JPH0212398B2 - - Google Patents

Info

Publication number
JPH0212398B2
JPH0212398B2 JP15765385A JP15765385A JPH0212398B2 JP H0212398 B2 JPH0212398 B2 JP H0212398B2 JP 15765385 A JP15765385 A JP 15765385A JP 15765385 A JP15765385 A JP 15765385A JP H0212398 B2 JPH0212398 B2 JP H0212398B2
Authority
JP
Japan
Prior art keywords
temperature
control
program control
molten steel
input power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15765385A
Other languages
Japanese (ja)
Other versions
JPS6220282A (en
Inventor
Mitsuru Sakurai
Masaki Mabuchi
Isamu Inoe
Teruo Hashimoto
Hiroyuki Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
JFE Steel Corp
Original Assignee
Meidensha Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Kawasaki Steel Corp filed Critical Meidensha Corp
Priority to JP15765385A priority Critical patent/JPS6220282A/en
Publication of JPS6220282A publication Critical patent/JPS6220282A/en
Publication of JPH0212398B2 publication Critical patent/JPH0212398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、誘導加熱制御方法に係り、特に連続
鋳造におけるタンデイツシユ内溶鋼の温度制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for controlling induction heating, and particularly to a method for controlling the temperature of molten steel in a tundish in continuous casting.

B 発明の概要 本発明は、タンデイツシユ内溶鋼温度を誘導加
熱制御するにおいて、 非定常時にプログラム制御し、定常時にフイー
ドバツク制御し、 鍋交換のためにフイードバツク制御からプログ
ラム制御への切換えに際して、鍋交換前の投入電
力の平均値とプログラム制御開始時の投入電力と
の差と溶鋼重量の変化からプログラム制御への切
換タイミングを調整することにより、 鋳造全区間に渡る温度安定化を図り、特に鍋交
換時の溶鋼温度変動を小さくするものである。
B. Summary of the Invention The present invention provides induction heating control of the temperature of molten steel in a tundish, in which program control is performed during unsteady conditions, feedback control is performed during steady conditions, and when switching from feedback control to program control for pan replacement, By adjusting the timing of switching to program control based on the difference between the average value of input power and the input power at the start of program control and changes in molten steel weight, the temperature can be stabilized over the entire casting period, especially when changing the pot. This is to reduce the temperature fluctuation of molten steel.

C 従来の技術 連続鋳造におけるスラブの表面品質は、連続初
期、末期あるいは連々鋳における鍋交換時(継
目)などの非定常部では定常部に比べて劣る。非
定常部における表面品質劣化の一因としてタンデ
イツシユ内溶鋼温度の低下があり、タンデイツシ
ユ内溶鋼温度は鋳込初期に著しく低下し、中期で
回復し、末期あるいは鍋交換時に再び低下する。
C. Prior Art The surface quality of a slab in continuous casting is poorer in unsteady parts such as at the beginning and end of continuous casting, or when changing pots (joints) in continuous casting, than in steady parts. One of the causes of surface quality deterioration in unsteady parts is a decrease in the temperature of the molten steel in the tundish.The molten steel temperature in the tundish drops significantly in the early stages of casting, recovers in the middle, and then drops again at the end or when the pot is replaced.

そこで、従来からタンデイツシユ内溶鋼の連続
測温をし、鋳込温度を監視し、誘導加熱炉の加熱
量を調整して溶鋼温度を一定にする方法や、鋳込
初期のピンチング(投入電力の過多による加熱不
能)の回避のために特定の投入電力パターンを持
つて調整する方法が行われている。
Therefore, conventional methods have been used to continuously measure the temperature of the molten steel in the tundish, monitor the casting temperature, and adjust the heating amount of the induction heating furnace to keep the molten steel temperature constant. In order to avoid heating problems (inability to heat due to heating), methods are being used to adjust the input power using a specific pattern.

D 発明が解決しようとする問題点 従来の加熱電力調整には実測温度と目標温度を
比較し、手動でタツプを切換えて投入電力を調整
するという繁難な操作になるものであつた。ま
た、実測温度と目標温度の比較による単なるフイ
ードバツク制御方法では非定常部と定常部の全区
間に渡つ溶鋼温度を一定に保つのは難しいもの
で、特に非定常部における温度安定化が難しいも
のであつた。
D. Problems to be Solved by the Invention Conventional heating power adjustment involved comparing the measured temperature with the target temperature and manually switching the taps to adjust the input power, which was a difficult operation. In addition, it is difficult to maintain the molten steel temperature constant over the entire range of unsteady and steady parts using a simple feedback control method that compares the measured temperature and target temperature, and it is especially difficult to stabilize the temperature in the unsteady part. It was hot.

