JPH0474839B2 - - Google Patents

Info

Publication number
JPH0474839B2
JPH0474839B2 JP15765185A JP15765185A JPH0474839B2 JP H0474839 B2 JPH0474839 B2 JP H0474839B2 JP 15765185 A JP15765185 A JP 15765185A JP 15765185 A JP15765185 A JP 15765185A JP H0474839 B2 JPH0474839 B2 JP H0474839B2
Authority
JP
Japan
Prior art keywords
temperature
molten steel
input power
power
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15765185A
Other languages
Japanese (ja)
Other versions
JPS6217983A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15765185A priority Critical patent/JPS6217983A/en
Publication of JPS6217983A publication Critical patent/JPS6217983A/en
Publication of JPH0474839B2 publication Critical patent/JPH0474839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、誘導加熱制御方法に係り、特に連続
鋳造におけるタンデイツシユ内溶鋼の温度制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for controlling induction heating, and particularly to a method for controlling the temperature of molten steel in a tundish in continuous casting.

B 発明の概要 本発明は、タンデイツシユ内溶鋼温度を誘導加
熱制御するにおいて、 非定常運転時にはプログラム制御し、定常運転
時にはフイードバツク制御し、このフイードバツ
ク制御における投入電力を決定する基準電力と比
例定数を目標温度と溶鋼温度の差及び温度の時間
変化率に従つて切り換えることにより、 連続鋳造における非定常運転時と定常運転時の
全区間に渡つて溶鋼の温度変動を小さくするもの
である。
B. Summary of the Invention The present invention, in induction heating control of the temperature of molten steel in a tundish, performs program control during unsteady operation and feedback control during steady operation, and aims at the reference power and proportionality constant that determine the input power in this feedback control. By switching according to the difference between the temperature and the molten steel temperature and the time rate of change in temperature, the temperature fluctuations of the molten steel are reduced over the entire period between unsteady operation and steady operation in continuous casting.

C 従来の技術 連続鋳造におけるスラブの表面品質は、鋳造初
期、末期あるいは連々鋳における鍋交換時(継
目)などの非定常運転時では定常運転時に比べて
劣る。非定常運転時における表面品質劣化の一因
としてタンデイツシユ内溶鋼温度の低下があり、
タンデイツシユ内溶鋼温度は鋳込初期に著しく低
下し、中期で回復し、末期あるいは鍋交換時に再
び低下する。
C. Prior Art The surface quality of a slab in continuous casting is inferior to that during steady operation during unsteady operation, such as at the beginning and end of casting, or when changing pots (joints) in continuous casting. One of the causes of surface quality deterioration during unsteady operation is a decrease in the temperature of the molten steel in the tundish.
The temperature of molten steel in the tundish drops significantly in the early stages of casting, recovers in the middle, and then drops again at the end or when the pot is replaced.

そこで、従来からタンデイツシユ内溶鋼の連続
測温をし、鋳込温度を監視し、誘導加熱炉の加熱
量を調整して溶鋼温度を一定にする方法や、鋳込
初期のピンチング(投入電力の過多による加熱不
能)の回避のために特定の投入電力パターンを持
つて調整する方法が行われている。
Therefore, conventional methods have been used to continuously measure the temperature of the molten steel in the tundish, monitor the casting temperature, and adjust the heating amount of the induction heating furnace to keep the molten steel temperature constant. In order to avoid heating problems (inability to heat due to heating), methods are being used to adjust the input power using a specific pattern.

D 発明が解決しようとする問題点 従来の加熱電力調整には実測温度と目標温度を
比較し、手動でタツプを切り換えて投入電力を調
整するという繁雑な操作になるものであつた。ま
た、電源にインバータを用い、実測温度と目標温
度の比較によるPID調節計を用いた単なるフイー
ドバツク制御方法においても鋳込初期や取鍋交換
時の非定常運転時においてはタンデイツシユ内の
温度センサが溶鋼湯面と離れるため自動制御がで
きない問題点や定常運転時においても単なるフイ
ードバツク制御では、目標温度に対して溶鋼温度
が低い場合には手段が0になり、誘導炉の溝内の
溶鋼が冷え、固まる問題を含め、目標温度に対し
ての制御の追従性を高め、またハンチングを抑え
て温度偏差を小さくすることは困難であり、溶鋼
温度を一定に保つのは難しいものであつた。
D. Problems to be Solved by the Invention Conventional heating power adjustment involved comparing the measured temperature with the target temperature and manually switching the taps to adjust the input power, which was a complicated operation. In addition, even in a simple feedback control method using an inverter as a power source and a PID controller that compares the actual measured temperature with the target temperature, the temperature sensor inside the tundish may be in contact with the molten steel during unsteady operation at the beginning of casting or when changing the ladle. The problem is that automatic control cannot be performed because it is far from the molten metal surface, and if simple feedback control is used even during steady operation, if the molten steel temperature is lower than the target temperature, the method becomes zero, and the molten steel in the groove of the induction furnace cools down. Including the problem of hardening, it is difficult to improve control followability to the target temperature, suppress hunting, and reduce temperature deviation, and it is difficult to maintain the molten steel temperature constant.

