldehyde, or glutaraldehyde at any stage after leaving the coagulation bath.
Modification treatments such as acetalization with a dialdehyde such as glyoxal or esterification can be performed. Since PVA is hydrophilic and has a porous structure, practical strength can be imparted by performing the above modification treatment. However, even if the above-mentioned modification treatment, such as hydrophobization or intermolecular crosslinking, is carried out to a high degree, the degree of swelling cannot be extremely reduced. However, by immersing the PVA hollow fiber in an aliphatic polyhydric alcohol solution and drying it,
It has been found that the degree of swelling can be kept extremely low, that is, 1% or less. The aliphatic polyhydric alcohols herein include glycerin, ethylene glycol, diethylene glycol, 1,3-butanediol, and mixtures thereof. Water, ethanol, acetone, etc. are used as solvents for these polyhydric alcohols. The alcohol solution used has a concentration of 10 to 100%. The immersion treatment causes the PVA-based HF to contain 10 to 150 wt% of the polyhydric alcohol. If it is less than 10%, the degree of swelling cannot be kept below 1%,
Even if it is increased to 150% or more, the desired effect will not change and the polyhydric alcohol will be excessive, which is unnecessary. The immersion time varies depending on the solvent, the alcohol concentration, etc., but immersion for 5 minutes or more is sufficient to achieve the purpose. Next, the PVA-based hollow fibers immersed in the alcohol solution are dried. In this drying step, it is desirable to thoroughly dry and remove the solvent as much as possible, taking into consideration the adhesiveness between the hollow fiber and the adhesive. For example, in the case of a glycerin-water system, the drying process takes a long time, so it is desirable to dry at a high temperature. highly cross-linked
PVA hollow fibers have excellent heat resistance and can be dried at high temperatures of 100 to 120 degrees Celsius.As a result, the drying process can be carried out in a short time of 1 to 4 hours. Excellent. This will be explained below using examples. Examples 1 to 4, Comparative Examples 1 and 2 Saponification degree 98.5%, PVA of 2400 and molecular weight 1000
An aqueous solution with a PVA concentration of 16% was prepared by mixing 95% polyethylene glycol (PEG) with PVA. This spinning stock solution is passed through an annular nozzle to
A hollow fiber was obtained by spinning into a coagulation bath containing Na 2 SO 4 =80/230g/. The obtained HF was then crosslinked in a glutaraldehyde (GA)/H 2 SO 4 /Na 2 O 4 =3/30/200 g treatment bath at 70°C for 3 hours, and then washed with running water at 90°C for 1 hour. The obtained hollow fiber has an outer diameter of 800μ and an inner diameter of 400μ.
It was μ. After thoroughly draining the obtained HF, it was immersed in a water-glycerin solution having the composition shown in Table 1 for 10 minutes. After draining the liquid thoroughly, place it in a dryer at 105℃.
Dry for 3hrs to obtain dry HF. As is clear from Table 1, the degree of swelling of the Example was extremely suppressed to 1% or less, which was clearly superior to the 5% of HF of the Comparative Example (without the alcohol treatment and dried as it was). 1400 each of the same dry HF as Example 1 and Comparative Example 2.
For the book, a 0.5 m 2 module was created by sealing both ends with urethane in a 30 cmL x 50 mmφ dialysis housing. When the module using HF of Comparative Example 2 was immersed in water to make the HF wet, the HF swelled throughout the housing and three HFs were damaged. There was also a problem that the HF blocked the housing and the liquid could not flow into the housing. When the module using HF of Example 1 was wetted, no trouble occurred and the result was good.