E 問題点を解決するための手段 本発明はは上記問題点に鑑み、定常部ではフイ
ードバツク制御を行い、非定常部ではプログラム
制御を行い、鍋交換によるフイードバツク制御か
らプログラム制御への切換えに鍋交換前に投入電
力平均値とプログラム制御開始時の投入電力との
差が一定値以内にあれば直ちにプログラム制御に
切換え、一定値を越えるときには溶鋼重量が所定
値まで低下したときにプログラム制御に切換える
ようにしたものである。
E. Means for Solving the Problems In view of the above problems, the present invention performs feedback control in the steady state, performs program control in the unsteady state, and performs pan change when switching from feedback control to program control by changing the pan. If the difference between the average input power value and the input power at the start of program control is within a certain value, the system immediately switches to program control, and when it exceeds a certain value, it switches to program control when the weight of molten steel drops to a predetermined value. This is what I did.

F 作用 非定常時にはプログラム制御によつて温度安定
化を図り、鍋交換時のフイードバツク制御からプ
ログラム制御への切換えに投入電力の変化が大き
すぎるときには溶鋼重量低下によるプログラム制
御開始での低い投入電力になるまで待ち、切換時
の温度変動を抑制する。
F Effect During unsteady conditions, the temperature is stabilized by program control, and when the change in input power is too large when switching from feedback control to program control when changing the ladle, the input power is lowered at the start of program control due to a decrease in the weight of molten steel. to suppress temperature fluctuations during switching.

G 実施例 以下、図面を参照して本発明の実施例を詳細に
説明する。
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は装置構成図を示す。タンデイツシユ1
内溶鋼2の加熱は、誘導炉1Aのインダクタ3に
供給する交流電力によつて行われ、この交流電力
はインバータINV、コンバータCONからなる電
力交換器4によつて電力制御又は電圧制御され
る。制御装置5は投入電力指令Esに従つて電力
交換器4の出力電力又は電圧をフイードバツク制
御する。
FIG. 1 shows an apparatus configuration diagram. Tandaisuyu 1
The internal molten steel 2 is heated by AC power supplied to the inductor 3 of the induction furnace 1A, and this AC power is subjected to power control or voltage control by a power exchanger 4 consisting of an inverter INV and a converter CON. The control device 5 performs feedback control of the output power or voltage of the power exchanger 4 according to the input power command Es.

投入電力指令Esは、切換スイツチ6によつて
プログラム制御時の指令Epと温度フイードバツ
ク制御時の指令Eoに切換えられる。プログラム
制御は取鍋7から注湯になる鋳込初期、鍋交換
期、鋳込末期など非定常時における溶鋼2の湯面
が著しく変化する期間に行われ、温度フイードバ
ツク制御はプログラム制御の設定時時間後又は溶
鋼温度が目標温度に達したときの定常時に行わ
れ、測温温度信号を目標温度との比較演算によつ
て行われる。
The input power command Es is switched by a changeover switch 6 into a command Ep for program control and a command Eo for temperature feedback control. Program control is performed during periods when the level of molten steel 2 changes significantly during unsteady conditions such as the initial stage of pouring when pouring from the ladle 7, the ladle replacement stage, and the final stage of casting.Temperature feedback control is performed when the program control is set. This is performed after a period of time or during steady state when the molten steel temperature reaches the target temperature, and is performed by comparing the measured temperature signal with the target temperature.

プログラム制御は、タンデイツシユ1内の溶鋼
量をその重量検出器8(もしくは溶鋼深さ検出
器)から得、この検出信号と目標温度θsに従つて
選択されるデータ群をプログラムデータテーブル
9から順次読出して投入電力指令Epを得るよう
にされる。
Program control obtains the amount of molten steel in the tundish 1 from its weight detector 8 (or molten steel depth detector), and sequentially reads data groups selected from the program data table 9 according to this detection signal and the target temperature θs. input power command Ep is obtained.

温度フイードバツク制御は、連続型温度計10
による検出温度θrから平均演算部11が平均温度
θaを検出し、この平均温度θaを消耗型温度計1
2による検出温度θTに従つて補正演算部13によ
つて随時補正し、この補正した平均温度θa1と目
標温度θsとから投入電力演算部14により投入電
力指令Eoを求めるようにされる。
Temperature feedback control uses continuous thermometer 10.
The average calculation unit 11 detects the average temperature θa from the detected temperature θr, and converts this average temperature θa into the consumable thermometer 1.
The correction calculating unit 13 performs correction as needed according to the detected temperature θ T according to No. 2, and the input power calculating unit 14 calculates the input power command Eo from the corrected average temperature θa 1 and the target temperature θs.