本発明の目的は非定常運転時と定常運転時の全
区間に渡つて溶鋼の温度変動を小さくした誘導加
熱制御方法を提供することにある。
An object of the present invention is to provide an induction heating control method that reduces temperature fluctuations in molten steel over the entire range during unsteady operation and steady operation.

E 問題点を解決するための手段 本発明は前記目的を達成するため、定常運転時
ではフイードバツク制御を行い、非定常運転時で
はタンデイツシユ内溶鋼量の変化に応じた投入電
力にするプログラム制御を行い、フイードバツク
制御時に投入電力を決定する基準電力と比例定数
を目標温度と溶鋼温度の差及び温度の時間変化率
に従つて切り換えるようにしたものである。
E Means for Solving the Problems In order to achieve the above object, the present invention performs feedback control during steady operation, and performs program control to adjust the input power according to changes in the amount of molten steel in the tundish during unsteady operation. , the reference power and proportionality constant for determining input power during feedback control are switched according to the difference between the target temperature and molten steel temperature and the time rate of change of temperature.

F 作用 非定常運転時には同じ投入電力に対してタンデ
イツシユ内溶鋼量の変化による温度の上昇、下降
の関係から投入電力を調整するプログラム制御に
よつて温度安定化を図り、定常運転時のフイード
バツク制御時には温度差の正負に応じて基準電力
を変えて応答性を高見、温度差が正負所定値を越
えたか否か及び温度差が大きくなろうとしている
か否かに応じて比例定数を変えてハンチングを抑
制する。
F Effect During unsteady operation, the temperature is stabilized by program control that adjusts the input power based on the relationship between the rise and fall of temperature due to changes in the amount of molten steel in the tundish for the same input power, and during feedback control during steady operation. The reference power is changed depending on whether the temperature difference is positive or negative to improve responsiveness, and hunting is suppressed by changing the proportionality constant depending on whether the temperature difference exceeds a predetermined positive or negative value and whether the temperature difference is about to become large. do.

G 実施例 以下、図面を参照して本発明の実施例を詳細に
説明する。
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は装置構成図を示す。タンデイツシユ1
内溶鋼2の加熱は、誘導炉1Aのインダクタ3に
供給する交流電力によつて行われ、この交流電力
はインバータINV、コンバータCONからなる電
力変換器4によつて電力制御又は電圧制御され
る。制御装置5は投入電力指令Esに従つて電力
変換器4の出力電力又は電圧をフイードバツク制
御する。
FIG. 1 shows an apparatus configuration diagram. Tandaisuyu 1
The internal molten steel 2 is heated by AC power supplied to the inductor 3 of the induction furnace 1A, and this AC power is subjected to power control or voltage control by a power converter 4 consisting of an inverter INV and a converter CON. The control device 5 performs feedback control of the output power or voltage of the power converter 4 according to the input power command Es.

投入電力指令Esは、切換スイツチ6によつて
プログラム制御時の指令Epと温度フイードバツ
ク制御時の指令Eoに切り換えられる。プログラ
ム制御は取鍋7からの注湯になる鋳込初期、鍋交
換期、鋳込末期など非定常運転時における溶鋼2
の湯面(溶鋼量)が著しく変化する期間に行わ
れ、温度フイードバツク制御はプログラム制御の
設定時間後又は溶鋼温度が目標温度に達したとき
の定常時に行われ、測温温度信号と目標温度との
比較演算によつて行われる。
The input power command Es is switched by a changeover switch 6 into a command Ep for program control and a command Eo for temperature feedback control. Program control is used for molten steel 2 during unsteady operation such as the initial stage of pouring when pouring from the ladle 7, the ladle replacement stage, and the final stage of casting.
Temperature feedback control is performed during a period when the molten steel level (molten steel amount) changes significantly, and temperature feedback control is performed after the set time of program control or during steady state when the molten steel temperature reaches the target temperature, and the temperature feedback control is performed by comparing the measured temperature signal and the target temperature. This is done using a comparison operation.

