JPH0673733B2 - Method of controlling molten steel temperature in tundish at the beginning of casting - Google Patents

Method of controlling molten steel temperature in tundish at the beginning of casting

Info

Publication number
JPH0673733B2
JPH0673733B2 JP63290872A JP29087288A JPH0673733B2 JP H0673733 B2 JPH0673733 B2 JP H0673733B2 JP 63290872 A JP63290872 A JP 63290872A JP 29087288 A JP29087288 A JP 29087288A JP H0673733 B2 JPH0673733 B2 JP H0673733B2
Authority
JP
Japan
Prior art keywords
temperature
molten steel
tundish
induction heating
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63290872A
Other languages
Japanese (ja)
Other versions
JPH02137656A (en
Inventor
剛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63290872A priority Critical patent/JPH0673733B2/en
Publication of JPH02137656A publication Critical patent/JPH02137656A/en
Publication of JPH0673733B2 publication Critical patent/JPH0673733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続鋳造における、特に鋳込初期のタンディ
ッシュ内溶鋼温度の制御方法に関する。
TECHNICAL FIELD The present invention relates to a method for controlling the temperature of molten steel in a tundish in continuous casting, particularly in the initial stage of casting.

[従来の技術] 連続鋳造の鋳込中期におけるタンディッシュ内溶鋼温度
を制御するには、誘導加熱装置と連続測温素子とを組み
合わせることにより、フィードバック制御またはフィー
ドフォワード制御による自動制御方法が一般に採られて
いる。
[Prior Art] In order to control the molten steel temperature in the tundish in the middle casting period of continuous casting, an automatic control method by feedback control or feedforward control is generally adopted by combining an induction heating device and a continuous temperature measuring element. Has been.

しかし、上記連続測温素子はタンディッシュ内の溶鋼に
浸漬後、該溶鋼との間で熱平衡状態に達するまでは正確
な温度測定ができない。このため、温度制御で最も重要
な鋳込開始直後は実際の溶鋼温度測定を行わない定型的
なパターン制御が実施されていた。
However, the continuous temperature measuring element cannot accurately measure temperature until it reaches a thermal equilibrium state with the molten steel after being immersed in the molten steel in the tundish. For this reason, a typical pattern control was performed in which actual molten steel temperature measurement was not performed immediately after the start of casting, which is the most important temperature control.

たとえば、特開昭61−249655号公報によれば、溶鋼の温
度制御に当り、鋳込当初はプログラム制御を行い、測温
が安定した場合、連続測温計による測定値に基づいてフ
ィードバック制御していた。
For example, according to Japanese Patent Laid-Open No. 61-249655, in controlling the temperature of molten steel, program control is performed at the beginning of casting, and when temperature measurement is stable, feedback control is performed based on the measured value by a continuous thermometer. Was there.

[発明が解決しようとする課題] しかしながら、従来法におけるパターン制御では次のよ
うな難点があった。すなわち、 溶鋼温度≧目標温度のときは、誘導加熱により溶鋼温
度>目標温度となり、モールド内凝固シェル厚が不足す
るため、ブレークアウト等の操業トラブルを発生するお
それがある。
[Problems to be Solved by the Invention] However, the pattern control in the conventional method has the following problems. That is, when the molten steel temperature ≧ the target temperature, the molten steel temperature> the target temperature due to induction heating, and the solidified shell thickness in the mold becomes insufficient, which may cause an operational trouble such as breakout.

溶鋼温度<目標温度のときは、パターン制御における
初期設定電圧が不足すれば、誘導加熱を実施しても溶鋼
温度<目標温度のままであり、溶鋼の粘度が過大となる
結果、ノズル詰りが発生し、鋳込みが不可能となる。
When the molten steel temperature <target temperature, if the initial setting voltage in pattern control is insufficient, the molten steel temperature remains the target temperature even if induction heating is performed, and the viscosity of the molten steel becomes excessive, resulting in nozzle clogging. However, casting becomes impossible.