投入電力演算部14における演算は下記式によ
つて行われる。
The calculation in the input power calculation section 14 is performed by the following formula.

Eo=Ff(1+ΣKΔθ/θs) ここで、Efは基準電力、Kは比例定数、Δθは
目標温度θsと平均温度θa1の差であり、目標温度
θsに対する実温度との差Δθの比率を持つサンプ
リング周期で基準電力Efを補正して投入電力指
令Eoを得る。
Eo=Ff (1+ΣKΔθ/θs) Here, Ef is the reference power, K is the proportionality constant, Δθ is the difference between the target temperature θs and the average temperature θa 1 , and has the ratio of the difference Δθ between the actual temperature and the target temperature θs. The input power command Eo is obtained by correcting the reference power Ef at the sampling period.

こうしたプログラム制御と温度フイードバツク
制御による投入電力指令Ep、Eoはリミツタ部1
5による制限がなされて指令Esとされ、ピンチ
効果抑制がなされている。
The input power commands Ep and Eo by such program control and temperature feedback control are set by the limiter section 1.
5 is set as the command Es, and the pinch effect is suppressed.

第2図は、第1図における温度制御態様を示す
図である。タンデイツシユ1への鋳込開始(時刻
t1)にはプログラム制御を行い、溶鋼重さに見合
つた投入力電力指令Esをテーブル9から読出し
て投入電力を制御し、鋳込初期(期間T1)の溶
鋼温度低下を防止する。鋳込開始から特定の時間
T1(又は溶鋼温度が目標温度θs)に達したとき
(時刻t2)、溶鋼の連続測によるフイードバツク制
御に切換スイツチ6をEo側に切換える。次に、
鍋7の終了の特定時間前(時刻t3)になつたと
き、再度プログラム制御に切換えて溶鋼重さに見
合つた電力投入を行う期間T3)。このプログラム
制御における投入電力は鍋終了(時刻t4)で溶鋼
重さが減り始め、これに追従して投入電力も下げ
て加熱過多を防止し、次鍋からの注湯開始(時刻
t5)で溶鋼重さが増加するに従つて投入電力も上
げて行き、所定時間後又は溶鋼温度が目標温度に
達したとき(時刻t6にフイードバツク制御に戻
す。
FIG. 2 is a diagram showing the temperature control mode in FIG. 1. Start of casting into tandate 1 (time
At t 1 ), program control is performed to read input power command Es commensurate with the weight of molten steel from table 9 to control input power and prevent a drop in molten steel temperature at the initial stage of casting (period T 1 ). Specific time from start of casting
When the temperature of the molten steel reaches T 1 (or the target temperature θs) (time t 2 ), the switch 6 is switched to the Eo side for feedback control based on continuous measurement of the molten steel. next,
When a specific time (time t 3 ) comes before the end of the ladle 7, the control is switched to program control again and power is input in accordance with the weight of the molten steel (period T 3 ). The power input in this program control is such that the weight of molten steel starts to decrease when the ladle ends (time t 4 ), and the input power follows this and is lowered to prevent overheating, and the next ladle starts pouring (time t 4 ).
As the weight of the molten steel increases at t5 ), the input power is increased, and after a predetermined time or when the molten steel temperature reaches the target temperature (at time t6) , the control is returned to feedback control.

こうした鍋交換によるプログラム制御期間を持
つて鍋交換時の溶鋼温度低下を防止し、同様に鋳
込終了前(時刻t7)にはプログラム制御を行う。
この場合、鋳込終了時(t8)で溶鋼重さは減り始
め、タンデイツシユ1内の全部の溶鋼が排出され
るに追従して投入電力も下げる。
The program control period for replacing the ladle is used to prevent the molten steel temperature from decreasing when the ladle is replaced, and the program control is similarly performed before the end of casting (time t7 ).
In this case, at the end of casting (t 8 ), the weight of the molten steel begins to decrease, and as all of the molten steel in the tundish 1 is discharged, the input power is also reduced.