タンデイツシユ内の溶鋼量が著しく変化する非
定常運転においては、該溶鋼量の変化が同じ投入
電力に対して溶鋼温度に著しく影響することか
ら、プログラム制御は、タンデイツシユ1内の溶
鋼量をその重量検出器8(もしくは溶鋼深さ検出
器)から得、この検出信号と目標温度θsに従つて
選択されるデータ群をプログラムデータテーブル
9から順次読み出して投入電力指令Epを得るよ
うにされる。
During unsteady operation in which the amount of molten steel in the tundish changes significantly, changes in the amount of molten steel significantly affect the temperature of molten steel for the same input power. The input power command Ep is obtained by sequentially reading out data groups selected from the program data table 9 according to this detection signal and the target temperature θs.

温度フイードバツク制御は、連続型温度計10
による検出温度θrから平均演算部11が平均温度
θaを検出し、この平均温度θaを消耗型温度計1
2による検出温度θTに従つて補正演算部13によ
つて随時補正し、この補正した平均温度θa1と目
標温度θsとから投入電力演算部14により投入電
力指令Eoを求めるようにされる。
Temperature feedback control uses continuous thermometer 10.
The average calculation unit 11 detects the average temperature θa from the detected temperature θr, and converts this average temperature θa into the consumable thermometer 1.
The correction calculating unit 13 performs correction as needed according to the detected temperature θ T according to No. 2, and the input power calculating unit 14 calculates the input power command Eo from the corrected average temperature θa 1 and the target temperature θs.

投入電力演算部14における演算は下記式によ
つて行われる。
The calculation in the input power calculation section 14 is performed by the following formula.

Eo=Ef(1+ΣKΔθ/θs) ここで、Efは基準電力、Kは比例定数、Δθは
目標温度θsと平均温度θa1の偏差であり、目標温
度θsに対する溶鋼温度との偏差Δθの比率を持つ
てサンプリング周期で基準電力Efを補正して投
入電力指令Eoを得る。
Eo=Ef (1+ΣKΔθ/θs) Here, Ef is the reference power, K is the proportional constant, Δθ is the deviation between the target temperature θs and the average temperature θa 1 , and has the ratio of the deviation Δθ between the molten steel temperature and the target temperature θs. The input power command Eo is obtained by correcting the reference power Ef at the sampling period.

こうしたプログラム制御と温度フイードバツク
制御による投入電力指令Ep,Eoはリミツタ部1
5による制限がなされて指令Esとされ、ピンチ
効果抑制がなされる。
The input power commands Ep and Eo by such program control and temperature feedback control are set by the limiter section 1.
5 is set as the command Es, and the pinch effect is suppressed.

第2図は、第1図における温度制御態様を示す
図である。タンデイツシユ1への鋳込開始(時刻
t1)にはプログラム制御を行い、溶鋼重さに見合
つた投入力電力指令Esをテーブル9から読み出
して投入電力を制御し、鋳込初期(期間T1)の
溶鋼温度低下を防止する。鋳込開始から特定の時
間T1(又は溶鋼温度が目標温度θs)に達したとき
(時刻t2)、溶鋼の連続測温によるフイードバツク
制御になるよう切換スイツチ6をEo側に切り換
える。次に、鍋7の終了の特定時間前(時刻t3
になつたとき、再度プログラム制御に切り換えて
溶鋼重さに見合つた電力投入を行う(期間T3)。
このプログラム制御における投入電力は鍋終了
(時刻t4)で溶鋼重さが減り始め、これに追従し
て投入電力も下げて加熱過多を防止し、次鍋から
の注湯開始(時刻t5)で溶鋼重さが増加するに従
つて投入電力も上げて行き、所定時間後又は溶鋼
温度が目標温度に達したとき(時刻t6)にフイー
ドバツク制御に戻す。
FIG. 2 is a diagram showing the temperature control mode in FIG. 1. Start of casting into tandate 1 (time
At t 1 ), program control is performed to read input power command Es commensurate with the weight of molten steel from table 9 to control input power and prevent a drop in molten steel temperature at the initial stage of casting (period T 1 ). When the specific time T 1 (or the molten steel temperature reaches the target temperature θs) from the start of pouring (time t 2 ), the changeover switch 6 is switched to the Eo side so that feedback control is performed by continuous temperature measurement of the molten steel. Next, a specific time before the end of pot 7 (time t 3 )
When the temperature reaches 1, the program control is switched again and power is supplied in accordance with the weight of the molten steel (period T 3 ).
In this program control, the input power starts to decrease when the ladle ends (time t 4 ), and the weight of the molten steel begins to decrease, and the input power follows this, lowering the input power to prevent overheating, and starts pouring from the next ladle (time t 5 ). As the weight of the molten steel increases, the input power is increased, and after a predetermined time or when the molten steel temperature reaches the target temperature (time t 6 ), the control is returned to feedback control.