他方、前記公報記載技術にあっても、鋳込初期において
はパターン制御のみによっているため、かかる問題は解
決できないでいた。
On the other hand, even with the technique described in the above publication, such a problem cannot be solved because only pattern control is performed at the initial stage of casting.

そこで本発明の主目的は、鋳込初期、すなわち鋳込開始
時点から連続測温素子による温度制御の開始が可能とな
る連続測温素子の熱平衡に達する時点までの間に、瞬間
的に正確な測温が可能な消耗型温度計により溶鋼の温度
測定を行い、鋳込初期のパターン制御に補正をかけるこ
とにより、鋳込初期における溶鋼温度の適確な制御を行
うことができる方法を提供することにある。
Therefore, the main object of the present invention is to obtain an instantaneous accurate measurement from the beginning of pouring, that is, from the start of pouring to the point of reaching the thermal equilibrium of the continuous temperature measuring element which enables the start of temperature control by the continuous temperature measuring element. A consumable thermometer capable of measuring temperature is used to measure the temperature of molten steel, and by correcting the pattern control in the initial stage of casting, a method is provided that enables accurate control of the molten steel temperature in the initial stage of casting. Especially.

[課題を解決するための手段] 上記課題を解決するための本発明は、連続鋳造用のタン
ディッシュ内溶鋼をその溶鋼と熱平衡状態に達するまで
の時間が長い連続測温素子により検出し、この連続測温
素子からの温度信号に基づいて誘導加熱装置を用いてフ
ィードバック温度制御を行うに際し、 製鋼段階から取鍋内に至るまでの当該チャージの温度履
歴、取鍋の熱履歴、タンディッシュの予熱温度等の鋳込
初期の溶鋼温度を定める初期条件に基づいて、連続鋳造
鋳込初期のタンディッシュ内溶鋼温度を予測計算し、こ
の予測計算結果に基づいて誘導加熱電力パターンを設定
するとともに、 取鍋からタンディッシュ内に注湯し、タンディッシュ内
の溶鋼深さがピンチ効果を発生しない溶鋼深さとなった
時点で、前記誘導加熱電力パターンによって誘導加熱を
開始し、 前記注湯開始後、前記連続測温素子がタンディッシュ内
溶鋼と熱平衡状態に達するまでの期間内において短時間
で測温可能な消耗型温度計により少なくとも1回のサン
プリング測温を行い、この消耗型温度計による測温結果
に基づいて前記誘導加熱電力パターンの修正を行い、 上記連続測温素子が実質的に熱平衡状態に到達した以後
は、前記誘導加熱電力パターンによる温度制御に代え
て、連続測温素子による測温値に基づいて誘導加熱電力
をフィードバック制御することを特徴とするものであ
る。
[Means for Solving the Problems] The present invention for solving the above problems detects molten steel in a tundish for continuous casting by a continuous temperature measuring element which takes a long time to reach a thermal equilibrium state with the molten steel. When performing feedback temperature control using the induction heating device based on the temperature signal from the continuous temperature measuring element, the temperature history of the charge from the steelmaking stage to the inside of the ladle, the thermal history of the ladle, and the preheating of the tundish. The molten steel temperature in the tundish in the initial casting stage of continuous casting is predicted and calculated based on the initial conditions that determine the molten steel temperature in the initial casting stage, such as temperature, and the induction heating power pattern is set based on this predicted calculation result. When the molten steel is poured from the pan into the tundish, and when the molten steel depth in the tundish reaches the molten steel depth that does not produce the pinch effect, the induction heating power pattern is used. After the induction heating is started and after the pouring is started, at least one sampling measurement is performed by a consumable thermometer capable of measuring temperature in a short time within a period until the continuous temperature measuring element reaches a thermal equilibrium state with the molten steel in the tundish. The temperature of the induction heating power is corrected based on the temperature measurement result of the consumable thermometer, and after the continuous temperature measuring element has substantially reached the thermal equilibrium state, the temperature of the induction heating power pattern is changed. Instead of the control, the induction heating power is feedback-controlled based on the temperature measured by the continuous temperature measuring element.