【表】【table】

【表】 実施例 5〜7 実施例1と同様に架橋―水洗したHFを表―2
に示した条件でエタノール―グリセリン系液中に
浸漬し、105℃―2hrs乾燥した。 膨潤度が極度に小さく秀れたものが得られた。
[Table] Examples 5 to 7 Table 2 shows cross-linked and water-washed HF in the same manner as in Example 1.
It was immersed in an ethanol-glycerin solution under the conditions shown in , and dried at 105°C for 2 hours. An excellent product with extremely low degree of swelling was obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 均質多孔質構造を有するポリビニルアルコー
ル(PVA)系中空糸を10〜100wt%のC数2〜4
個の脂肪族多価アルコールを含む溶液中に浸漬
し、該脂肪族多価アルコールを10〜150wt%含有
させた後乾燥することを特徴とする寸法安定性に
すぐれたPVA系中空糸の製造法。
1 Polyvinyl alcohol (PVA) hollow fibers having a homogeneous porous structure with a carbon number of 2 to 4 and 10 to 100 wt%
A method for producing PVA-based hollow fibers with excellent dimensional stability, characterized by immersing them in a solution containing 10 to 150 wt% of the aliphatic polyhydric alcohol, and then drying. .
JP12563978A 1978-10-11 1978-10-11 Production of polyvinyl alcohol hollow fiber with high dimensional stability Granted JPS5551818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12563978A JPS5551818A (en) 1978-10-11 1978-10-11 Production of polyvinyl alcohol hollow fiber with high dimensional stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12563978A JPS5551818A (en) 1978-10-11 1978-10-11 Production of polyvinyl alcohol hollow fiber with high dimensional stability

Publications (2)

Publication Number Publication Date
JPS5551818A JPS5551818A (en) 1980-04-15
JPS6130043B2 true JPS6130043B2 (en) 1986-07-10

Family

ID=14914997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12563978A Granted JPS5551818A (en) 1978-10-11 1978-10-11 Production of polyvinyl alcohol hollow fiber with high dimensional stability

Country Status (1)

Country Link
JP (1) JPS5551818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3583941D1 (en) * 1984-10-30 1991-10-02 Teijin Ltd HOLLOW FIBER MEMBRANE WITH SELECTIVE PLANTABILITY, THEIR PRODUCTION AND METHOD FOR SEPARATING PLASMA COMPONENTS AND PLASMA COMPONENT SEPARATORS.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221421A (en) * 1975-08-13 1977-02-18 Kuraray Co Ltd Process for producing dried hollow polyvinyl alcohol fibers
JPS5246699A (en) * 1975-10-08 1977-04-13 Nippon Zeon Co Method of treating hollow yarn
JPS5285525A (en) * 1975-12-29 1977-07-15 Nippon Zeon Co Ltd Production of hollow fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221421A (en) * 1975-08-13 1977-02-18 Kuraray Co Ltd Process for producing dried hollow polyvinyl alcohol fibers
JPS5246699A (en) * 1975-10-08 1977-04-13 Nippon Zeon Co Method of treating hollow yarn
JPS5285525A (en) * 1975-12-29 1977-07-15 Nippon Zeon Co Ltd Production of hollow fibers

Also Published As

Publication number Publication date
JPS5551818A (en) 1980-04-15

Similar Documents

Publication Publication Date Title
US3962158A (en) Hydrophilic polymer membranes of polyvinyl alcohol and chitosan
JP2677360B2 (en) Permeable porous membrane having hydrophilic property and method for producing the same
US4943373A (en) Hydrophilic porous membrane of polyvinylidene fluoride and method for production thereof
US3546209A (en) Process for the fabrication of a cellulose hollow fiber separatory cell
NZ563980A (en) Cross linking treatment of polymer membranes
JPH02135134A (en) Membrane for separating water-alcohol mixed liquid
US4851121A (en) Process for rendering porous membrane hydrophilic
JPH0553528B2 (en)
JPS5825764B2 (en) Polyvinyl alcohol
EP1466659A1 (en) A process for drying a wet porous membrane structure and the porous membrane structure obtained from said process
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
JP2000061277A (en) Production of cellulosic crosslinked membrane
JPS6130043B2 (en)
JPH0122008B2 (en)
AU2006261581B2 (en) Cross linking treatment of polymer membranes
US5164088A (en) Multilayer membrane and process of manufacturing same
JPH041653B2 (en)
JPS6214904A (en) Process of turning surface of hydrophobic microporous filter membrane hydrophilic
JPH0212611B2 (en)
JP2813452B2 (en) Method for producing hydrophilic membrane
JPS5825765B2 (en) polyvinyl alcohol
JPH0470936B2 (en)
JPH07185280A (en) Hydrophilic polysulfone membrane and production thereof
JPH01184001A (en) Porous membrane of polysulfone
JP6688702B2 (en) Method for producing new hydrophilic porous fluororesin membrane