こうした鍋交換によるプログラム制御期間を持
つて鍋交換時の溶鋼温度低下を防止し、同様に鋳
込終了前(時刻t7)にはプログラム制御を行う。
この場合、鋳込終了時(時刻t8)で溶鋼重さは減
り始め、タンデイツシユ1内の全部の溶鋼が排出
されるに追従して投入電力も下げる。
The program control period for replacing the ladle is used to prevent the molten steel temperature from decreasing when the ladle is replaced, and the program control is similarly performed before the end of casting (time t7 ).
In this case, the weight of the molten steel begins to decrease at the end of pouring (time t 8 ), and as all of the molten steel in the tundish 1 is discharged, the input power is also reduced.

以上までのように、鋳込開始、鍋交換等の非定
常運転時にはフイードバツク制御では対応性の困
難さによる温度変動をプログラム制御によつて補
償し、定常運転時にはフイードバツク制御によつ
て精度良い温度制御を行う。第2図中、ΔTは目
標温度と溶鋼温度の偏差測定値を実線で示し、破
線はフイードバツク制御のみによる従来の測定値
を示し、従来方法に較べて温度変動が少なくなつ
ていることを示す。
As mentioned above, during unsteady operations such as starting pouring or replacing a pot, program control compensates for temperature fluctuations that are difficult to respond to with feedback control, and during steady operations, feedback control provides accurate temperature control. I do. In Figure 2, ΔT shows the measured deviation between the target temperature and the molten steel temperature as a solid line, and the broken line shows the conventional measured value using only feedback control, which shows that the temperature fluctuation is smaller compared to the conventional method.

ここで、本実施例では投入電力演算部14の演
算に、基準電力Ef、比例定数Kとして以下に説
明する処理によつて調整し、フイードバツク制御
期間での応答性を良くしかもハンチング量の少な
い加熱制御を可能にする。基本的な考え方として
は溶鋼温度と目標温度の差Δθ(θs−θa1)により、
基準電力Efを定め、さらにΔθの時間変化率
(dθ/dt)とΔθの関係により、基準電力Efに対して の調整分を考慮し、応答性と精度を高めている。
Here, in this embodiment, the reference power Ef and the proportionality constant K are adjusted in the calculation of the input power calculation unit 14 through the processing described below, thereby improving responsiveness during the feedback control period and heating with less hunting. Enabling control. The basic idea is that the difference between the molten steel temperature and the target temperature Δθ (θs−θa 1 )
The reference power Ef is determined, and the relationship between the time rate of change of Δθ (dθ/dt) and Δθ takes into account the amount of adjustment to the reference power Ef to improve responsiveness and accuracy.

基準電力Efは第3図に示すように調整する。
目標温度θsと溶鋼温度θa1の偏差Δθ(=θs−θa1
が負、正の一定値Δθ1以下及びΔθ1を越える3つ
の領域によつて基準電力Efを下記のように切り
換える。
The reference power Ef is adjusted as shown in FIG.
Deviation Δθ between target temperature θs and molten steel temperature θa 1 (= θs − θa 1 )
The reference power Ef is switched as follows according to three regions in which the voltage is negative, positive, less than or equal to a certain value Δθ 1 , and greater than Δθ 1 .

Δθ<0 のときEf=Ef1 0≦Δθ≦+Δθ1 のときEf=Ef2−Ef1/Δθ1Δθ
+ Ef1 +Δθ1<Δθ のときEf=Ef2 但し、Ef1,Ef2はタンデイツシユの規模や投入
電力に対する溶鋼の加熱効率等から実験や経験に
よつて温度差0,Δθ1との関係と共に予め定めら
れる値であり、Ef1<Ef2にされる。
When Δθ<0, Ef=Ef 1 When 0≦Δθ≦+Δθ 1, Ef=Ef 2 −Ef 1 /Δθ 1 Δθ
+ Ef 1 + Δθ 1 When < Δθ, Ef = Ef 2 However, Ef 1 and Ef 2 are determined by experiment and experience based on the scale of the tundish and the heating efficiency of molten steel with respect to the input power, etc., as well as the relationship with the temperature difference 0 and Δθ 1 . This is a predetermined value, and Ef 1 <Ef 2 .