[作 用] 一般に、通常用いられる連続測温素子は、被測定物との
間で熱平衡に達するまでの時間がかなり長く、その間は
正確な温度測定ができない。
[Operation] Generally, a continuous temperature measuring element that is normally used takes a long time to reach thermal equilibrium with the object to be measured, and accurate temperature measurement cannot be performed during that time.

本発明では、溶鋼を取鍋からタンディッシュヘ注入後、
連続測温素子が熱平衡に達し、正確な測温が可能になる
までの初期において、誘導加熱パターンを設定し、誘導
加熱を開始し、誘導加熱パターン制御を行っている過程
で、少なくとも1回短時間で測温可能な消耗型温度計に
よりサンプリング測温し、その測温結果に基づき上記誘
導加熱パターンを補正するものであるから、上記期間内
においても溶鋼温度を適確に制御することができる。鋳
込初期において、誘導加熱パターンを、過去の実績から
重回帰式により設定できるとしても、異常時において
は、前記誘導加熱パターンの設定が妥当でないものであ
るのに対して、本発明によれば、前述のとおり、鋳込初
期の溶鋼温度制御精度が高まるほか、異常時において
も、確実に目標の溶鋼温度に制御できるので、鋳込初期
における品質改善に寄与するところが大である。
In the present invention, after pouring molten steel from the ladle into the tundish,
In the process of setting the induction heating pattern, starting the induction heating, and controlling the induction heating pattern in the initial stage until the continuous temperature measuring element reaches thermal equilibrium and accurate temperature measurement becomes possible, at least once Since the sampled temperature is measured by a consumable thermometer that can measure temperature over time, and the induction heating pattern is corrected based on the temperature measurement result, the molten steel temperature can be accurately controlled even within the above period. . In the initial stage of pouring, even if the induction heating pattern can be set by a multiple regression equation from past results, at the time of abnormality, the setting of the induction heating pattern is not appropriate, whereas according to the present invention. As described above, the accuracy of molten steel temperature control in the early stage of casting is improved, and even if there is an abnormality, the target molten steel temperature can be controlled with certainty, which greatly contributes to quality improvement in the initial stage of casting.

[発明の具達的構成] 以下本発明をさらに具体的に説明する。[Specific Structure of the Invention] The present invention will be described in more detail below.

第1図は本発明に係わるタンディッシュ内溶鋼温度制御
方法を説明する模式図である。図中、1は取鍋であり、
ノズル2を経てタンディッシュ3内へ溶鋼4が堰3aで仕
切られた受室RAに注湯される。タンディッシュ3内の受
室RBから注出室RAとの間を連通孔3bを介して循環する過
程で、溶鋼4は誘導加熱装置5により加熱され所要の温
度を維持しつつ、タンディッシュ3の注出室3bの底部に
形成した注入口6、6を介して連続鋳造用モールド7、
7へ注入され、鋳片8、8となる。
FIG. 1 is a schematic diagram for explaining a molten steel temperature control method in a tundish according to the present invention. In the figure, 1 is a ladle,
Molten steel 4 is poured into a tundish 3 through a nozzle 2 into a receiving chamber RA partitioned by a weir 3a. In the process of circulating between the receiving chamber RB and the pouring chamber RA in the tundish 3 through the communication hole 3b, the molten steel 4 is heated by the induction heating device 5 and the required temperature is maintained, The continuous casting mold 7, through the injection ports 6 formed at the bottom of the pouring chamber 3b,
It is poured into 7 and becomes cast pieces 8 and 8.