以上までのように、鋳込開始、鍋交換等の非定
常部にはフイードバツク制御では対応性の因難さ
による温度変動をプログラム制御によつて補償
し、定常時にはフイードバツク制御によつて精度
良い温度制御を行う。第2図中、ΔTは目標温度
と溶鋼温度の偏差側測定値を実線で示し、破線は
フイードバツク制御にのみによる従来の測定値を
示し、従来方法に較べて温度変動が少なくなつて
いることを示す。
As mentioned above, feedback control compensates for unsteady parts such as starting pouring and changing the pot using program control to compensate for temperature fluctuations due to unresponsiveness, and during steady-state conditions, feedback control compensates for temperature fluctuations with high accuracy. Take control. In Figure 2, ΔT shows the measured value on the deviation side between the target temperature and the molten steel temperature as a solid line, and the broken line shows the conventional measured value based only on feedback control, which shows that the temperature fluctuation is smaller compared to the conventional method. show.

ここで、本実施例では切換スイツチ6の切換制
御に、鍋交換時のフイードバツク制御からプログ
ラム制御への切換えタイミングを調整し、切換時
の温度変動を少なくする。これを以下に詳細に説
明する。
In this embodiment, in the switching control of the changeover switch 6, the timing of switching from feedback control to program control at the time of pot replacement is adjusted to reduce temperature fluctuations at the time of switching. This will be explained in detail below.

第2図において、鍋交換時のフイードバツク制
御からプログラム制御への切換えには鍋終了の特
定時間前(時刻t3)で行われるが、この切換時点
では投入電力指令EsがEoからEpに切換わり、こ
のEoとEpの差が大きいと溶鋼温度θが一時的に
上昇することがある。
In Fig. 2, the switch from feedback control to program control when replacing the pot is performed at a specific time (time t3 ) before the pot ends, but at the time of this switch, the input power command Es has been switched from Eo to Ep. , if the difference between Eo and Ep is large, the molten steel temperature θ may temporarily rise.

そこで、本実施例では第3図に示す切換制御を
行う。フイードバツク制御状態で鍋交換によるプ
ログラム制御への切換え時刻よりも所定時間前か
ら投入電力Eoの平均電力Eoを演算しておき(ス
テツプS1)、プログラム制御への切換時刻になつ
たとき(ステツプS2)、平均電力Eoと該切換時刻
でのプログラムデータEoの差が所定値Esよりも
小さいか否か判定し(ステツプS3)、小さいとき
には直ちにプログラム制御に入り(ステツプS4)、
大きいときにはフイードバツク制御を持続し(ス
テツプS5)、このフイードバツク制御で鍋交換に
よつて溶鋼重量Wが設定重量Wsまで下がるのを
待ち(ステツプS6)、設定重量Wsまで下つたとき
にはプログラム制御(ステツプS7)に切換える。
Therefore, in this embodiment, the switching control shown in FIG. 3 is performed. In the feedback control state, calculate the average power Eo of the input power Eo from a predetermined time before the time to switch to program control by replacing the pot (step S 1 ), and when the time to switch to program control comes (step S 2 ), determines whether the difference between the average power Eo and the program data Eo at the switching time is smaller than a predetermined value Es (step S3 ), and if it is smaller, immediately enters program control (step S4 );
When the weight is large, feedback control is continued (step S5 ), and this feedback control waits for the molten steel weight W to drop to the set weight Ws by replacing the ladle (step S6 ), and when it has fallen to the set weight Ws, the program control ( Switch to step S7 ).

このステツプS5〜S7による切換制御により、フ
イードバツク制御での投入電力Eoに対してプロ
グラム制御での投入電力Epは鍋交換による溶鋼
重量Wの低下に従つて低下し、EoとEpとの差が
設定値Esの範囲内に入ることでプログラム制御
への切換えに一時的な温度上昇を無くす。この切
換え態様は第2図中にタイミングt9で切換える場
合を破線で示す。
Due to the switching control in steps S5 to S7 , the input power Ep under program control decreases with respect to the input power Eo under feedback control as the molten steel weight W decreases due to ladle replacement, and the difference between Eo and Ep decreases. is within the range of the set value Es, eliminating the temporary temperature rise when switching to program control. This switching mode is shown by a broken line in FIG. 2 where the switching occurs at timing t9 .

なお、実施例における各部演算等による投入電
力指令Esの制御や切換スイツチ6の切換制御は
コンピユータによつて処理するに限らず、アナロ
グ演算手段によつて同等の作用効果を得ることが
できるのは勿論である。
In addition, the control of input power command Es and switching control of the changeover switch 6 by calculations of each part in the embodiments are not limited to being processed by a computer, but equivalent effects can be obtained by analog calculation means. Of course.