一方、比例定数Kは第4図に示すように調整す
る。Δθが+Δθ1と−Δθ2を境とする3つの領域に
応じてかつ夫々の領域での溶鋼温度θの時間変化
率の正負に応じて下記のように切り換える。
On the other hand, the proportionality constant K is adjusted as shown in FIG. The switching is performed as follows according to the three regions in which Δθ is bordered by +Δθ 1 and −Δθ 2 and depending on the sign or negative of the time rate of change of the molten steel temperature θ in each region.

Δθ>+Δθ1,dθ/dt<0 のときK=K1 Δθ>+Δθ1,dθ/dt≧0 のときK=0 Δθ<−Δθ2,dθ/dt≧0 のときK=K2 Δθ<−Δθ2,dθ/dt<0 のときK=0 −Δθ2≦Δθ≦+Δθ1 のときK=0 但し、K1,K2は前述のEf1,Ef2と同様に温度
差−Δθ2,+Δθ1と共に実験や経験によつて予め定
められている値であり、K1>K2にされる。
When Δθ>+Δθ 1 , dθ/dt<0, K=K 1 When Δθ>+Δθ 1 , dθ/dt≧0, K=0 Δθ<−Δθ 2 , When dθ/dt≧0, K=K 2 Δθ< K=0 when −Δθ 2 , dθ/dt<0 −K=0 when −Δθ 2 ≦Δθ≦+Δθ 1 However, K 1 and K 2 are the temperature difference −Δθ 2 as in the above-mentioned Ef 1 and Ef 2 . , +Δθ 1 are predetermined values based on experiments and experience, and K 1 >K 2 .

こうした基準電力Efと比例定数Kの調整によ
り、目標温度θsと溶鋼温度θとの差Δθに応じて
投入電力指令出力Eoは以下のように決定される。
By adjusting the reference power Ef and the proportionality constant K, the input power command output Eo is determined as follows according to the difference Δθ between the target temperature θs and the molten steel temperature θ.

(a) Δθ>+Δθ1かつdθ/dt<0のとき Eo=Ef2(1+ΣK1Δθ/θs) このときは、溶鋼温度θが目標温度θsよりも+
Δθ1以上低く(溶鋼温度θが目標温度θsよりも低
い)、しかも溶鋼温度θが時間と共に低下してい
るため、高い基準電力Ef2及び高い比例定数K1
よるフイードバツク制御を行うことで溶鋼温度θ
を目標温度θsに向けて早く上昇させようとする。
(a) When Δθ>+Δθ 1 and dθ/dt<0 Eo=Ef 2 (1+ΣK 1 Δθ/θs) In this case, the molten steel temperature θ is higher than the target temperature θs.
Since Δθ is lower than 1 (molten steel temperature θ is lower than target temperature θs) and molten steel temperature θ is decreasing with time, the molten steel temperature can be lowered by performing feedback control using high reference power Ef 2 and high proportionality constant K 1 . θ
attempts to quickly raise the temperature toward the target temperature θs.

(b) Δθ>+Δθ1かつdθ/dt≧0のとき Eo=Ef2 このときは、溶鋼温度θが時間と共に目標温度
に向かつて上昇しているため、温度差Δθに比例
した調整を行わず、高い基準電力Ef2のみによる
固定制御を行い、目標温度に向かつた溶鋼温度の
上昇がやや緩やかになるよう出力Eoを絞る。
(b) When Δθ > + Δθ 1 and dθ/dt ≥ 0 Eo = Ef 2 In this case, the molten steel temperature θ is increasing over time toward the target temperature, so no adjustment is made in proportion to the temperature difference Δθ. , performs fixed control using only the high reference power Ef 2 , and throttles the output Eo so that the rise in molten steel temperature toward the target temperature is somewhat gradual.

(c) 0≦Δθ≦+Δθ1のとき Eo=Ef2−Ef1/Δθ1Δθ+Ef1 このときは、溶鋼温度θが目標温度θsに対して
設定値+Δθ1になる少しの温度差内にあることか
ら、温度差Δθが小さくなるほど一定の傾斜で出
力EoをEf2からEf1まで絞り、フイードバツク制
御の固定により溶鋼温度θが目標温度θsから突出
しないよう即ちハンチングを越さないようにす
る。
(c) When 0≦Δθ≦+Δθ 1 Eo=Ef 2 −Ef 1 /Δθ 1 Δθ+Ef 1 In this case, the molten steel temperature θ is within a small temperature difference of the set value + Δθ 1 with respect to the target temperature θs. Therefore, as the temperature difference Δθ becomes smaller, the output Eo is reduced from Ef 2 to Ef 1 at a constant slope, and the feedback control is fixed so that the molten steel temperature θ does not protrude from the target temperature θs, that is, does not exceed hunting.