ところで、モールド7、7へ鋳込まれる溶鋼の温度は製
品の品質等に重大な影響を与えるため、適確な温度制御
を必要とする。この点、モールド7、7への鋳込み開始
後の溶鋼4の温度測定は、一般に溶鋼4中に浸漬された
連続測温計9により行われる。該連続測温計9からの温
度信号は、温度演算器10を介して誘導加熱装置制御用計
算機11に入力され、現溶鋼温度と目標温度とを比較演算
後、目標温度とすべき誘導加熱に必要な電圧値を補正
し、これを誘導加熱制御装置12へ入力し、所要の電圧と
なるよう誘導加熱装置5を制御する。
By the way, the temperature of the molten steel cast into the molds 7, 7 has a great influence on the quality of the product and the like, and therefore, an appropriate temperature control is required. In this respect, the temperature measurement of the molten steel 4 after the start of casting into the molds 7, 7 is generally performed by a continuous thermometer 9 immersed in the molten steel 4. The temperature signal from the continuous thermometer 9 is input to the induction heating device control computer 11 via the temperature calculator 10, and after the comparison calculation of the current molten steel temperature and the target temperature, the induction heating to be the target temperature is performed. The required voltage value is corrected and input to the induction heating control device 12 to control the induction heating device 5 so that the required voltage is obtained.

かかる温度制御が可能であるためには、前述したよう
に、連続測温計9が溶鋼4との間で熱平衡状態にあるこ
とが前提である。しかるに、タンディッシュ注湯時から
鋳込開始時までの初期には連続測温計9は未だ熱平衡に
達していないので、その温度信号に基づくことは温度制
御性がきわめて悪い。したがって、止むを得ず、前述の
ように初期においてはパターン制御に頼らざるを得な
い。しかし予め設定した制御パターンにより温度制御を
続行することは多くの問題があることは前述の通りであ
る。
In order for such temperature control to be possible, it is premised that the continuous thermometer 9 is in a thermal equilibrium state with the molten steel 4, as described above. However, since the continuous thermometer 9 has not yet reached the thermal equilibrium in the initial period from the time of pouring the tundish to the start of casting, the temperature controllability is extremely poor based on the temperature signal. Therefore, there is no choice but to rely on the pattern control in the initial stage as described above. However, as described above, there are many problems in continuing the temperature control according to the preset control pattern.

かかる点に鑑み本発明では、上記連続測温計9が測定可
能になるまでの期間の溶鋼温度を測定するため、熱電対
を有する消耗型温度計14を溶鋼4内に、少なくとも1回
浸漬して初期段階における溶鋼の測温を行う。この消耗
型温度計14からの温度信号を温度演算器15を介して、前
記誘導加熱装置制御用計算機11へ入力し、現温度信号に
基づいて上位計算機から与えられる操業条件13に基づく
鋳込初期の誘導加熱電圧パターンの補正を行った後、誘
導加熱制御装置13を介して、誘導加熱装置5に入力し
て、溶鋼4の温度制御を行うものである。
In view of this point, in the present invention, in order to measure the molten steel temperature until the continuous thermometer 9 can be measured, the consumable thermometer 14 having a thermocouple is immersed in the molten steel 4 at least once. Temperature measurement of molten steel at the initial stage. The temperature signal from the consumable thermometer 14 is input to the induction heating device control computer 11 through the temperature calculator 15, and the casting initial stage based on the operating condition 13 given from the host computer based on the current temperature signal. After the induction heating voltage pattern is corrected, it is input to the induction heating device 5 via the induction heating control device 13 to control the temperature of the molten steel 4.