H 発明の効果 以上のとおり、本発明によれば、フイードバツ
ク制御とプログラム制御の切換えによつて非定常
部での温度変動を小さく、さらに鍋交換時のプロ
グラム制御への切換えにフイードバツク制御での
投入電力との差を少なくするようにしたため、切
換時の温度変動を一層小さくし、高品質の連続鋳
造を得ることができる効果がある。
H. Effects of the Invention As described above, according to the present invention, temperature fluctuations in unsteady parts are reduced by switching between feedback control and program control, and furthermore, when switching to program control when replacing a pan, input using feedback control is performed. Since the difference in power is reduced, temperature fluctuations during switching can be further reduced, and high quality continuous casting can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置構成図、
第2図は第1図における制御態様を示す図、第3
図は鍋交換時のフイードバツク制御からプログラ
ム制御への切換制御フローチヤートである。 1……タンデイツシユ、2……溶鋼、4……電
力変換器、5……制御装置、6……切換スイツ
チ、7……取鍋、8……重量検出器、9……プロ
グラムデータテーブル、10……連続型温度計、
11……平均演算部、12……消耗型温度計、1
3……補償演算部、14……投入電力演算部、1
5……リミツタ部。
FIG. 1 is a device configuration diagram showing an embodiment of the present invention;
Figure 2 is a diagram showing the control mode in Figure 1;
The figure is a control flowchart for switching from feedback control to program control when replacing a pot. DESCRIPTION OF SYMBOLS 1... Tunnel, 2... Molten steel, 4... Power converter, 5... Control device, 6... Changeover switch, 7... Ladle, 8... Weight detector, 9... Program data table, 10 ...continuous thermometer,
11...Average calculation unit, 12...Consumable thermometer, 1
3...Compensation calculation unit, 14...Input power calculation unit, 1
5...Limitsuta Club.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造用タンデイツシユの誘導炉への投入
電力を非定常時にはプログラム制御し、定常時に
はタンデイツシユ内の溶鋼温度の連続測定による
温度フイードバツク制御し、鍋交換によるフイー
ドバツク制御からプログラム制御への切換えに鍋
交換前の投入電力平均値とプログラム制御開始時
の投入電力との差が一定値以内にあれば直ちにプ
ログラム制御に切換え、一定値を越えるときには
タンデイツシユ内溶鋼重量が所定値まで低下した
ときにプログラム制御に切換えることを特徴とす
る連続鋳造における誘導加熱制御方法。
1 Program control of the power input to the induction furnace of the continuous casting tundish during non-steady conditions, temperature feedback control by continuous measurement of the molten steel temperature in the tundish during steady conditions, and change of the pot from feedback control to program control by changing the pot. If the difference between the previous input power average value and the input power at the start of program control is within a certain value, the system immediately switches to program control, and if it exceeds a certain value, program control is activated when the weight of molten steel in the tundish drops to a predetermined value. An induction heating control method in continuous casting characterized by switching.
JP15765385A 1985-07-17 1985-07-17 Induction heating control for continuous casting Granted JPS6220282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15765385A JPS6220282A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15765385A JPS6220282A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Publications (2)

Publication Number Publication Date
JPS6220282A JPS6220282A (en) 1987-01-28
JPH0212398B2 true JPH0212398B2 (en) 1990-03-20

Family

ID=15654426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15765385A Granted JPS6220282A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Country Status (1)

Country Link
JP (1) JPS6220282A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014839A (en) * 2010-06-29 2012-01-19 Panasonic Corp Heating cooker

Also Published As

Publication number Publication date
JPS6220282A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US20030102383A1 (en) Controller, temperature controller and heat processor using same
JP3776297B2 (en) Control system
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JPH0571552B2 (en)
JPH0212398B2 (en)
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPH0474839B2 (en)
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JPS6270904A (en) Temperature control method
JP2645141B2 (en) Temperature control method
RU2287886C1 (en) Electric heater control process
JPS6220281A (en) Induction heating control for continuous casting
JP3041568B2 (en) Power control method of transfer type arc plasma
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JPH0128933Y2 (en)
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
KR100491001B1 (en) A method of controlling level of molten steel using model reference for strip casting process
JP4533545B2 (en) Heating furnace temperature control method
JPH02137656A (en) Method for controlling temperature of molten steel in tundish
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JPH0331765B2 (en)
SU1442342A1 (en) Method of automatic control of heating when soldering
JPH08243703A (en) Method for controlling molten metal surface level in continuous casting
JPS62168652A (en) Molten metal surface level control method in continuous casting machine
JPH08120316A (en) Method for setting temperature at blowing stop in converter