(d) −Δθ2≦Δθ<0のとき Eo=Ef1 このときは、溶鋼温度θが目標温度θsを越えて
いるが、その差Δθが設定値−Δθ2以内になる少し
の温度差にあることから、フイードバツク制御を
固定し、低い基準電力Ef1により溶鋼温度θを目
標温度θsに向けて緩やかに低下させる。
(d) When −Δθ 2 ≦Δθ < 0 Eo=Ef 1 In this case, the molten steel temperature θ exceeds the target temperature θs, but the temperature difference is small enough that the difference Δθ is within the set value −Δθ 2 . Therefore, the feedback control is fixed, and the molten steel temperature θ is gradually lowered toward the target temperature θs using the low reference power Ef1 .

(e) Δθ<−Δθ2かつdθ/dt≧0のとき Eo=Ef1(1+ΣK2Δθ/θs) このときは、溶鋼温度θが目標温度θsよりも−
Δθ2以上高く、しかも溶鋼温度θが時間と共に上
昇しているため、低い基準電圧Ef1よりもさらに
K2・Δθ/θs(負)だけ下げたフイードバツク制御
により溶鋼温度θを目標温度θsに向けて早く低下
させる。
(e) When Δθ<-Δθ 2 and dθ/dt≧0 Eo=Ef 1 (1+ΣK 2 Δθ/θs) In this case, the molten steel temperature θ is lower than the target temperature θs.
Since Δθ is higher than 2 and the molten steel temperature θ is increasing with time, it is even higher than the low reference voltage Ef 1 .
The molten steel temperature θ is quickly lowered toward the target temperature θs by feedback control that lowers it by K 2 ·Δθ/θs (negative).

(f) Δθ<−Δθ2かつdθ/dt<0のとき Eo=Ef1 このとき、溶鋼温度θが時間と共に目標温度θs
に向かつて低下しているため、低い基準電力Ef1
に固定し、目標温度に向かつた溶鋼温度θの低下
をやや緩やかにする。
(f) When Δθ<-Δθ 2 and dθ/dt<0 Eo=Ef 1 At this time, the molten steel temperature θ increases with time to the target temperature θs
The lower reference power Ef 1
, and the decrease in the molten steel temperature θ toward the target temperature is made somewhat gradual.

以上の説明から明らかなように、溶鋼温度θと
目標温度θsとの差が設定値+Δθ1,−Δθ2の範囲内
にあるときは溶鋼温度θが目標温度θsに接近して
いることからフイードバツク制御を固定し、溶解
温度θが目標温度θsを突出しないよう即ちハンチ
ングを越さないようにする。そして、溶鋼温度θ
が目標温度θsに対して+Δθ1,−Δθ2を越える大き
な差にあるときは、そのときの温度変化dθ/dtが
目標温度に向かう方向にあるか否かに応じて投入
電力指令Eoのフイードバツク制御を行うか、否
かの切換えを行い、溶鋼温度θが早く目標温度θs
に近づきかつ過不足を起こさないよう即ち目標温
度θsへの溶鋼温度θの制御の応答性を高めながら
目標温度に接近したときの温度変化を緩やかにす
る。このような制御を得るための設定値+Δθ1
−Δθ2は、溶鋼温度θが目標温度θsに近づいたと
きにフイードバツク制御を固定するか否かのしき
い値を与えるもので、前述のようにK1,K2
Ef1,Ef2と共に実験や経験によつて予め定める。
As is clear from the above explanation, when the difference between the molten steel temperature θ and the target temperature θs is within the range of the set value +Δθ 1 and −Δθ 2 , the molten steel temperature θ is close to the target temperature θs, so feedback is The control is fixed so that the melting temperature θ does not exceed the target temperature θs, that is, does not exceed hunting. And the molten steel temperature θ
When there is a large difference exceeding +Δθ 1 , −Δθ 2 from the target temperature θs, the feedback of the input power command Eo is determined depending on whether or not the temperature change dθ/dt at that time is in the direction toward the target temperature. The molten steel temperature θ quickly reaches the target temperature θs by switching whether or not to perform the control.
In other words, while increasing the responsiveness of the control of the molten steel temperature θ to the target temperature θs, the temperature change is made gradual when the temperature approaches the target temperature. Setting value to obtain such control + Δθ 1 ,
−Δθ 2 gives the threshold value for determining whether or not to fix the feedback control when the molten steel temperature θ approaches the target temperature θs, and as mentioned above, K 1 , K 2 and
Together with Ef 1 and Ef 2 , it is determined in advance by experiment and experience.