次に、本発明法の具体的操作手順を第2図のフローシー
トにより説明する。まず本発明では、操業条件(取鍋処
理後の溶鋼温度、取鍋処理終了時から連続鋳造鋳込開始
までの所要時間、取鍋情報、タンディッシュ昇熱条件
等)(I)およびタンディッシュ内目標温度(II)の各
値を計算機(III)(第1図における計算機11)に入力
し、鋳込開始時の誘導加熱電圧パターン決定(IV)を行
う。次に取鍋からタンディッシュ内に溶鋼を注湯し、タ
ンディッシュ内溶鋼深さが後述するピンチ効果が発生し
ない最低溶鋼深さ以上となった時、すなわち、タンディ
ッシュ内溶鋼深さ≧H0(V)となった時点で、誘導加熱
電圧パターン制御をスタート(VI)する。続いて、鋳込
スタート(VII)するとともに、前述したように、消耗
型温度計によるタンディッシュ内溶鋼温度測定(VIII)
を1〜5回程度行い、その実測温度とタンディッシュ目
標温度との差に基づき、誘導加熱電圧パターン制御の自
動補正(IX)を行い、この補正された電圧パターンによ
り、誘導加熱を続ける。上記消耗型温度計による温度測
定の度に自動補正を繰り返し(X)、連続測温計が熱平
衡に達し、測定可能(XI)となったら、あとは公知方法
により連続測温によるフィードバック制御(XII)に移
行し、連続鋳造を続けるものである。
Next, the specific operation procedure of the method of the present invention will be described with reference to the flow sheet of FIG. First, in the present invention, the operating conditions (molten steel temperature after ladle treatment, time required from the end of ladle treatment to the start of continuous casting and casting, ladle information, tundish heating conditions, etc.) (I) and tundish Each value of the target temperature (II) is input to the calculator (III) (calculator 11 in FIG. 1), and induction heating voltage pattern determination (IV) at the start of pouring is performed. Next, when molten steel is poured from the ladle into the tundish, and when the molten steel depth in the tundish exceeds the minimum molten steel depth at which the pinch effect described below does not occur, that is, the molten steel depth in the tundish ≧ H 0 When it becomes (V), the induction heating voltage pattern control is started (VI). Next, start casting (VII) and, as described above, measure molten steel temperature in the tundish with a consumable thermometer (VIII).
Is performed about 1 to 5 times, based on the difference between the measured temperature and the tundish target temperature, automatic correction (IX) of the induction heating voltage pattern control is performed, and induction heating is continued by this corrected voltage pattern. Automatic correction is repeated each time the temperature is measured by the consumable thermometer (X), and when the continuous thermometer reaches thermal equilibrium and becomes measurable (XI), feedback control by continuous temperature measurement (XII) is performed by a known method. ), And continuous casting is continued.

上記ピンチ効果とは、タンディッシュ内の溶鋼静圧が所
定値以下の時、誘導加熱装置に電力を投入すると、電磁
誘導力により、溝型誘導炉内の溶鋼が圧縮/膨張し、不
連続の状態となり、この瞬間に回路のインピーダンスが
無限大となってしまう現象をいう。したがって、誘導加
熱電圧制御は上記溶鋼静圧、すなわちタンディッシュ内
溶鋼深さが所定値H0を超えた時点以降において行う必要
がある。
The pinch effect means that when electric power is applied to the induction heating device when the static pressure of molten steel in the tundish is less than or equal to a predetermined value, the molten steel in the groove-type induction furnace is compressed / expanded due to electromagnetic induction force. This is a phenomenon in which the impedance of the circuit becomes infinite at this moment. Therefore, it is necessary to control the induction heating voltage after the static pressure of molten steel, that is, when the molten steel depth in the tundish exceeds a predetermined value H 0 .

次に本発明の効果を第3図により具体的に説明する。同
図は409mm×530mmの普通鋼のブルームを製造した例であ
る。
Next, the effect of the present invention will be specifically described with reference to FIG. The figure shows an example of manufacturing a normal steel bloom of 409 mm x 530 mm.