なお、実施例における各部演算等による投入電
力指令Esの制御はコンピユータによるサンプリ
ング制御に限らず、アナログ演算手段によつて同
等の作用効果を得ることができるのは勿論であ
る。
Note that the control of the input power command Es by calculations of each part in the embodiment is not limited to sampling control by a computer, and it is of course possible to obtain the same effect by using analog calculation means.

H 発明の効果 以上のとおり、本発明によれば、フイードバツ
ク制御では対応を困難にする非定常運転時では溶
鋼量に応じて投入電力をプログラム制御すること
で溶鋼温度の安定化を図り、定常運転時ではフイ
ードバツク制御を行うのに投入電力を決定する基
準電力と比例定数を温度差及び温度の時間変化率
に従つて切り換えることで応答性良くしかもハン
チングを小さくして溶鋼温度変動を小さくし、非
定常運転時と定常運転時の全区間に渡つて溶鋼の
温度変動を小さくし、高品質の構造を得ることが
できる。
H. Effects of the Invention As described above, according to the present invention, during unsteady operation, which is difficult to handle with feedback control, the molten steel temperature is stabilized by programmatically controlling the input power according to the amount of molten steel, and the molten steel temperature is stabilized during steady operation. In some cases, feedback control is performed by switching the reference power and proportionality constant that determine the input power according to the temperature difference and the rate of temperature change over time to improve responsiveness, reduce hunting, and reduce molten steel temperature fluctuations. Temperature fluctuations in the molten steel are reduced throughout the entire range during steady-state operation and steady-state operation, making it possible to obtain a high-quality structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置構成図、
第2図は第1図における制御態様を示す図、第3
図は第1図における演算部14の基準電力切換特
性図、第4図は第1図における演算部14の比例
定数切換特性図である。 1……タンデイツシユ、2……溶鋼、4,電力
変換器、5……制御装置、6……切換スイツチ、
7……取鍋、8……重量検出部、9……プログラ
ムデータテーブル、10……連続型温度計、11
……平均演算部、12……消耗型温度計、13…
…補償演算部、14……投入電力演算部、15…
…リミツタ部。
FIG. 1 is a device configuration diagram showing an embodiment of the present invention;
Figure 2 is a diagram showing the control mode in Figure 1;
1 is a reference power switching characteristic diagram of the calculation unit 14 in FIG. 1, and FIG. 4 is a proportional constant switching characteristic diagram of the calculation unit 14 in FIG. 1. DESCRIPTION OF SYMBOLS 1... Tandyshi, 2... Molten steel, 4, Power converter, 5... Control device, 6... Changeover switch,
7...Ladle, 8...Weight detection section, 9...Program data table, 10...Continuous type thermometer, 11
...Average calculating section, 12...Consumable thermometer, 13...
...Compensation calculation section, 14...Input power calculation section, 15...
...Limitsuta Club.

Claims (1)