まず鋳込速度(m/分)が(a)線のように設定したと
き、タンディッシュ内溶鋼重量(Ton)を(b)線のよ
うに設定する。次に、誘導加熱電圧パターンは、従来法
では破線(c)のように設定していることが多いが、本
発明法では消耗型温度計の実測値に基づき補正をし、実
線(d)のように設定する。この結果、タンディッシュ
内溶鋼温度は実線(e)のように目標温度に近似する。
これに対し、補正を行わない(c)線の誘導加熱電圧設
定パターンに基づく従来法では、破線(f)のような曲
線となる。このように、本発明では消耗型熱電対により
誘導加熱電圧パターンの補正を行うことにより、鋳込初
期での適確な温度制御が可能となることが判る。
First, when the casting speed (m / min) is set as shown in line (a), the weight of molten steel in the tundish (Ton) is set as shown in line (b). Next, the induction heating voltage pattern is often set as shown by the broken line (c) in the conventional method, but is corrected by the method of the present invention based on the actual measurement value of the consumable thermometer, and the solid line (d) To set. As a result, the molten steel temperature in the tundish approximates to the target temperature as indicated by the solid line (e).
On the other hand, in the conventional method based on the induction heating voltage setting pattern of the line (c) which is not corrected, the curve is as shown by the broken line (f). As described above, in the present invention, it is understood that by correcting the induction heating voltage pattern with the consumable thermocouple, it becomes possible to perform accurate temperature control at the initial stage of casting.

[発明の効果] 以上の通り、本発明によれば、鋳込初期においてもタン
ディッシュ内溶鋼温度の制御精度を大幅に向上させるこ
とができる。
[Advantages of the Invention] As described above, according to the present invention, it is possible to significantly improve the control accuracy of the molten steel temperature in the tundish even in the initial stage of casting.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を説明する模式図、第2図は本発明法の
操作手順のフローチャート、第3図は本発明における温
度制御法を従来法と比較して示した図である。 1……取鍋、3……タンディッシュ、4……溶鋼、5…
…誘導加熱装置、7……モールド、9……連続測温計、
14……消耗型温度計(熱電対)
FIG. 1 is a schematic diagram for explaining the present invention, FIG. 2 is a flowchart of an operating procedure of the method of the present invention, and FIG. 3 is a diagram showing a temperature control method of the present invention in comparison with a conventional method. 1 ... Ladle, 3 ... Tundish, 4 ... Molten steel, 5 ...
… Induction heating device, 7 …… Mold, 9 …… Continuous thermometer,
14-Consumable thermometer (thermocouple)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造用のタンディッシュ内溶鋼をその
溶鋼と熱平衡状態に達するまでの時間が長い連続測温素
子により検出し、この連続測温素子からの温度信号に基
づいて誘導加熱装置を用いてフィードバック温度制御を
行うに際し、 製鋼段階から取鍋内に至るまでの当該チャージの温度履
歴、取鍋の熱履歴、タンディッシュの予熱温度等の鋳込
初期の溶鋼温度を定める初期条件に基づいて、連続鋳造
鋳込初期のタンディッシュ内溶鋼温度を予測演算し、こ
の予測演算結果に基づいて誘導加熱電力パターンを設定
するとともに、 取鍋からタンディッシュ内に注湯し、タンディッシュ内
の溶鋼深さがピンチ効果を発生しない溶鋼深さとなった
時点で、前記誘導加熱電力パターンによって誘導加熱を
開始し、 前記注湯開始後、前記連続測温素子がタンディッシュ内
溶鋼と熱平衡状態に達するまでの期間内において短時間
で測温可能な消耗型温度計により少なくとも1回のサン
プリング測温を行い、この消耗型温度計による測温結果
に基づいて前記誘導加熱電力パターンの修正を行い、 上記連続測温素子が実質的に熱平衡状態に到達した以後
は、前記誘導加熱電力パターンによる温度制御に代え
て、連続測温素子による測温値に基づいて誘導加熱電力
をフィードバック制御することを特徴とする鋳込初期の
タンディッシュ内溶鋼温度の制御方法。
1. A molten steel in a tundish for continuous casting is detected by a continuous temperature measuring element which takes a long time to reach a thermal equilibrium state with the molten steel, and an induction heating device is activated based on a temperature signal from the continuous temperature measuring element. When performing feedback temperature control using the above, based on the initial conditions that determine the molten steel temperature in the initial stage of casting, such as the temperature history of the charge from the steelmaking stage to the inside of the ladle, the heat history of the ladle, and the preheating temperature of the tundish. Then, the molten steel temperature in the tundish at the initial stage of continuous casting is predicted and calculated, and the induction heating power pattern is set based on this predicted calculation result, and the molten steel in the tundish is poured from the ladle into the tundish. When the depth reaches the molten steel depth that does not generate the pinch effect, induction heating is started by the induction heating power pattern, and after the pouring starts, the continuous temperature measuring element Is sampled at least once by a consumable thermometer that can measure the temperature in a short time within the period until it reaches thermal equilibrium with the molten steel in the tundish. After the induction heating power pattern is corrected and after the continuous temperature measuring element has substantially reached the thermal equilibrium state, instead of the temperature control by the induction heating power pattern, induction is performed based on the temperature measurement value by the continuous temperature measuring element. A method for controlling a molten steel temperature in a tundish in an early stage of casting, which is characterized by performing feedback control of heating power.
JP63290872A 1988-11-17 1988-11-17 Method of controlling molten steel temperature in tundish at the beginning of casting Expired - Lifetime JPH0673733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290872A JPH0673733B2 (en) 1988-11-17 1988-11-17 Method of controlling molten steel temperature in tundish at the beginning of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290872A JPH0673733B2 (en) 1988-11-17 1988-11-17 Method of controlling molten steel temperature in tundish at the beginning of casting