【特許請求の範囲】 1 連続鋳造用タンデイツシユの誘導炉への投入
電力を非定常運転時にはタンデイツシユ内溶鋼量
の変化に応じて投入電力Epを調整するプログラ
ム制御をし、定常運転時にはタンデイツシユ内の
溶鋼温度θと目標温度θsの偏差Δθと基準電力Ef
と比例定数Kから次式 Eo=Ef(1+ΣKΔθ/θs) に従つて求める投入電力Eoでフイードバツク制
御し、前記基準電力Efは前記偏差Δθが負と予め
定められる正の設定値+Δθ1以下及び該設定値+
Δθ1を越える3つの領域に応じて次の条件 Δθ<0 のときEf=Ef1 0≦Δθ≦+Δθ1のとき Ef=Ef2−Ef1/Δθ1Δθ+Ef1 +Δθ1<ΔθのときEf=Ef2 但し、Ef1とEf2は予め定められる値であり、 Ef1<Ef2にされる。 に従つて切り換え、前記比例定数Kは前記偏差
Δθが設定値+Δθ1と予め定められる負の設定値−
Δθ2を境とする3つの領域と前記溶鋼温度θの時
間変化率dθ/dtから次の条件 Δθ>+Δθ1かつdθ/dt<0のときK=K1 Δθ>+Δθ1かつdθ/dt≧0のときK=0 Δθ<−Δθ2かつdθ/dt≧0のときK=K2 Δθ<−Δθ2かつdθ/dt<0のときK=0 −Δθ2≦Δθ≦+Δθ1 のときK=0 但し、K1とK2は予め定められる値であり、 K1>K2にされる。 に従つて切り換えて前記投入電力Eoを調整する
ことを特徴とする連続鋳造における誘導加熱制御
方法。
[Scope of Claims] 1. The power input to the induction furnace of the continuous casting tundish is controlled by a program that adjusts the input power Ep according to the change in the amount of molten steel in the tundish during unsteady operation, and the amount of molten steel in the tundish during steady operation. Deviation Δθ between temperature θ and target temperature θs and reference power Ef
Feedback control is performed using the input power Eo obtained from the following equation Eo = Ef (1 + ΣKΔθ/θs) from the proportionality constant K, and the reference power Ef is set to a positive set value where the deviation Δθ is predetermined to be negative + Δθ 1 or less and the corresponding Setting value +
The following conditions apply depending on the three regions exceeding Δθ 1 : When Δθ<0, Ef=Ef 1 When 0≦Δθ≦+Δθ 1 , Ef=Ef 2 −Ef 1 /Δθ 1 Δθ+Ef 1 +Δθ 1 <Δθ, Ef= Ef 2 However, Ef1 and Ef2 are predetermined values, and Ef1<Ef2. The proportional constant K is set to a negative set value where the deviation Δθ is predetermined as set value + Δθ 1 .
From the three regions bounded by Δθ 2 and the time rate of change dθ/dt of the molten steel temperature θ, the following conditions are established: When Δθ>+Δθ 1 and dθ/dt<0, K=K 1 When Δθ>+Δθ 1 and dθ/dt≧ When 0, K=0 When Δθ<-Δθ 2 and dθ/dt≧0, K=K 2 When Δθ<-Δθ 2 and dθ/dt<0, K=0 When −Δθ 2 ≦Δθ≦+Δθ 1 , K =0 However, K 1 and K 2 are predetermined values, and K 1 >K 2 . An induction heating control method in continuous casting, characterized in that the input power Eo is adjusted by switching according to the following.
JP15765185A 1985-07-17 1985-07-17 Induction heating control for continuous casting Granted JPS6217983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15765185A JPS6217983A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15765185A JPS6217983A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Publications (2)

Publication Number Publication Date
JPS6217983A JPS6217983A (en) 1987-01-26
JPH0474839B2 true JPH0474839B2 (en) 1992-11-27

Family

ID=15654383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15765185A Granted JPS6217983A (en) 1985-07-17 1985-07-17 Induction heating control for continuous casting

Country Status (1)

Country Link
JP (1) JPS6217983A (en)

Also Published As

Publication number Publication date
JPS6217983A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US4131754A (en) Automatic melt rate control system for consumable electrode remelting
JPH0474839B2 (en)
JPH0212398B2 (en)
KR20030020474A (en) A control system for Silicon Ingot Growing Apparatus
JPS6270904A (en) Temperature control method
JP3309809B2 (en) Metal surface level control method in continuous casting machine
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JPH02137656A (en) Method for controlling temperature of molten steel in tundish
JP2007217754A (en) Method and device for controlling temperature of molten zinc pot
CN112824544B (en) Converter tapping angle optimization method
JPS62168652A (en) Molten metal surface level control method in continuous casting machine
JPH0128933Y2 (en)
JP2874552B2 (en) Method and apparatus for controlling metal level in continuous casting machine mold
JP2001219250A (en) Device and method for controlling temperature of molten steel in tundish, and computer-readable storage medium
JPH04262845A (en) Method for controlling mold level in continuous casting
KR100491001B1 (en) A method of controlling level of molten steel using model reference for strip casting process
JP2835191B2 (en) Level control device for mold level in continuous casting machine
JPH01118343A (en) Method for controlling molten metal flow in strip casting
JPS6220281A (en) Induction heating control for continuous casting
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
SU974083A1 (en) Method and device for controlling furnace thermal mode
JPH03124351A (en) Device for controlling plasma heating to molten steel in tundish in continuous casting equipment
JPH08243703A (en) Method for controlling molten metal surface level in continuous casting
JP5359352B2 (en) Ladle nozzle control method and system
JPS63212056A (en) Method for controlling molten steel pouring in continuous casting