Publications (2)

Publication Number Publication Date
JPH02137656A JPH02137656A (en) 1990-05-25
JPH0673733B2 true JPH0673733B2 (en) 1994-09-21

Family

ID=17761593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290872A Expired - Lifetime JPH0673733B2 (en) 1988-11-17 1988-11-17 Method of controlling molten steel temperature in tundish at the beginning of casting

Country Status (1)

Country Link
JP (1) JPH0673733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455352B1 (en) * 2013-04-30 2014-10-28 현대제철 주식회사 Continuous casting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400034B1 (en) * 2012-01-31 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish
KR101400040B1 (en) * 2012-04-26 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156559A (en) * 1983-02-25 1984-09-05 Kobe Steel Ltd Method for setting casting temperature in continuous casting
JPS61249655A (en) * 1985-04-26 1986-11-06 Kawasaki Steel Corp Method and apparatus for controlling temperature of molten steel in tundish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455352B1 (en) * 2013-04-30 2014-10-28 현대제철 주식회사 Continuous casting method

Also Published As

Publication number Publication date
JPH02137656A (en) 1990-05-25

Similar Documents

Publication Publication Date Title
EP0091930B1 (en) Method and device for controlling the curing rate of concrete
JPH0421631Y2 (en)
NO781780L (en) METHOD AND DEVICE FOR REGULATING A CASTING OPERATION FOR LOW PRESSURE CASTING OF A METAL
JPH06122062A (en) Continuous different pressure casting method
US4370719A (en) Control of centrifugal pipe casting operation
JPH0673733B2 (en) Method of controlling molten steel temperature in tundish at the beginning of casting
KR20020026448A (en) Automation of a high-speed continuous casting plant
JPH055121A (en) Method for controlling steel tapping temperature
JPH0929401A (en) Method for controlling temperature of molten steel in tundish for continuous casting
JPS6260189B2 (en)
JP3369926B2 (en) Auto start method for continuous casting
JPS6261383B2 (en)
JPS6250217B2 (en)
JPH01271048A (en) Heating and control method for molten steel inside tundish
JPH01170568A (en) Method for controlling molten metal surface level
JP2695831B2 (en) Control method of molten steel level
JP3201930B2 (en) Casting condition control method in low pressure casting
JP3832358B2 (en) Control method of hot water level meter in mold at the start of continuous casting
CA2404331A1 (en) Automatic start method and device for continuous casting systems
KR200336377Y1 (en) Preheater for Pony Ladle
JPS61103662A (en) Injection plunger control system in die casting
JPH02268954A (en) Continuous casting method for decreasing solidified cavity
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
JP2650129B2 (en) Management method of die temperature in die casting
JPH0344863B2 (en)